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Introduction & motivation

The structure of a neutron star



Introduction & motivation

Compact star binaries

Compact stars are natural laboratories which allow us to study the properties of nuclear
matter under extreme physical conditions (strong gravity, strong magnetic fields, etc.).

The recent detection of gravitational and electromagnetic waves originating from black
hole or neutron star mergers motivates studies of compact binary systems.

Various physical processes in the compact binary systems can be modelled in the
framework of general-relativistic hydrodynamics simulations.

Transport coefficients are key inputs in hydrodynamic modelling of compact star mergers
as they measure the energy dissipation rate in hydrodynamic evolution of matter.

The bulk viscosity might affect the hydrodynamic evolution of mergers by damping the
density oscillations which can affect the form of the gravitational signal.

Aim of this work

We compute the bulk viscosity of two-flavor color-superconducting (2SC) udse quark matter
from weak processes in the neutrino-transparent regime. We also assess the possible impact of
the bulk viscous damping on the density oscillations of the post-merger object.



Introduction & motivation

Binary neutron star mergers

Characteristic timescales of the initial phase of post-merger ∼ 10 ms (over which intense
gravitational wave emission is expected); long-term post-merger evolution phase is ∼ 1 s.

Characteristic oscillation frequencies in BNS mergers lie in the range 1–10 kHz.

Figure from L. Rezzolla and O. Zanotti, Relativistic Hydrodynamics (Oxford University Press, Oxford, UK, 2013).



Weak processes and the bulk viscosity

Weak processes in udse matter

The simplest (semi-leptonic) weak-interaction processes in neutrino-transparent quark
matter are the direct Urca processes

d → u + e− + ν̄e u + e− → d + νe

s → u + e− + ν̄e u + e− → s + νe

In β-equilibrium µd = µs = µu + µe. Out of equilibrium there are chemical imbalances

µ∆d/s
= µd/s − µu − µe ̸= 0

In addition, we have the following nonleptonic processes

u + d ↔ u + s

which equilibrate much faster than Urca processes for frequencies of interest.

As a result, µs = µd and µ∆s = µ∆d = µ∆, which is the relevant measure of how
much the system is driven out of β-equilibrium state by compression and rarefaction.



Weak processes and the bulk viscosity

Rates of the Urca processes

The rates of the Urca processes are given by [̄f (k) = 1 − f (k)]

Γd/s→ueν̄ =

∫
dΩk

∑
|MUrca|2 f̄ (k)f̄ (p)f (p′)(2π)4δ(4)(k + p + k′ − p′)

Γue→(d/s)ν =

∫
dΩk

∑
|MUrca|2f (k)f (p)f̄ (p′)(2π)4δ(k + p − k′ − p′)

The spin-averaged squared matrix element is (cos θc → sin θc for s-quark)∑
|MUrca|2 = 128G2

F cos2 θc(k · p)(k′ · p′)

For small departures from equilibrium Γd/s→ueν̄ − Γue→(d/s)ν = λd/s µ∆, with

λd/s =
∂(Γd/s→ueν̄ − Γue→(d/s)ν)

∂µ∆

∣∣∣∣
µ∆=0

At low temperatures the rates are given by (note that there is no threshold for direct Urca)

λd ≃ 0.2G2
F cos2 θcp2

FdT5, λs ≃ 0.03G2
F sin2 θcµ

∗
s m∗2

s T4

The rate of non-leptonic processes is given by

λnon−lep =
64

5π3
G2

F sin2 θc cos
2 θcµ

∗5
d T2



Weak processes and the bulk viscosity

Density oscillations in quark matter

Consider now small-amplitude density oscillations in quark matter with frequency ω

nj(t) = nj0 + δnj(t), δnj(t) ∼ eiωt, j = {u, d, s, e}

The shifts in the particle densities δnj lead to chemical imbalance

µ∆ = Adδnd + Asδns − Auδnu − Aeδne

The susceptibilities Aj are given by

Ad = Add − Aud, Au = Auu − Adu, As = Ads − Aus, Ae = Aee, Aij = ∂µi/∂nj

Off-diagonal elements i ̸= j do not vanish because of strong interactions between quarks.

If the weak processes were switched off, all particle species would be conserved

∂

∂t
δn0

j (t) + θnj0 = 0, δn0
j (t) = −

θ

iω
nj0, θ = ∂ivi



Weak processes and the bulk viscosity

Balance equations

The rate equations which take into account the net production of particles read

∂

∂t
δnd = −θnd0 − λdµ∆ − Iud→us

∂

∂t
δns = −θns0 − λsµ∆ + Iud→us

∂

∂t
δnu = −θnu0 + (λd + λs)µ∆

∂

∂t
δne = −θne0 + (λd + λs)µ∆

The quantity Iud→us denotes the rate of the non-leptonic reaction d + u → s + u, which
is driven by a nearly vanishing chemical potential difference δµd − δµs ≪ µ∆, but
cannot be neglected because the relevant λ-coefficient can be very large.

The charge neutrality (both color and electric) and baryon conservation imply

ñu + ñd + ñs = 2(nu + nd + ns) = 2nb

2
3
(nu + ñu)−

1
3
(nd + ns + ñd + ñs) = ne + nµ = nu + ñu − nb

where ni are the densities of blue quarks, ñi are the summed densities of red and green
quarks, and nb is the baryon density.



Weak processes and the bulk viscosity

Bulk viscosity

Solving these equations we can compute the pressure out of equilibrium

p = p(nj) = p(nj0 + δnj) = peq + δp′,

where the non-equilibrium part of the pressure - the bulk viscous pressure, is given by

Π ≡ δp′ =
∑

j

∂p
∂nj

δn′j

The non-equilibrium shifts are found from δn′j = δnj − δn0
j , and the bulk viscosity is

then identified from Π = −ζθ, where

ζ(ω) =
C2

A
γ

ω2 + γ2

with susceptibilities A =
∂µ∆

∂nu

∣∣∣∣
nb

, C = nb
∂µ∆

∂nb

∣∣∣∣
xu

, and relaxation rate γ = (λd + λs)A.

At the maximum of the bulk viscosity (ω = γ), in the high-frequency (ω ≫ γ) and
low-frequency (ω ≪ γ) limits we find

ζmax =
C2

2Aω
, ζhigh =

2γ
ω
ζmax, ζlow =

2ω
γ
ζmax



Results

Lagrangian of the model

To describe the properties of 2SC quark matter, we adopt 3-flavor NJL Lagrangian with
vector interactions and the ’t Hooft determinant term

LNJL = ψ̄(iγµ∂µ − m̂)ψ + GS

8∑
a=0

[
(ψ̄λaψ)

2 + (ψ̄iγ5λaψ)
2
]

+ GV(ψ̄iγµψ)2 + GD
∑
γ,c

[
ψ̄a
αiγ5ϵ

αβγϵabc(ψC)
b
β

] [
(ψ̄C)

r
ρiγ5ϵ

ρσγϵrscψ
s
σ

]
− K

{
detf [ψ̄(1 + γ5)ψ] + detf [ψ̄(1 − γ5)ψ]

}
This Lagrangian contains three additional terms: (i) the repulsive vector interaction with
coupling GV , (ii) the pairing interaction with coupling GD, and (iii) the ’t Hooft
interaction with coupling K, which breaks the UA(1) symmetry.
In the 2SC phase, pairing occurs in a color- and flavor-antisymmetric manner between u
and d quarks, while s quarks remain unpaired. The pairing gap is given by

∆c = GD

〈
(ψ̄C)

a
αiγ5ϵ

αβcϵabcψ
b
β

〉
The constituent masses and effective quark chemical potentials are given by

Mα = mα − 4GSσα + 2Kσβσγ µ∗ = diagf (µu − ω0, µd − ω0, µs − ϕ0)

The quark-antiquark condensates in the the mean field approximation are given by

σα = GS
〈
ψ̄αψα

〉
ω0 = GV⟨ψ†

uψu + ψ†
dψd⟩ ϕ0 = 2GV⟨ψ†

s ψs⟩



Results

Particle fractions in equilibrium
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Strengthening the repulsive vector interaction increases the u and s-quark populations
while reducing the d-blue quark as well as lepton populations.
The increase of the attractive pairing strength GD/GS affects the particle populations in
the opposite manner.



Results

Equilibration coefficients of Urca and non-leptonic processes

T [MeV]
10 10

10 9

10 8

[M
eV

3 ]

GV/GS = 0.6
GV/GS = 1.2

GD/GS = 1.00

nb = 4 n0

T [MeV]

nb = 7 n0

1 2 4 10
T [MeV]

10 17

10 16

10 15

10 14

10 13

10 12

[M
eV

3 ]

due

sue

non lep

2 4 10
T [MeV]

Nonleptonic processes occur at much higher rates than the d-Urca and s-Urca processes.

The direct d-Urca process is only thermally allowed with λd ∝ T5, whereas the s-Urca
channel is kinematically open with λs ∝ T4 due to the large mass of the strange quark.



Results

Urca relaxation rate
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The maximum of bulk viscosity is located at the temperature where γ = ω = 2πf .

Resonance occurs near T ≃ 3 − 4 MeV at 1 kHz, and near T ≃ 5 − 6 MeV at 10 kHz.

Larger vector coupling enhances the rate γ slightly, especially at higher densities.



Results

Bulk viscosity of udse matter
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The maximum of the bulk viscosity arises at several MeVs and slowly moves to lower
temperatures with increasing density.

The vector coupling GV affects significantly the magnitude of the bulk viscosity,
especially at high densities, but the location of maximum remains almost unchanged.

In this temperature range, the bulk viscosity of 2SC quark matter is similar to that of
nucleonic matter.



Results

Estimation of oscillation damping timescale

The energy density of baryonic oscilations with amplitude δnB is

ϵ =
K
18

(δnB)
2

nB
.

Coefficient K is the incompressibility of nuclear matter

K = 9
∂P
∂nB

.

The energy dissipation rate per volume by bulk viscosity is

dϵ
dt

=
ω2ζ

2

(
δnB

nB

)2

.

The characteristic timescale required for dissipation is τ = ϵ/(dϵ/dt)

τ =
KnB

9ω2ζ
.

At the maximum of the bulk viscosity (ω = γ), in the high-frequency limit (ω ≫ γ) and
in the low-frequency limit (ω ≪ γ) we find

τmin =
2

9ω
KnB

C2/A
, τhigh =

1
9γ

KnB

C2/A
, τlow =

γ

9ω2

KnB

C2/A
.



Results

Oscillation damping timescales (f = 1 kHz)
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Damping timescales close to the minimum are comparable to the characteristic
timescales of the short-term evolution of the post-merger remnant.

Damping timescale decreases with the increase of the vector coupling and this decrease
is more pronounced at higher densities.

Damping timescales in 2SC quark matter are similar to those of nucleonic matter.

Thus, within the NJL model, it would be challenging to distinguish 2SC quark matter
from nuclear matter based solely on their bulk viscous dissipation properties.
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Oscillation damping timescales (f = 10 kHz)
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timescales of the short-term evolution of the post-merger remnant.
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Damping timescales in 2SC quark matter are similar to those of nucleonic matter.

Thus, within the NJL model, it would be challenging to distinguish 2SC quark matter
from nuclear matter based solely on their bulk viscous dissipation properties.



Conclusions

Summary

We studied the weak interaction rates and the bulk viscosity of the 2SC phase of
finite-temperature quark matter under conditions relevant to binary neutron star mergers.

Under these conditions the bulk viscosity mainly arises from direct Urca processes.

We employed the vector-enhanced NJL model for three-flavor quark matter for various
values of vector and diquark couplings.

We find that varying the vector coupling by a factor of 2 changes the bulk viscosity and
corresponding damping timescale by a factor of 3–20 at densities from 4n0 to 7n0.

Damping timescales range from a few up to hundreds of milliseconds, which are
comparable to the typical timescales of the evolution of the post-merger remnant.

Bulk viscosity and damping time for 2SC quark matter are close to those of nucleonic
matter, making it difficult to distinguish these states via their bulk viscous behavior.

THANK YOU FOR ATTENTION!
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