The Unpolarized Nucleon PDF at the physical point from lattice QCD using NNLO matching

Andrew Hanlon

Brookhaven National Laboratory

Collaborators: Xiang Gao, Jack Holligan, Swagato Mukherjee, Peter Petreczky, Philipp Scior, Sergey Syritsyn, Yong Zhao

> Parton Distributions and Nucleon Structure INT 22-83W September 12-16, 2022

Outline

- Motivations and formalism
- Lattice setup
- Analysis of two-point and three-point functions
- Model-independent extraction of lowest Mellin moments
- x-dependent PDF from model fits and LaMET

All results are preliminary!

Motivations

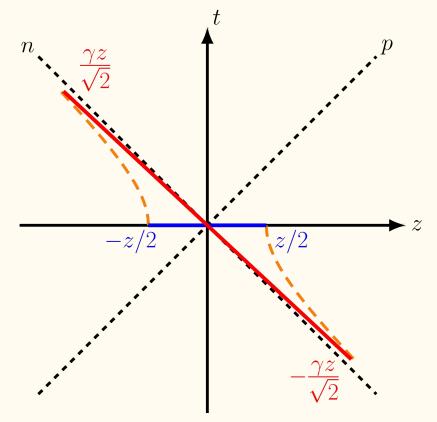
- Test methods against experimental data
- Extract nucleon PDFs using various methods
 - Leading-twist OPE
 - o Model-dependent fits
 - x-space matching with Hybrid renormalization
- When does short-distance factorization break down?
- Check perturbative uncertainty by including NNLO matching

Light-cone PDFs from lattice QCD

- Cannot calculate matrix elements separated along the light cone in lattice QCD
- Instead, calculate equal-time spatiallyseparated matrix element of highly-boosted hadron

$$h^{B}(z, P_{z}) = \langle N; P_{z} | \overline{\psi}(z) \Gamma W(z, 0) \psi(0) | N; P_{z} \rangle$$

• Can be matched to light-cone PDF through Large-momentum Effective Theory or short-distance factorization



[X. Ji et al., Rev. Mod. Phys. 93, 035005, arXiv: 2004.03543]

Theoretical Framework:

[V. Braun, D. Müller '07]

[X. Ji '13]

[A. Radyushkin '17]

Correlation functions

Use standard nucleon operator: $N_{\alpha}^{(s)}(x,t) = \varepsilon_{abc} u_{a\alpha}^{(s)}(x,t) (u_b^{(s)}(x,t)^T C \gamma_5 d_c^{(s)}(x,t))$

For two-point functions:
$$C^{\text{2pt}}(\vec{p}, t_{\text{sep}}; \vec{x}, t_0) = \sum_{\vec{y}} e^{-i\vec{p}\cdot(\vec{y}-\vec{x})} \mathcal{P}_{\alpha\beta}^{\text{2pt}} \langle N_{\alpha}(\vec{y}, t_{\text{sep}} + t_0) \overline{N}_{\beta}(\vec{x}, t_0) \rangle$$

And three-point functions:

$$C^{3\text{pt}}(\vec{p}_f, \vec{q}, t_{\text{sep}}, t_{\text{ins}}; \vec{x}, t_0) = \sum_{\vec{y}, \vec{z}} e^{-i\vec{p}_f \cdot (\vec{y} - \vec{x})} e^{-i\vec{q} \cdot (\vec{x} - \vec{z})} \mathcal{P}_{\alpha\beta}^{3\text{pt}} \langle N_{\alpha}(\vec{y}, t_{\text{sep}} + t_0) \mathcal{O}^{\Gamma}(\vec{z}, \hat{\mathcal{L}}, t_{\text{ins}} + t_0) \overline{N}_{\beta}(\vec{x}, t_0) \rangle$$

$$\mathcal{O}^{\Gamma}(\vec{z}, \hat{\mathcal{L}}, t_{\text{ins}} + t_0) = \overline{q}(\vec{z}, t_{\text{ins}} + t_0) \Gamma \tau_3 W(\vec{z}, t_{\text{ins}} + t_0; \vec{z} + \hat{\mathcal{L}}, t_{\text{ins}} + t_0) q(\vec{z}, +\hat{\mathcal{L}}, t_{\text{ins}} + t_0)$$

For unpolarized distribution:
$$\mathcal{P}^{2\mathrm{pt}} = \mathcal{P}^{3\mathrm{pt}} = \frac{1}{2}(1+\gamma_t)$$
, $\Gamma = \gamma_t, \gamma_z$
Smeared-smeared (SS) and smeared-point (SP) two-point correlators No mixing

Only smeared-smeared three-point correlators

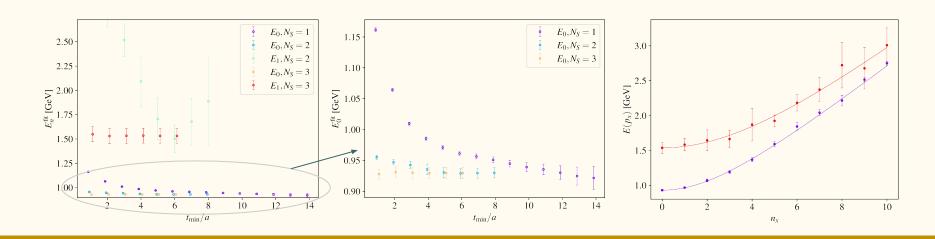
Calculation setup

- Mixed fermion action
 - Sea quark action: $N_f = 2+1$ HISQ with physical quark masses, $L^3 \times T = 64^3 \times 64$, a = 0.076 fm
- Calculations done with Qlua, which utilizes the multigrid solver in QUDA
- Use momentum smearing for quarks to achieve better overlap with boosted hadrons
- Included four momentum projections to $P_x^{(f)}$ at the sink for three-point functions

$P_x^{(f)}$	k_x	$t_{\rm sep}$	N_{samp}
0	0	6	16
0	0	8,10	32
0	0	12	64
1	0	6,8,10,12	32
4	2	6	32
4	2	$8,\!10,\!12$	128
6	3	6	20
6	3	8	100
6	3	10,12	140

Analysis of two-point functions

- Fit two-point functions to $C_N^{\mathrm{2pt}}(\vec{p},t_{\mathrm{sep}}) = C_0 e^{-E_0 t_{\mathrm{sep}}} \Big[1 + \sum_{i=1}^{N-1} R_i \prod_{j=1}^i e^{-\Delta_{j,j-1} t_{\mathrm{sep}}} \Big]$
- Use SP and SS correlators to help control excited states
- All energies below largest energy are priored
- Three states required to fit full $t_{
 m sep}$



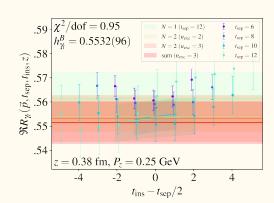
Three-point function analysis

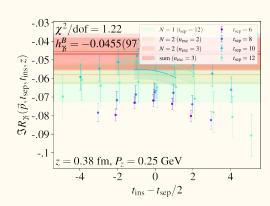
• Fit ratio of three-point to two-point data

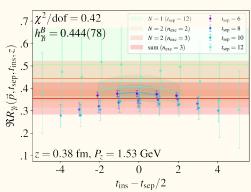
$$R(\vec{p}_f, t_{\rm ins}, t_{\rm sep}) = \frac{C^{\rm 3pt}(\vec{p}_f, \vec{q} = 0, t_{\rm ins}, t_{\rm sep})}{C^{\rm 2pt}(\vec{p}_f, t_{\rm sep})}$$

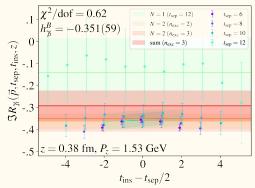
- Two-state fits to three-point ratio priored with 'effective' energy gap and amplitudes from two-state fits to two-point SS correlators
- Reasonable agreement between two-state and other fit strategies, like summation fits

$$R_{\mathrm{sum}}(\vec{p_f},t_{\mathrm{sep}}) = \sum_{t_{\mathrm{ins}}=n_{\mathrm{exc}}a}^{t_{\mathrm{sep}}-n_{\mathrm{exc}}a} R(\vec{p_f},t_{\mathrm{ins}},t_{\mathrm{sep}})$$



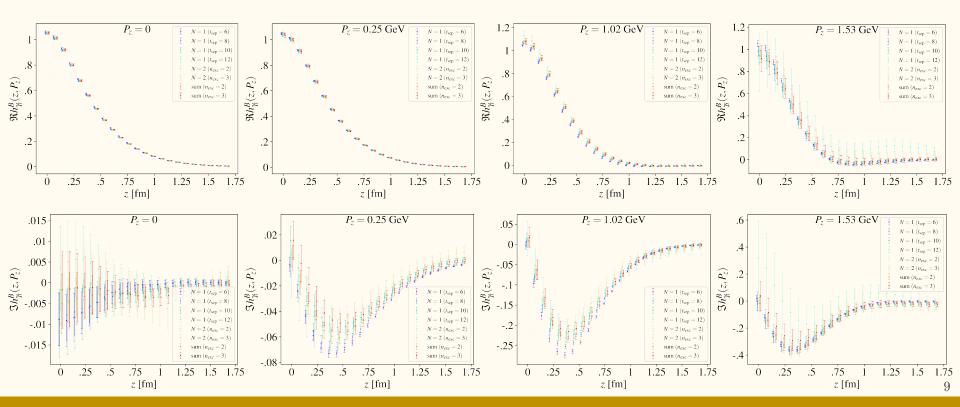






Comparison of fit strategies

• Preferred fit is two-state with $n_{\rm exc} = 3$



Ratio-scheme renormalization

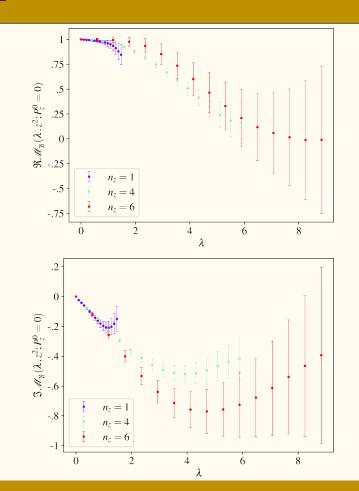
• The operator $\mathcal{O}_{\Gamma}(z)$ is multiplicatively renormalizable

$$h_{\Gamma}^{B}(z, P_z, a) = e^{-\delta m(a)|z|} Z_O(a) h_{\Gamma}^{R}(z, P_z, \mu)$$

• Can form renormalization-group invariants with the double ratio (z=0 for exact normalization)

$$\mathcal{M}(\lambda, z^2; P_z^0, a) = \frac{h^B(z, P_z, a)}{h^B(z, P_z^0, a)} / \frac{h^B(0, P_z, a)}{h^B(0, P_z^0, a)} , \lambda \equiv z P_z$$

- Consider $\mathcal{M}(\lambda, z^2; P_z^0 = 0, a)$, referred to as the reduced Ioffe Time Distribution (rITD)
- rITD can be perturbatively matched to light-cone ITD $Q(\lambda, \mu^2)$

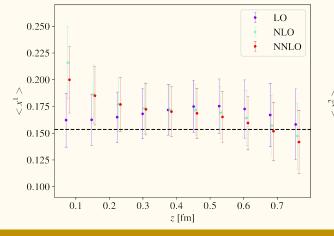


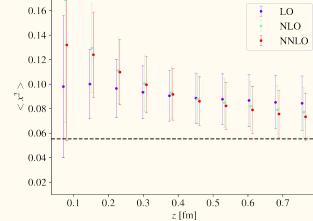
Lowest moments from leading-twist OPE

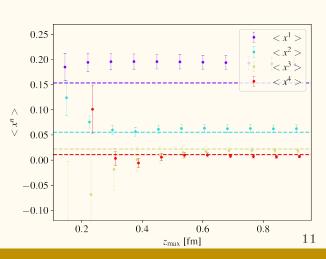
The lowest few moments can be extracted from the rITD by fits to

$$\mathcal{M}(\lambda, z^2; \lambda^0 \equiv z P_z^0) = \frac{\sum_{n=0} c_n(\mu^2 z^2) \frac{(-i\lambda)^n}{n!} \langle x^n \rangle(\mu) + \mathcal{O}(\Lambda_{\text{QCD}}^2 z^2)}{\sum_{n=0} c_n(\mu^2 z^2) \frac{(-i\lambda^0)^n}{n!} \langle x^n \rangle(\mu) + \mathcal{O}(\Lambda_{\text{QCD}}^2 z^2)}$$

where $c_n(\mu^2 z^2) \equiv C_n(\mu^2 z^2)/C_0(\mu^2 z^2)$, and $C_n(\mu^2 z^2)$ are Wilson coefficients, which have been computed up to next-to-next-leading-order (NNLO)







Model dependent fits

- Model the PDF $q_{\text{model}}(x)$ and evaluate the moments $\langle x^n \rangle_{\text{model}} = \int_0^1 dx \, x^n q_{\text{model}}(x)$
- Substitute $\langle x^n \rangle_{\text{model}}$ into leading-twist OPE to obtain $\mathcal{M}_{\text{model}}(\lambda, z^2; \lambda^0)$
- Fit by minimizing, $\chi^2 = \sum_{P_z > P_z^0}^{\text{max}} \sum_{z_{\text{min}}}^{z_{\text{max}}} \frac{(\mathcal{M}(\lambda, z^2; \lambda^0) \mathcal{M}_{\text{model}}(\lambda, z^2; \lambda^0))^2}{\sigma^2(z, P_z, P_z^0)}$
- Real and Imaginary part of rITD related to

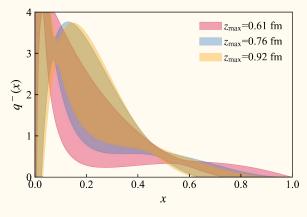
$$\begin{split} q^-(x) &\equiv q^u(x) - q^d(x) - (q^{\overline{u}}(x) - q^{\overline{d}}(x)) \;, \;\; q^+(x) \equiv q^u(x) - q^d(x) + (q^{\overline{u}}(x) - q^{\overline{d}}(x)) \;, \quad x \in [0,1] \end{split}$$
 respectively, and can be expressed via a simple model

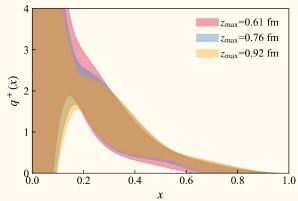
$$q^{-}(x;\alpha,\beta) = \frac{\Gamma(2+\alpha+\beta)}{\Gamma(1+\alpha)\Gamma(2+\beta)} x^{\alpha} (1-x)^{\beta}, \qquad q^{+}(x;\alpha,\beta,A) = Ax^{\alpha} (1-x)^{\beta}$$

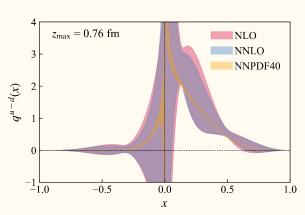
Isovector PDF from model fits

- Include all P_z and $z \in [2a, z_{\text{max}}]$ for fit
- Use $q^f(-x) = -q^{\overline{f}}(x)$ to form isovector PDF from

$$q^{u-d}(x) = \begin{cases} \frac{q^{-}(x)+q^{+}(x)}{2}, & x > 0\\ \frac{q^{-}(-x)-q^{+}(-x)}{2}, & x < 0 \end{cases}$$







x-space matching with Hybrid renormalization

• Combine different schemes at short distance and long distance

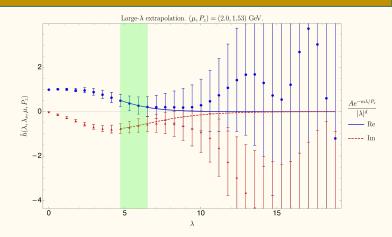
$$\tilde{h}^R(z,z_S,P_z,\mu) = \begin{cases} N \frac{h^B(z,P_z,a)}{h^B(z,0,a)} \frac{C_0(z^2\mu^2) + \Lambda z^2}{C_0(z^2\mu^2)}, & z \leq z_S \\ N \frac{h^B(z,P_z,a)}{h^B(z,P_z,a)} \frac{C_0(z_S^2\mu^2) + \Lambda z_S^2}{C_0(z_S^2\mu^2)} e^{\delta m'(z-z_S)}, & z > z_S. \end{cases}$$

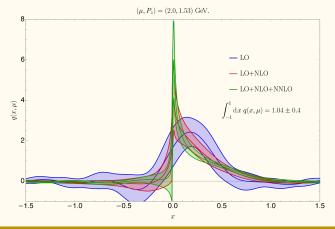
 Must model large ioffe time for Fourier transform to quasi-PDF

$$\tilde{q}^{v}(x,\lambda_{S},P_{z},\mu) = \int \frac{dz}{2\pi} e^{ixP_{z}z} \,\tilde{h}^{R}(z,z_{S},P_{z},\mu)$$

Match quasi-PDF to PDF

$$q^{v}(x,\mu) = \int_{-\infty}^{\infty} \frac{dy}{|y|} C^{-1}\left(\frac{x}{y}, \frac{\mu}{yP_{z}}, |y|\lambda_{S}\right) \tilde{q}^{v}(y, \lambda_{S}, P_{z}, \mu)$$
$$+\mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{(xP_{z})^{2}}, \frac{\Lambda_{\text{QCD}}^{2}}{((1-x)P_{z})^{2}}\right)$$

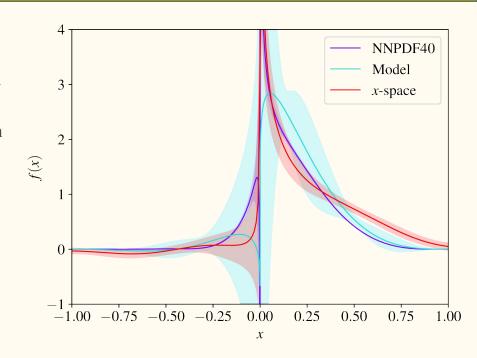




Conclusions and Outlooks

Conclusions

- Excited-state contamination at the physical point can be controlled
- \circ Leading-twist OPE can describe the proton ratio data for $z\sim0.8\,$ fm
 - First four moments extracted
 - \bullet $\langle x \rangle$ is above result from NNPDF40
- Some small tension between various extraction methods



• Future work/Outlooks

- More statistics and source-sink separations would be helpful
- Helicity and transversity distributions