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β-decay is one of the most promising methods of testing the Standard Model 
β-decay experiments are how we know the weak-interactions are V-A (left handed) 
Precise measurements are used to search for small corrections to V-A structure 
β-decay is used to determine elements of the quark mixing matrix (CKM) 

With current limits, our understanding of β-decay must be controlled with a precision of O(10-4) 
The main challenge is understanding  

electromagnetic (QED) corrections often  
denoted radiative or radiative QED  
corrections 
The challenge is that neutrons and protons 

are composite states of quarks and gluons,  
the degrees of freedom of QCD, which is a  
strongly coupled theory
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Motivation
The importance of neutron decays for obtaining a more (the most?) precise determination of Vud places 
increased scrutiny on our ability to control the radiative QED corrections, ΔR 
 
 
 

We believe we know how to compute ΔR, but it is required with a precision of 10-4 

The dispersion theory methods that are used to determine ΔR are well established 
(Cauchy contour integral of experimental data) 

however, recently, it was uncovered that they missed an O(2%) correction to gA 

(ΔR can be thought of as a correction to gV) 
Cirigliano, de Vries, Hayen, Mereghetti, Walker-Loud, Phys.Rev.Lett. 129 (2022) 2202.10439 

Could there be corrections to ΔR that are missed by the dispersive methods relevant at the 10-4 level? 
The only viable method to cross check the determination of ΔR is with lattice QCD + QED calculations 

Lattice QCD offers a fully non-perturbative method to compute such corrections

<latexit sha1_base64="9U15Lvw5tMkp1DMArT33akktG2A=">AAACSnicbZBNb9NAEIbXoUAxHw1w5LJqhJQKFNkJBXpAqqAHjgWRtFKcWuP1OFl1vbZ2x5UiN/+sP6F/gAMXrvTUW8Wlmw8kaBlppVfvMzO7+yalkpaC4LvXuLN299799Qf+w0ePn2w0nz4b2KIyAvuiUIU5TMCikhr7JEnhYWkQ8kThQXL8ac4PTtBYWehvNC1xlMNYy0wKIGfFzcHpIK6rdHZ61OURQRVrHinMqM1D/or3IuVWpXDUjYwcT2jLX8I5i/ZQEcRf+R/0wd8OdnY6vXZvy8bNVtAJFsVvi3AlWmxV+3HzR5QWospRk1Bg7TAMShrVYEgKhTM/qiyWII5hjEMnNeRoX6cnsrQLOaoXUcz4SwdTnhXGHU184f49XENu7TRPXGcONLE32dz8HxtWlL0f1VKXFaEWy4uySnEq+DxXnkqDgtTUCRBGumdzMQEDglz6vssjvPn722LQ7YRvO9tf3rR2P66SWWcv2CZrs5C9Y7vsM9tnfSbYGfvJfrEL79y79K6838vWhreaec7+qcbaNYxDrpg=</latexit>
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• Introduce a finite lattice by discretizing 4D 
spacetime 

• Choose lattice action ~  

• Provides a momentum cutoff ~  

• Wick rotate to imaginary time for Monte 
Carlo importance sampling of the gauge 
fields ~  

•   can be interpreted as a probability 
distribution and the quark determinant is 
real in Euclidean spacetime

S[U, ψ, ψ]

1/a

e−S

e−S

Lattice QCD

Quark

Gluon

⟨O2(t) O1(0)⟩ =
1
Z ∫ 𝒟[U, ψ, ψ] e−S[U,ψψ] O2[U, ψ, ψ] O1[U, ψ, ψ]

C(t) = ⟨O2(t) O1(0)⟩ = ∑
n

Z2
ne−Ent

meff = −
ln C(t + 1)

ln C(t)
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finite volume?
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• How do charged states behave in a periodic 
finite volume? 

• Consider Gauss’ Law

Lattice QED

Quark

Gluon

No charged propagating  

states allowed 

in the Hilbert space 

Outgoing flux = Incoming flux!

This is the first sign 
that we need to think 
more carefully about 

how to represent 
charge states in a FV!
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• How do charged states behave in a periodic 
finite volume? 

• Consider the photon field decomposed 
into two modes, such that 

, where  is a 
constant, and  is a small fluctuation.
Aμ(x) = Bμ/L + qμ(x) Bμ

qμ(x)

Lattice QED

ℒ = ψ(iγμDμ + mf)ψ +
1
4

FμνFμν +
1
2ξ

(∂μAμ)2
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Dμν(x) =
1
V ∑

kμ

eik⋅x{ 1
k2 + m2

γ
[δμν +

kμkν(ξ − 1)
k2 + ξm2

γ
]}

In perturbation theory we 
often add an IR regulator so 

lets include it here as a photon 
mass
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• How do charged states behave in a periodic 
finite volume? 

• Consider the photon field decomposed 
into two modes, such that 

, where  is a 
constant, and  is a small fluctuation. 

•  

• How does this modify the photon 
propagator?

Aμ(x) = Bμ/L + qμ(x) Bμ
qμ(x)

Aμ(x) =
1
V [Ãμ(0) + ∑

kμ≠0

eik⋅xÃμ(k)]

Lattice QED

ℒ = ψ(iγμDμ + mf)ψ +
1
4

FμνFμν +
1
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(∂μAμ)2

δμν

m2
γ V

+
1
V ∑

kμ≠0

eik⋅xD̃μν(k)

The zero mode necessarily modifies 
the IR physics, and must be treated 

carefully (non-perturbatively)
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• Removing the zero modes: 

•  ~  

•  ~  

• ~  

•  ~  ;  

•  ~ 

QEDTL Ãμ(kμ = 0) = 0

QEDL Ãμ(k4, ⃗k = 0) = 0

QEDSF V−1eÃμ(0) ∈ (− πL−1
μ , πL−1

μ )
QEDC Aμ(x + L̂i) = − Aμ(x) ψ(x + L̂i) = C−1ψT(x)

QEDM ℒQED +
1
2

m2
γ A2

μ

Lattice QED

Duncan et al. [hep-lat/9602005] 

Hayakawa, Uno [0804.2044] 

Gockeler et al. Nucl.Phys.B 334 
(1990) 527-558 

Lucini et al. [1509.01636] 

Endres, Schindler, Tiburzi, 
Walker-Loud Phys.Rev.Lett 117 
(2016) 072002
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• Our program: 
• FV ~  

• Correlation modified  

• Two IR scales: ,  
• Determine range of validity for extrapolations 
• Lattice setup:  MDWF/HISQ 

• Preliminary results~  
• , ~  
•  
•  

e−mγL

C(t) = ∑
n

Ane
−En(1+ ζ

E2n
)t−ζt2

mγ L

Nf = 2 + 1 + 1

a = 0.12 fm mπ 310 MeV
L = 2.9, 3.8 fm
mγ = {1/8,1/4,1/3,5/12,1/2,2/3} × mπ

Lattice QCD+QEDM

ζ =
e2

2m2
γ V

Dμν(x) =
1
V ∑

kμ

eik⋅x{ 1
k2 + m2

γ
[δμν +

kμkν(ξ − 1)
k2 + ξm2

γ
]}

δμν

m2
γ V

+
1
V ∑

kμ≠0

eik⋅xD̃μν(k)
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Analysis - Correlator
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Ratio of proton-neutron correlators

Bayesian fit to 
correlators using 

Peter Lepage’s lsqfit

Subtract zero 
mode analytically 

to isolate 
QCD+QED, 

energy splitting

Extract energy splitting 
from the best fit: 

 
Using the lattice spacing, 

this is roughly 
~0.65(11)MeV 

BUT, has not been 
extrapolated to phys. pt. 

δE = 0.000395 (65)

Energy Splitting Stability Plot for mγ = 0.0472

The presence of 
the zero mode is 

seen with the linear 
rise of the effective 

mass 
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Analysis -Finite Volume

The mass shift from 
continuum QED  has the LO 

term for both scalars and 
fermions

M

Endres, Schindler, Tiburzi, Walker-Loud Phys.Rev.Lett 117 
(2016) 072002

Zohreh Davoudi and Martin J. Savage Phys. Rev. D 90, 
054503 (2014)

Z. Fodor, C. Hoelbling, S.D. Katz, L. Lellouch, A. Portelli, 
K.K. Szabo, B.C. Toth Phys. Lett.  
B755, 245 (2016), 

ΔMf

M0
=

α
4π { − 2π

mγ

M
+ 𝒪(

m2
γ

M2 )}

δLMLO

M
= 2παQ2

mγ

M [I1(mγL) −
1

(mγL)3 ]
δLMNLO

M
= παQ2

m2
γ

M2 [2I1/2(mγL) + I3/2(mγL)]
In(z) =

1
2(n+1/2)π3/2Γ(n) ∑

ν≠0

K3/2−n(z |ν | )
(z∥ν | )3/2−n

M(mγ) − M(0) = ΔγMLO + ΔMNLO
γ + 𝒪 (

m3
γ

M2 )
ΔγMLO

M
= −

α
2

Q2
mγ

M
ΔγMNLO

M
= (Cα −

α
4π

Q2) m2
γ

M2

ΔMs

M0
=

α
4π { − 2π

mγ

M
+ 𝒪(

m2
γ

M2 )}

L → ∞ mγ → 0

The extrapolation 
expressions are derived from 

NR EFT. 
Note that these limits do not 

commute!
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• Proton -Neutron mass 
difference 

• We removed the FV effects 
analytically and extrapolated 
to the  limit.mγ → 0

Analysis - Results

Endres, Schindler, Tiburzi, Walker-Loud Phys.Rev.Lett 117 (2016) 072002

André Walker-Loud, Carl E. Carlson, and Gerald A. Miller
Phys. Rev. Lett. 108, 232301 (2012)

J. Gasser, M. Hoferichter, H. Leutwyler, A. Rusetsky, [1506.06747]

J. Gasser, H. Leutwyler, A. Rusetsky, Eur. Phys. J. C 80, 1121 (2020)

PRELIMINARY

Mp+ − Mn0 ∼ 0.947(62) MeV
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• Our systematics:

Towards the Physical Point

mπ → mphys
π L → ∞ a → 0

Lattice observables are 
necessarily calculated at 
unphysical  in, FV, with 

finite a
mπ

Need a tool that facilitates 
an extrapolation to the 

infinite volume continuum 
physics
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• Our systematics:

Towards the Physical Point

mπ → mphys
π L → ∞ a → 0

SU(3) χPT

Must demonstrate 
control of QCD-only  

extrapolations
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Towards the Physical Point
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Towards the Physical Point

Determine , mπ mK →, FK Fπ , ml
q ms

q

Ensembles EFT
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Towards the Physical Point
PRELIMINARY PRELIMINARY

Fπ = F{1 + δ(Fπ)χ−logs + δ(Fπ)CT + δ(Fπ)a2
+ δ(Fπ)MA}

One point at .06, the new 
data will be at help to 

improve the precision of 
the continuum at mpi - 

220

More data for 
this region

Fπ = 92.8 (1.0) MeV

FPDG
π = 92.277 (14) (21) (92) MeV
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Towards the Physical Point

FK = F{1 + δ(FK)χ−logs + δ(FK)CT + δ(FK)a2
+ δ(FK)MA}

PRELIMINARY

FK = 110.0 (1.0) MeV

PRELIMINARY

FPDG
K = 110.08 (19)(23)(19) MeV

More data for 
this region

One point at .06, the new 
data will be at help to 

improve the precision of 
the continuum at mpi - 

220
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• Once we have demonstrated control of the systematics, i.e. able to remove FV effects 
analytically, and  range for smooth extrapolations, we can generate ensembles for a range of 
pion masses and lattice spacings. 

• It is necessary to compare our results to other formulations of LQED 

• Lattice QCD calculations are challenging but previous the determination of  has shown a level 
of control at the sub-percent level. 

• Yet we need to understand how QED corrections impact  in a non-perturbative way in order 
to begin work on the  amplitude. 
• The goal is not to control the full calculation at 10-4 precision 

but to control the correlated correction at 10-4 / 𝛼fs ~ 10-2 level

mγ

gA

gA
n → peν

Next Steps and Summary
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