Adding QED to the lattice: warming up to a non-perturbative calculation of neutron decay

Zack Hall QEDM Collaboration University of North Carolina - Chapel Hill Lawrence Berkeley National Laboratory

Motivation

$\Box \beta$ -decay is one of the most promising methods of testing the Standard Model

- $\Box \beta$ -decay experiments are how we know the weak-interactions are V-A (left handed)
- **Precise** measurements are used to search for small corrections to V-A structure
- $\Box \beta$ -decay is used to determine elements of the quark mixing matrix (CKM)

\Box With current limits, our understanding of β -decay must be controlled with a precision of O(10⁻⁴)

- The main challenge is understanding electromagnetic (QED) corrections often denoted radiative or radiative QED corrections
- The challenge is that neutrons and protons are composite states of quarks and gluons, the degrees of freedom of QCD, which is a strongly coupled theory

Motivation

 \Box The importance of neutron decays for obtaining a more (the most?) precise determination of V_{ud} places increased scrutiny on our ability to control the radiative QED corrections, Δ_R

$$|V_{ud}|^2 \tau_n \left(1 + 3\lambda^2\right) \left(1 + \Delta_R\right) = 5099.3(3)s$$

neutron lifetime

nucleon axial charge

 \Box We believe we know how to compute $\Delta_{\rm R}$, but it is required with a precision of 10⁻⁴

 \Box The dispersion theory methods that are used to determine Δ_R are well established (Cauchy contour integral of experimental data) \Box however, recently, it was uncovered that they missed an O(2%) correction to g_A $(\Delta_{\rm R} \text{ can be thought of as a correction to } g_{\rm V})$ Cirigliano, de Vries, Hayen, Mereghetti, Walker-Loud, Phys.Rev.Lett. 129 (2022) 2202.10439 \Box Could there be corrections to Δ_R that are missed by the dispersive methods relevant at the 10⁻⁴ level? \Box The only viable method to cross check the determination of Δ_R is with lattice QCD + QED calculations **□** Lattice QCD offers a fully non-perturbative method to compute such corrections

- Introduce a finite lattice by discretizing 4D spacetime
 - Choose lattice action ~ $S[U, \overline{\psi}, \psi]$
 - Provides a momentum cutoff $\sim 1/a$
 - Wick rotate to imaginary time for Monte Carlo importance sampling of the gauge fields ~ e^{-S}
 - e^{-S} can be interpreted as a probability distribution and the quark determinant is real in Euclidean spacetime

$$\left\langle O_2(t) \ O_1(0) \right\rangle = \frac{1}{Z} \int \mathcal{D}[U, \overline{\psi}, \psi] \ e^{-S[U, \overline{\psi}\psi]} \ O_2[U, \overline{\psi}, \psi] \ O_1[U, \overline{\psi}, \psi]$$

$$C(t) = \langle O_2(t) \ O_1(0) \rangle = \sum_{n} Z_n^2 e^{-E_n t}$$
$$m_{eff} = -\frac{\ln C(t+1)}{\ln C(t)}$$

• How do charged states behave in a periodic finite volume?

- How do charged states behave in a periodic finite volume?
 - Consider Gauss' Law

- How do charged states behave in a periodic finite volume?
 - Consider Gauss' Law

- How do charged states behave in a periodic finite volume?

- How do charged states behave finite volume?
 - Consider Gauss' Law

This is the first sign that we need to think more carefully about how to represent charge states in a FV!

No charged propagating

states allowed

in the Hilbert space

- How do charged states behave in a periodic finite volume?
 - Consider the photon field decomposed into two modes, such that $A_{\mu}(x) = B_{\mu}/L + q_{\mu}(x)$, where B_{μ} is a constant, and $q_{\mu}(x)$ is a small fluctuation.

- How do charged states behave in a periodic finite volume?
 - Consider the photon field decomposed into two modes, such that $A_{\mu}(x) = B_{\mu}/L + q_{\mu}(x)$, where B_{μ} is a constant, and $q_{\mu}(x)$ is a small fluctuation.

$$A_{\mu}(x) = \frac{1}{V} \Big[\tilde{A}_{\mu}(0) + \sum_{k_{\mu} \neq 0} e^{ik \cdot x} \tilde{A}_{\mu}(k) \Big]$$

- How do charged states behave in a periodic finite volume?
 - Consider the photon field decomposed into two modes, such that $A_{\mu}(x) = B_{\mu}/L + q_{\mu}(x)$, where B_{μ} is a constant, and $q_{\mu}(x)$ is a small fluctuation.

$$A_{\mu}(x) = \frac{1}{V} \Big[\tilde{A}_{\mu}(0) + \sum_{\substack{k_{\mu} \neq 0}} e^{ik \cdot x} \tilde{A}_{\mu}(k) \Big]$$

 How does this modify the photon propagator?

- How do charged states behave in a periodic finite volume?
 - Consider the photon field decomposed into two modes, such that $A_{\mu}(x) = B_{\mu}/L + q_{\mu}(x)$, where B_{μ} is a constant, and $q_{\mu}(x)$ is a small fluctuation.

$$A_{\mu}(x) = \frac{1}{V} \Big[\tilde{A}_{\mu}(0) + \sum_{\substack{k_{\mu} \neq 0}} e^{ik \cdot x} \tilde{A}_{\mu}(k) \Big]$$

How does this modify the photon propagator?

 $\mathscr{L} = \psi(i\gamma_{\mu}D_{\mu} + m_{f})\overline{\psi} + \frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \frac{1}{2\varepsilon}(\partial_{\mu}A_{\mu})^{2}$

 $D_{\mu\nu}(x) = \frac{1}{V} \sum_{\nu} e^{ik \cdot x} \left\{ \frac{1}{k^2 + m_{\nu}^2} \left[\delta_{\mu\nu} + \frac{\kappa_{\mu}\kappa_{\nu}(\varsigma - 1)}{k^2 + \xi m_{\nu}^2} \right] \right\}$

In perturbation theory we often add an IR regulator so lets include it here as a photon mass

- How do charged states behave in a periodic finite volume?
 - Consider the photon field decomposed into two modes, such that $A_{\mu}(x) = B_{\mu}/L + q_{\mu}(x)$, where B_{μ} is a constant, and $q_{\mu}(x)$ is a small fluctuation.

$$A_{\mu}(x) = \frac{1}{V} \Big[\tilde{A}_{\mu}(0) + \sum_{\substack{k_{\mu} \neq 0}} e^{ik \cdot x} \tilde{A}_{\mu}(k) \Big]$$

 How does this modify the photon propagator?

$$\mathcal{L} = \psi(i\gamma_{\mu}D_{\mu} + m_{f})\overline{\psi} + \frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \frac{1}{2\xi}(\partial_{\mu}A_{\mu})^{2}$$

$$D_{\mu\nu}(x) = \frac{1}{V}\sum_{k_{\mu}}e^{ik\cdot x}\left\{\frac{1}{k^{2} + m_{\gamma}^{2}}\left[\delta_{\mu\nu} + \frac{k_{\mu}k_{\nu}(\xi - 1)}{k^{2} + \xi m_{\gamma}^{2}}\right]\right\}$$

$$\int \int \frac{\delta_{\mu\nu}}{m_{\gamma}^{2}V} + \frac{1}{V}\sum_{k_{\mu}\neq 0}e^{ik\cdot x}\widetilde{D}_{\mu\nu}(k)$$

- How do charged states behave in a periodic finite volume?
 - Consider the photon field decomposed into two modes, such that $A_{\mu}(x) = B_{\mu}/L + q_{\mu}(x)$, where B_{μ} is a constant, and $q_{\mu}(x)$ is a small fluctuation.

$$A_{\mu}(x) = \frac{1}{V} \Big[\tilde{A}_{\mu}(0) + \sum_{\substack{k_{\mu} \neq 0}} e^{ik \cdot x} \tilde{A}_{\mu}(k) \Big]$$

How does this modify the photon propagator?

 $\mathscr{L} = \psi(i\gamma_{\mu}D_{\mu} + m_{f})\overline{\psi} + \frac{1}{\varDelta}F^{\mu\nu}F_{\mu\nu} + \frac{1}{2\varepsilon}(\partial_{\mu}A_{\mu})^{2}$

The zero mode necessarily modifies the IR physics, and must be treated carefully (non-perturbatively)

$$\mathbf{b} = \frac{\delta_{\mu\nu}}{m_{\gamma}^2 V} + \frac{1}{V} \sum_{\substack{k_{\mu} \neq 0}} \mathbf{e}^{ik \cdot x} \tilde{D}_{\mu\nu}(k)$$

• Removing the zero modes:

• QED_{*TL*} ~
$$\tilde{A}_{\mu}(k_{\mu}=0)=0$$

- $QED_L \sim \tilde{A}_{\mu}(k_4, \vec{k} = 0) = 0$
- $\operatorname{QED}_{SF} \sim V^{-1} e \tilde{A}_{\mu}(0) \in \left(-\pi L_{\mu}^{-1}, \pi L_{\mu}^{-1}\right)$
- $\operatorname{QED}_C \sim A_\mu(x + \hat{L}_i) = -A_\mu(x)$; $\psi(x + \hat{L}_i) = C^{-1}\overline{\psi}^T(x)$

• QED_M ~
$$\mathscr{L}_{QED} + \frac{1}{2}m_{\gamma}^2 A_{\mu}^2$$

INT PROGRAM 23-1B: NEW PHYSICS SEARCHES AT THE PRECISION FRONTIER

Duncan et al. [hep-lat/9602005]

Hayakawa, Uno [0804.2044]

Gockeler et al. Nucl.Phys.B 334 (1990) 527-558

Lucini et al. [1509.01636]

Endres, Schindler, Tiburzi, Walker-Loud Phys.Rev.Lett 117 (2016) 072002

• Removing the zero modes:

•
$$\operatorname{QED}_{TL} \sim \tilde{A}_{\mu}(k_{\mu} = 0) = 0$$
 No transf
• $\operatorname{QED}_{L} \sim \tilde{A}_{\mu}(k_{4}, \vec{k} = 0) = 0$ Non-local
• $\operatorname{QED}_{SF} \sim V^{-1}e\tilde{A}_{\mu}(0) \in \left(-\pi L_{\mu}^{-1}, \pi L_{\mu}^{-1}\right)$
• $\operatorname{QED}_{C} \sim A_{\mu}(x + \hat{L}_{i}) = -A_{\mu}(x); \psi(x + \hat{L}_{i}) = 0$
• $\operatorname{QED}_{M} \sim \mathscr{L}_{QED} + \frac{1}{2}m_{\gamma}^{2}A_{\mu}^{2}$ m_{γ} system

INT PROGRAM 23-1B: NEW PHYSICS SEARCHES AT THE PRECISION FRONTIER

fer matrix

• Removing the zero modes:

$$\begin{array}{ll} \operatorname{QED}_{TL} \sim \tilde{A}_{\mu}(k_{\mu}=0) = 0 & \operatorname{No\ transf} \\ \operatorname{QED}_{L} \sim \tilde{A}_{\mu}(k_{4},\vec{k}=0) = 0 & \operatorname{Non-local} \\ \operatorname{QED}_{SF} \sim V^{-1}e\tilde{A}_{\mu}(0) \in \left(-\pi L_{\mu}^{-1},\pi L_{\mu}^{-1}\right) \\ \operatorname{QED}_{C} \sim A_{\mu}(x+\hat{L}_{i}) = -A_{\mu}(x) ; \psi(x+\hat{L}_{i}) = \\ \operatorname{QED}_{M} \sim \mathscr{L}_{QED} + \frac{1}{2}m_{\gamma}^{2}A_{\mu}^{2} & \operatorname{m_{\gamma}\ system} \end{array}$$

INT PROGRAM 23-1B: NEW PHYSICS SEARCHES AT THE PRECISION FRONTIER

fer matrix

Lattice QCD+QED_M

- Our program:
 - FV ~ $e^{-m_{\gamma}L}$
 - Correlation modified $C(t) = \sum A_n e^{-E_n(1 + \frac{\zeta}{E_n^2})t \zeta t^2}$
 - Two IR scales: m_{γ} , L
 - Determine range of validity for extrapolations
 - Lattice setup: $N_f = 2 + 1 + 1$ MDWF/HISQ
 - Preliminary results~
 - $a = 0.12 \text{ fm}, m_{\pi} \sim 310 \text{ MeV}$
 - L = 2.9, 3.8 fm
 - $m_{\gamma} = \{1/8, 1/4, 1/3, 5/12, 1/2, 2/3\} \times m_{\pi}$

Analysis - Finite Volume

$$L \to \infty$$

$$\frac{\delta_{L}M^{LO}}{M} = 2\pi\alpha Q^{2} \frac{m_{\gamma}}{M} \Big[I_{1}(m_{\gamma}L) - \frac{1}{(m_{\gamma}L)^{3}} \Big]$$

$$\frac{\delta_{L}M^{NLO}}{M} = \pi\alpha Q^{2} \frac{m_{\gamma}^{2}}{M^{2}} \Big[2I_{1/2}(m_{\gamma}L) + I_{3/2}(m_{\gamma}L) \Big]$$

$$I_{n}(z) = \frac{1}{2^{(n+1/2)}\pi^{3/2}\Gamma(n)} \sum_{\nu\neq 0} \frac{K_{3/2-n}(z|\nu|)}{(z||\nu|)^{3/2-n}}$$

$$\frac{\Delta M_{f}}{M_{0}} = \frac{\alpha}{4\pi} \Big\{ -2\pi \frac{m_{\gamma}}{M} + \mathcal{O}\Big(\frac{m_{\gamma}^{2}}{M^{2}}\Big) \Big\}$$
The extrapolation expressions are derived from NR EFT. Note that these limits do not commute!
$$M(m_{\gamma}) - M(0) = \Delta_{\gamma}M^{LO} + \Delta M_{\gamma}^{NLO} + \mathcal{O}\Big(\frac{m_{\gamma}^{3}}{M^{2}}\Big) \Big\}$$

$$M(m_{\gamma}) - M(0) = \Delta_{\gamma}M^{LO} + \Delta M_{\gamma}^{NLO} + \mathcal{O}\Big(\frac{m_{\gamma}^{3}}{M^{2}}\Big) \Big\}$$

$$M(m_{\gamma}) - M(0) = \Delta_{\gamma}M^{LO} + \Delta M_{\gamma}^{NLO} + \mathcal{O}\Big(\frac{m_{\gamma}^{3}}{M^{2}}\Big) \Big\}$$

INT PROGRAM 23-1B: NEW PHYSICS SEARCHES AT THE PRECISION FRONTIER

Endres, Schindler, Tiburzi, Walker-Loud Phys.Rev.Lett 117 (2016) 072002

Zohreh Davoudi and Martin J. Savage Phys. Rev. D 90, 054503 (2014)

Z. Fodor, C. Hoelbling, S.D. Katz, L. Lellouch, A. Portelli, K.K. Szabo, B.C. Toth Phys. Lett. B755, 245 (2016),

 $m_{\gamma} \rightarrow 0$

Analysis - Results

- Proton -Neutron mass difference
 - We removed the FV effects analytically and extrapolated to the $m_{\gamma} \rightarrow 0$ limit.

obs	ens	ΔQ	$\Delta a M$	C	$\chi^2/{ m dof}$	m_γ^{\min}	$m_\gamma^{ m max}$
$\Omega^ \Omega_{ m QCD}$	a12m310	-1	+0.001199(49)	-0.0059(50)	0.43	0.0472	0.1258
$\Omega^ \Omega_{\rm QCD}$	a12m310XL	-1	+0.000968(44)	+0.0154(47)	0.62	0.0472	0.1258
$\Omega^ \Omega_{ m QCD}$	comb	-1	+0.001070(32)	+0.0057(34)	1.95		
$p^+ - n_{ m QCD}$	a12m310	1	+0.00097(14)	+0.0158(89)	2.08	0.0472	0.1258
$p^+ - n_{ m QCD}$	a12m310XL	1	+0.000786(96)	+0.0088(67)	1.03	0.0472	0.1258
$p^+ - n_{ m QCD}$	comb	1	+0.000825(78)	+0.0115(52)	1.86		
$n^0 - n_{ m QCD}$	a12m310	0	+0.000356(99)	+0.0038(57)	1.86	0.0472	0.1258
$n^0 - n_{ m QCD}$	a12m310XL	0	+0.000230(63)	+0.0011(44)	0.64	0.0472	0.1258
$n^0 - n_{ m QCD}$	comb	0	+0.000254(52)	+0.0022(33)	1.41		
$p^+ - n^0$	a12m310	1	+0.000634(77)	+0.0119(48)	1.53	0.0472	0.1258
$p^+ - n^0$	a12m310XL	1	+0.000556(42)	+0.0079(30)	1.41	0.0472	0.1258
$p^+ - n^0$	comb	1	+0.000568(37)	+0.0095(25)	1.87		

$$M_{p^+} - M_{n^0} \sim 0.947(62) \,\mathrm{MeV}$$

INT PROGRAM 23-1B: NEW PHYSICS SEARCHES AT THE PRECISION FRONTIER

PRELIMINARY

Endres, Schindler, Tiburzi, Walker-Loud Phys.Rev.Lett 117 (2016) 072002

André Walker-Loud, Carl E. Carlson, and Gerald A. Miller Phys. Rev. Lett. 108, 232301 (2012)

J. Gasser, M. Hoferichter, H. Leutwyler, A. Rusetsky, [1506.06747]

J. Gasser, H. Leutwyler, A. Rusetsky, Eur. Phys. J. C 80, 1121 (2020)

2	5	8
2	5	8

• Our systematics:

 $m_{\pi} \rightarrow m_{\pi}^{phys}$

• Our systematics:

 $m_{\pi} \rightarrow m_{\pi}^{phys}$

Lattice observables are necessarily calculated at unphysical m_{π} in, FV, with finite α

INT PROGRAM 23-1B: NEW PHYSICS SEARCHES AT THE PRECISION FRONTIER

Need a tool that facilitates an extrapolation to the infinite volume continuum physics

• Our systematics:

• Our systematics:

INT PROGRAM 23-1B: NEW PHYSICS SEARCHES AT THE PRECISION FRONTIER

PHYSICAL REVIEW D 102, 034507 (2020)

F_K/F_{π} from Möbius domain-wall fermions solved on gradient-flowed HISQ ensembles

Nolan Miller[®],¹ Henry Monge-Camacho[®],¹ Chia Cheng Chang (張家丞)[®],^{2,3,4} Ben Hörz[®],³ Enrico Rinaldi[®],^{5,2} Dean Howarth[®],^{6,3} Evan Berkowitz[®],^{7,8} David A. Brantley,⁶ Arjun Singh Gambhir,^{9,3} Christopher Körber,^{4,3} Christopher J. Monahan[®],^{10,11} M. A. Clark,¹² Bálint Joó,¹³ Thorsten Kurth[®],¹² Amy Nicholson,¹ Kostas Orginos[®],^{10,11} Pavlos Vranas[®],^{6,3} and André Walker-Loud[®],^{3,6,4}

PHYSICAL REVIEW D 103, 054511 (2021)

Scale setting the Möbius domain wall fermion on gradient-flowed HISQ action using the omega baryon mass and the gradient-flow scales t_0 and w_0

Nolan Miller[®],¹ Logan Carpenter[®],² Evan Berkowitz[®],^{3,4} Chia Cheng Chang (張家丞),^{5,6,7} Ben Hörz[®],⁶ Dean Howarth[®],^{8,6} Henry Monge-Camacho,^{9,1} Enrico Rinaldi[®],^{10,5} David A. Brantley[®],⁸ Christopher Körber[®],^{7,6} Chris Bouchard[®],¹¹ M. A. Clark[®],¹² Arjun Singh Gambhir,^{13,6} Christopher J. Monahan[®],^{14,15} Amy Nicholson,^{1,6} Pavlos Vranas[®],^{8,6} and André Walker-Loud[®],^{6,8,7}

PHYSICAL REVIEW D 75, 054501 (2007)

Two meson systems with Ginsparg-Wilson valence quarks

Jiunn-Wei Chen,^{1,*} Donal O'Connell,^{2,†} and André Walker-Loud^{3,4,‡}

PHYSICAL REVIEW D 72, 054502 (2005)

Chiral perturbation theory for staggered sea quarks and Ginsparg-Wilson valence quarks

Oliver Bär,^{1,*} Claude Bernard,^{2,†} Gautam Rupak,^{3,‡} and Noam Shoresh^{4,§}

INT PROGRAM 23-1B: NEW PHYSICS SEARCHES AT THE PRECISION FRONTIER

PHYSICAL REVIEW D 102, 034507 (2020)

F_K/F_{π} from Möbius domain-wall fermions solved on gradient-flowed HISQ ensembles

Nolan Miller[®],¹ Henry Monge-Camacho[®],¹ Chia Cheng Chang (張家丞)[®],^{2,3,4} Ben Hörz[®],³ Enrico Rinaldi[®],^{5,2} Dean Howarth[®],^{6,3} Evan Berkowitz[®],^{7,8} David A. Brantley,⁶ Arjun Singh Gambhir,^{9,3} Christopher Körber,^{4,3} Christopher J. Monahan[®],^{10,11} M. A. Clark,¹² Bálint Joó,¹³ Thorsten Kurth[®],¹² Amy Nicholson,¹ Kostas Orginos[®],^{10,11} Pavlos Vranas[®],^{6,3} and André Walker-Loud[®],^{3,6,4}

PHYSICAL REVIEW D 103, 054511 (2021)

Scale setting the Möbius domain wall fermion on gradient-flowed HISQ action using the omega baryon mass and the gradient-flow scales t_0 and w_0

Nolan Miller[®],¹ Logan Carpenter[®],² Evan Berkowitz[®],^{3,4} Chia Cheng Chang (張家丞),^{5,6,7} Ben Hörz[®],⁶ Dean Howarth[®],^{8,6} Henry Monge-Camacho,^{9,1} Enrico Rinaldi[®],^{10,5} David A. Brantley[®],⁸ Christopher Körber[®],^{7,6} Christ Bouchard[®],¹¹ M. A. Clark[®],¹² Arjun Singh Gambhir,^{13,6} Christopher J. Monahan[®],^{14,15} Amy Nicholson,^{1,6} Pavlos Vranas[®],^{8,6} and André Walker-Loud[®],^{6,8,7}

Ensembles

PHYSICAL REVIEW D 75, 054501 (2007)

Two meson systems with Ginsparg-Wilson valence quarks

Jiunn-Wei Chen,^{1,*} Donal O'Connell,^{2,†} and André Walker-Loud^{3,4,‡}

PHYSICAL REVIEW D 72, 054502 (2005)

Chiral perturbation theory for staggered sea quarks and Ginsparg-Wilson valence quarks

Oliver Bär,^{1,*} Claude Bernard,^{2,†} Gautam Rupak,^{3,‡} and Noam Shoresh^{4,§}

$$F_{\pi} = F \left\{ 1 + \delta(F_{\pi})_{\chi-\log} + \delta(F_{\pi})_{CT} + \delta(F_{\pi})_{a^{2}} + \delta(F_{\pi})_{MA} \right\}$$

INT PROGRAM 23-1B: NEW PHYSICS SEARCHES AT THE PRECISION FRONTIER

data will be at help to the continuum at mpi -

 $F_{\pi}^{PDG} = 92.277 (14) (21) (92) \text{ MeV}$

$$F_{K} = F \left\{ 1 + \delta(F_{K})_{\chi-\log S} + \delta(F_{K})_{CT} + \delta(F_{K})_{a^{2}} + \delta(F_{K})_{M} \right\}$$

INT PROGRAM 23-1B: NEW PHYSICS SEARCHES AT THE PRECISION FRONTIER

data will be at help to the continuum at mpi -220

Next Steps and Summary

- Once we have demonstrated control of the systematics, i.e. able to remove FV effects analytically, and m_{γ} range for smooth extrapolations, we can generate ensembles for a range of pion masses and lattice spacings.
 - It is necessary to compare our results to other formulations of LQED
- Lattice QCD calculations are challenging but previous the determination of g_A has shown a level of control at the sub-percent level.
 - Yet we need to understand how QED corrections impact g_A in a non-perturbative way in order to begin work on the $n \rightarrow pe\nu$ amplitude.
 - The goal is not to control the full calculation at 10⁻⁴ precision but to control the correlated correction at 10⁻⁴ / α_{fs} ~ 10⁻² level

Acknowledgements

INT PROGRAM 23-1B: NEW PHYSICS SEARCHES AT THE PRECISION FRONTIER

QED_M Collaboration

Henry Monge-Camacho Zack Hall Haobo Yan Ben Hoerz Dean Howarth **Pavlos Vranas**

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Office of Science Graduate Student Research Program

