Coupled cluster computations of radii and neutron skins

Gaute Hagen Oak Ridge National Laboratory

Intersection of nuclear structure and high-energy nuclear collisions

INT workshop, February 16th, 2023

Collaborators

B. Acharya, **B. Hu**, G. R. Jansen, **Z. H. Sun**, T. Papenbrock

OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

A. Ekström, C. Forssén

J. Holt, P. Navratil

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

S. Bacca, F. Bonaiti, W. G. Jiang,

J. E. Sobczyk

S. Gandolfi, **S. Novario**, D. Lonardoni

TECHNISCHE UNIVERSITÄT DARMSTADT

T. Miyagi

NIVERSITY OF

NOTRE DAME

S. R. Stroberg

I. vernon

Trend in realistic ab-initio calculations

- Tremendous progress in recent years because of ideas from EFT and the renormalization group
- Computational methods with polynomial cost (coupled clusters equantum computing e)
- Ever-increasing computer power?

Development with time (top500.org)

The Hamiltonian knows best

Gysbers et al, Nat Phys (2019)

Energy scales and effective field theories

"we interpret the ab initio method to be a systematically improvable approach for quantitatively describing nuclei using the finest resolution scale possible while maximizing its predictive capabilities"

What is *ab initio* in nuclear theory? A. Ekström et al, arXiv:2212.11064 (2022)

Fig.: Bertsch, Dean, Nazarewicz, SciDAC review (2007)

Energy scales and effective field theories

Energy or Resolution

Fig.: Bertsch, Dean, Nazarewicz, SciDAC review (2007)

What precision/accuracy can we aim for in ab-initio calculations of nuclei?

Different many-body approaches (CC, IMSRG, SCGF,...) agree with each for binding energies and radii (challenges exist for transitions, isotope shifts, and deformed shapes)

Some chiral potentials (models) work better than others

Solving the quantum many-nucleon problem

An exponentially hard problem to solve!

IBM Q Experience

Systematically improvable approaches with controlled approximations: Coupled-cluster, IMSRG, Gorkov, SCGF,...

Fault tolerant quantum computing?

Solving the quantum many-nucleon problem

The key lies in choosing the correct starting point

Correlation energy in wave-function based methods

Coupled-cluster method

Correlations are *exponentiated* 1p-1h and 2p-2h excitations. Part of Ap-Ah excitations included!

Comparing coupled-cluster with exact Cl

 C_A

- CCSD captures most of the 3p3h and 4p4h excitations (scales as n_o²n_u⁴)
- In order to describe
 α -cluster states
 need to include full
 quadruples (CCSDTQ)
 (scales n⁴_on⁶_u)

Correlations are *exponentiated* 1p-1h and 2p-2h excitations. Part of Ap-Ah excitations included!

Convergence of coupled-cluster method

Convergence of coupled-cluster method

 $\Delta E_3 \sim 10 - 13\%$

A. Ekström, et al, arXiv:2212.11064 (2022)

What is the size of atomic nuclei?

"Illustration: JingChen | Chalmers University of Technology | Yen Strandqvist"

- Different models predict correlations between neutron skin and the slope of the symmetry parameter
- Radii (charge/matter) also informs us about shell structure, pairing and superfluidity, and density distributions in nuclei

Neutron skin = Difference between radii of neutron and proton distributions

Relates atomic nuclei to neutron stars via neutron EOS

Structure of ⁸He and 4n correlations

- Largest known N/Z ratio
- Doubly magic in the naïve shell model
- Low lying 2+ state indicates softness towards being deformed in the ground-state
- Tetra-neutron correlations

M. Holl, R. Kanungo, et al, Phys. Lett. B 822, 136710 (2021)

Charge radius and dipole polarizability of ⁸He

- Indicates existence of low lying dipole strength
- Charge radii slightly smaller compared to new data

F. Bonaiti, et alPhys. Rev. C 105, 034313 (2022)

Towards island of inversion with ab initio methods

Coupled-cluster computations of deformed nuclei – natural orbitals

- Coupled-cluster calculations from axially symmetric reference states
- Natural orbitals from many-body perturbation theory [A. Tichai, et al PRC (2019)] yields rapid convergence with respect 3p3h excitations in CCSDT-1
- Hartree-Fock with projection after variation (PAV) gives upper bound on the energy gain from symmetry restoration

S. J. Novario, G. Hagen, G. R. Jansen, T. Papenbrock, Phys. Rev. C 102, 051303 (2020)

Computations of neon isotopes

- Dripline correctly predicted at ³⁴Ne
- Charge radii predicts shell closures at N = 8, N = 14, and at N = 20

N = 12, hw = 16MeV

N = 12, hw = 16MeV

S. J. Novario, G. Hagen, G. R. Jansen, T. Papenbrock, Phys. Rev. C 102, 051303 (2020)

Computations of magnesium isotopes

- Dripline predicted at ⁴⁰Mg continuum may impact the location of the dripline
- Charge radii predicts shell closures at N = 8, N = 14, and at N = 20
- The bands indicate uncertainties from model-space truncations

S. J. Novario, G. Hagen, G. R. Jansen, T. Papenbrock, Phys. Rev. C 102, 051303 (2020)

Charge radii of neutron-rich potassium isotopes

- First high precision measurement of ⁵²K charge radius by CRIS @ ISOLDE/CERN
- Steep increase in charge radii beyond N = 28 challenges theory
- No signature of N = 32 shell closure
- Isotope shifts not sensitive to details of NNLO chiral Hamiltonians

A. Koszorus, et al, Nature Physics, Open Access (2021)

Coupled-cluster computations of even-even Ca-Zn nuclei

- We construct natural orbitals from a Hartree-Fock calculation using Nmax = 14.
- The normal-ordered Hamiltonian in natural orbitals is truncated to a smaller modelspace (See J. Hoppe et al. Phys. Rev. C 103, 014321 (2021))
- We achieve rapid convergence for energies and radii

	$\hbar\omega = 12$	MeV	$\hbar\omega{=}16~{ m MeV}$		
N_{\max}^{nat}	$E({ m MeV})$	$R_{ m ch}({ m fm})$	$E({ m MeV})$	$R_{ m ch}({ m fm})$	
6	-473.731	3.857	-474.445	3.848	
8	-513.502	3.882	-515.685	3.869	
10	-520.787	3.896	-523.355	3.882	
12	-521.746	3.900	-524.384	3.886	

M. Kortelainen, Z. H. Sun, G. Hagen, W. Nazarewicz, T. Papenbrock, P-G. Reinhard, Phys. Rev. C 105, L021303 (2022)

Coupled-cluster computations of even-even Ca-Zn nuclei

M. Kortelainen, Z. H. Sun, G. Hagen, W. Nazarewicz, T. Papenbrock, P-G. Reinhard, Phys. Rev. C 105, L021303 (2022)

Element independent increase in radii beyond N = 28 for Ca-Zn isotopes The trend is explained by fitting the Z averaged isotope shift to a parabolic expression from generalized seniority picture

$$\delta \langle r_c^2 \rangle^{A_{\rm m}, A_{\rm m}+n} = an + bn^2$$

Neutron skin and dipole polarizability of ⁴⁸Ca

- Neutron skin significantly smaller than in DFT
- Results for ⁴⁸Ca agrees with CREX $R_{skin} = 0.121 \pm 0.035 \text{fm}$

CREX: $F_w(q = 0.873 \text{ fm}^{-1}) = 0.1304 \pm 0.0052$ Coupled-Cluster: $0.102 \le F_w(q = 0.873 \text{ fm}^{-1}) \le 0.161$

Coherent elastic neutrino scattering (CEvNS) on ⁴⁰Ar

Coherent cross section
$$\frac{d\sigma}{dT}(E_{\nu},T) \simeq \frac{G_F^2}{4\pi} M \left[1 - \frac{MT}{2E_{\nu}^2}\right] Q_W^2 F_W^2(q^2)$$

- Good agreement with data for charge form-factor in ⁴⁰Ar
- Mild sensitivity to employed interaction in energy region relevant to coherent scattering
- Need higher-precision experiments in order to inform/constrain nuclear models

C. G. Payne, S. Bacca, G. Hagen, W. Jiang, T. Papenbrock, et al Phys. Rev. C 100, 061304(R) (2019)

Coherent elastic neutrino scattering (CEvNS) on ⁴⁰Ar

The neutron radius and skin of ⁴⁰Ar from coupled cluster with interactions from chiral EFTs are consistent with DFT predictions – This is contrary to the case of ⁴⁸Ca

C. G. Payne, S. Bacca, G. Hagen, W. Jiang, T. Papenbrock, et al Phys. Rev. C 100, 061304(R) (2019)

Radii, skins, and dipole polarizability of nickel isotopes

S. Malbrunot-Ettenauer, et al, Phys. Rev. Lett. 128, 022502 (2022)

Kaufmann et al, Phys. Rev. Lett. 124, 132502 (2020)

Hamiltonian		α_D	R_p	R_n	R _{skin}	R_c		
1.8/2.0	0 (EM)	3.58(18)	3.62(1)	3.82(1)	0.201(1)	3.70(1)		
2.0/2.0	0 (EM)	3.83(23)	3.69(2)	3.89(2)	0.202(3)	3.77(1)		
2.2/2.0	0 (EM)	4.04(28)	3.74(2)	3.94(2)	0.203(4)	3.82(2)		
2.0/2.0	0 (PWA)	4.87(40)	3.97(2)	4.17(3)	0.204(8)	4.05(2)		
NNLO _{sat}		4.65(49)	3.93(4)	4.11(5)	0.183(8)	4.00(4)		
6.5 –	2.0/2 2.0/2 1.8/2	2.0 (EM) 2.0 (PWA) 2.0 (EM)	2.2/2. NNLC	0 (EM) D _{sat}	Exp.: Ro Exp.: Th	ossi <i>et al.</i> nis work		
6.0					Ττ			
0.0								
ກຼ 5.5 -				⊢	1			
<u></u> 5.0		ī			TL			
·IZ 4.5		T H						
$\overset{)}{\mathcal{O}}$ $\overset{0}{\mathcal{O}}$ 4.0	In the second							
3.5								
3.0 3.6	3.	.7 3	.8	3.9	4.0	4.1		
	$R_{c}(^{68}Ni)$ [fm]							

Trends of neutron skins of mirror nuclei

Simplicity from complexity

Different ab-initio methods and interactions confirm a linear relation between neutron skin and isospin asymmetry that can be derived from the liquid drop model

B. Ohayon, et al, Phys. Rev. C 105, L031305 (2022)

Neutron skin of sodium isotopes as a function of isospin asymmetry. Data used available matter radii and charge radii from isotope shift measurements using two different values of the atomic parameter K_{SMS}

Trends of neutron skins of mirror nuclei

- Coulomb-subtracted neutron skin thickness plotted against the isospin asymmetry from available experimental data
- Our results overlaps
 with antiprotonic x-ray and proton-scattering data

S. J. Novario, D. Lonardoni, S. Gandolfi, G. Hagen, Phys. Rev. Lett. 130, 032501 (2023)

$$\Delta R_{\rm np}^* = \Delta R_{\rm np} + Z A^{-1/3} \times 0.0033 \text{ fm}$$

Surprising charge-radius kink in the Sc isotopes at N=20 challenge theory

- Measurement of charge radii of neutron deficient 40Sc and 41Sc nuclei at ISOLDE/CERN
- Kink seen at neutron number N = 20 which is missing in the neighboring isotopic chains
- Description of large charge radius of deformed isomer in 45Sc requires large collective spaces

Why do some interaction models work better than others?

To answer this we need predictions with rigorous **uncertainty quantification** and **sensitivity analyses** that are grounded in the description of the underlying nuclear Hamiltonian

- Generalization of the eigenvector continuation method [Frame D. et al., Phys. Rev. Lett. 121, 032501 (2018), S. König et al Phys. Lett. B 810 (2020) 135814]
- Write the Hamiltonian in a linearized form

$$H(\vec{\alpha}) = \sum_{i=0}^{N_{\rm LECs}=16} \alpha_i h_i$$

- Select "training points" where we solve exact coupled-cluster
- Project the target Hamiltonian onto sub-space of training vectors and diagonalize the generalized eigenvalue problem

$$\mathbf{H}(\vec{\alpha}_{\odot}) \ \vec{c} = E(\vec{\alpha}_{\odot}) \ \mathbf{N} \ \vec{c},$$

Computing nuclei at lightning speed

(~5 mins: ~10⁵ energy/radius calculations of ¹⁶O)

Realtime speed and accuracy of emulated ground-state energy and charge radius of ¹⁶O for different values of interaction parameters

$$H(\vec{\alpha}) = \sum_{i=0}^{N_{\rm LECs}=16} \alpha_i h_i$$

Accuracy: roughly the pixel size

Speedup: 20 years of single node computations can be replaced by a 1 hour run on a laptop

Sub-space projected coupled-cluster – cross validation in 16 dimensions

- Select 64 and 128 sub-space vectors in the 16 dimensional space of LECs using a space-filling latin hypercube design
- Select 200 randomly exact CCSD calculations in a 20% domain around NNLO_{sat}
- With 64 subspace vectors we achieve a 1% accuracy relative to exact CCSD solutions

A global sensitivity analysis of the radius and binding energy of ¹⁶O

- Compute the binding energy and charge radius at one million different values of the 16 LECs in one hour on a standard laptop (would require 20 years of equivalent exact CCSD computations)
- About 60% of the variance in the energy can is attributed to the 3S1-wave, whereas the radius depends sensitively on several LECs and their higher-order correlations

Sub-space projected coupled-cluster for excited states

Baishan Hu, Weiguang Jiang, Takayuki Miyagi, Zhonghao Sun, et al Nature Physics (2022)

- Posterior predictive distribution for the neutron skin in ²⁰⁸Pb (experiments: electroweak (purple), hadronic (red),
 electromagnetic (green), and gravitational waves (blue) probes)
- R_{skin}(208Pb) = 0.14 0.20 fm (68% credible interval) exhibits a mild tension with the value extracted from PREX-2

Baishan Hu, Weiguang Jiang, Takayuki Miyagi, Zhonghao Sun, et al Nature Physics (2022)

- Different models predict similar correlation between the neutron-skin and the slope of symmetry energy (L)
- The neutron skin of is (weakly) correlated with the ¹S₀ scattering phase-shift at 50 MeV
- A realistic description of the ¹S₀ scattering phase shift implies a neutron skin in tension with PREX-2

Baishan Hu, Weiguang Jiang, Takayuki Miyagi, Zhonghao Sun, et al Nature Physics (2022)

The neutron skin of ⁴⁸Ca and ²⁰⁸Pb

Constraints on Nuclear Symmetry Energy Parameters J. Lattimer. Particles 6, 30-56 (2023)

Does chiral Hamiltonians predict a bound ²⁸0?

Ekström, Forssén, Hagen, Jiang, Papenbrock, Sun, Vernon

Prediction for 28-O shown as probability distribution where solid lines indicate the 68% and 90% probability density regions

We claim with 98% certainty that 28-O is unbound

Used history matching and performed 10⁸ predictions for ground- and excited states of nuclei up to 25-O

Summary

- Towards mass-table computations based on Hamiltonian methods
 - Interactions with "good" saturation properties yield accurate description of BEs, radii and skins in light, medium-mass and heavy nuclei
 - shell closures predicted at N = 8, 14 in neon and magnesium and no signature of N = 32 shell closure in potassium
 - Universal trend of radii beyond N = 28 for even-even Ca-Zn isotopes
 - Predicted N = 20 shell closure is not supported by data in isotopes of neon and magnesium
 - Steep increase in radii beyond N = 28 in potassium challenges theory
- Prediction of small neutron skin in ⁴⁸Ca confirmed by CREX
- Coherent neutrino scattering on ⁴⁰Ar a stepping stone for neutrino response

Summary

- Developed emulators that allows us to sample ~10⁸ different Hamiltonians in a short time for medium mass nuclei
 - A global sensitivity analysis revealed the role of various LECs in the binding energy and radius of ¹⁶O
- Combining accurate emulators, novel statistical tools, and Bayesian inference allowed us to make accurate predictions for the neutron skin and related observables in ²⁰⁸Pb
- Neutron skin of ²⁰⁸Pb in mild tension with PREX-2
- Confirmed correlations (seen in mean-field approaches) between the neutron skin of ²⁰⁸Pb and the symmetry energy and its slope in nuclear matter

Thank you for your attention!