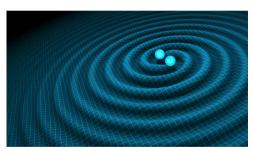
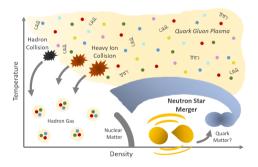
Transport in Neutron Star Mergers

An attempt at an introduction

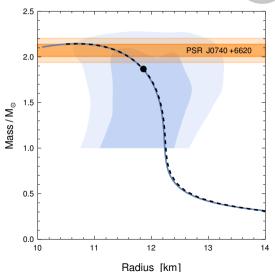

Alexander Haber


Motivation

Ultimate goal:

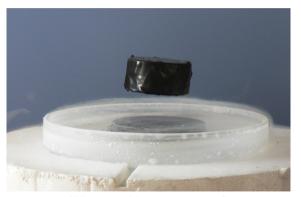
Understanding the **phase diagram of fundamental matter** as described by QCD using **gravitational waves from neutron star mergers**

R. Hurt/Caltech-JPL

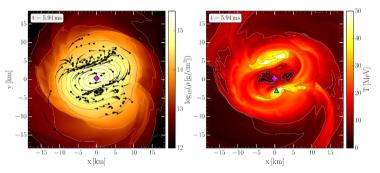

We probably have to go beyond the equation of state to do this!

Masquerade Problem

We need to go beyond the Equation of State


- EoS might be able to "hide" underlying degrees of freedom
- Need observables that depended on phases of matter
- Dynamical properties: transport, viscosity, chemical equilibration,...

Transport as better discriminator of different phases


Equation of State = Pressure(energy density)

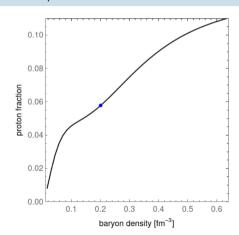
What would you measure?

Neutron Star Mergers

Hanauske, M.; Steinheimer, J. et al. Particles 2019

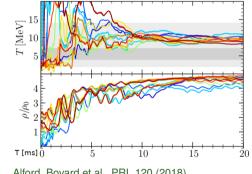
- ► Mergers test properties of dense matter at high densities (up to $\approx 4-7 \, n_{\rm sat}$) and high temperatures (up to $T \approx 60-80$ MeV)
- ightharpoonup "T=0 common knowledge" needs to be reevaluated: especially weak interactions

Flavor/Chemical/Beta Equilibrium



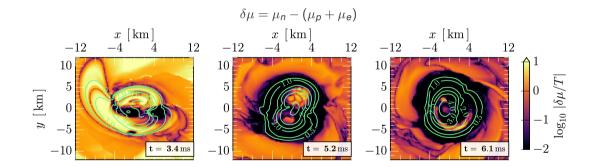
Flavor equilibrium: neutron decay and electron capture balance

$$n+\cdots \rightarrow p+e^-+\cdots \qquad p+e^-+\cdots \rightarrow n+\cdots$$


$$p + e^- + \cdots \rightarrow n + \cdots$$

- Only weak interactions can change particle content
- Cold equilibrium: $\mu_p = \mu_p + \mu_e$
- finite T correction: Alford, Harris: 1803,00662. Alford, Haber, (Harris), Zhang: 2108.03324 . 2306.06180

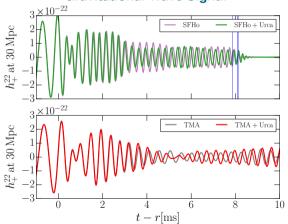
Neutron Star Mergers Prime environment for transport effects


Alford, Bovard et.al., PRL 120 (2018)

- Tidal interactions will drive us out of equilibrium (g-modes)
- Oscillations in merger drive matter out of equilibrium
- Weak interactions try to drive matter back to equilibrium
- impact depends on timescale of oscillations and equilibration times
- Linear response probably insufficient

Include Equilibration in Simulations

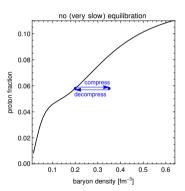
Most, A.H., Harris, Zhang, Alford, Noronha; ApJL 967 2024 arXiv:2207.00442



Include Equilibration in Simulations

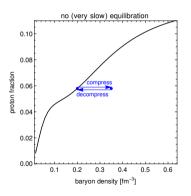
Most, A.H., Harris, Zhang, Alford, Noronha; arXiv:2207.00442

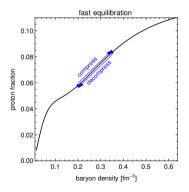
Gravitational Wave Signal


Difference same order as finite *T*, resolution effects, **uncertainty in EOS**, ...

Alexander Haber | University of Southampton

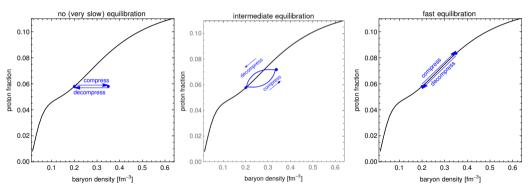
Bulk Viscosity from Flavor Equilibration Path of fluid element as it is compressed and decompressed


Density Oscillations in merger drive matter out of equilibrium



Bulk Viscosity from Flavor Equilibration Path of fluid element as it is compressed and decompressed

Density Oscillations in merger drive matter out of equilibrium



Bulk Viscosity from Flavor Equilibration

Path of fluid element as it is compressed and decompressed

Density Oscillations in merger drive matter out of equilibrium

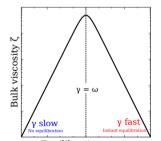
 $\{x_P, n_B\}$ plane equiv. to $\{P, V\}$ plane \to traversing a path in P-V plane leads to $\int PdV$ - work

Bulk Viscosity

Bulk viscosity

Resonace effect between 2 competing time scales

driving force: external density oscillation ω

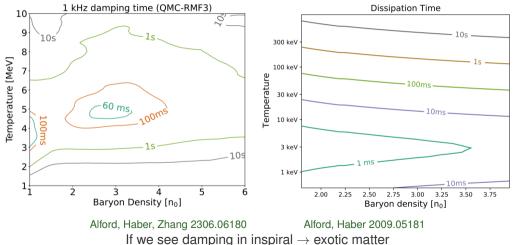

 \iff

response: internal re-equilibration γ

$$\zeta \sim \frac{\gamma}{\omega^2 + \gamma^2}$$

What influences the rate?

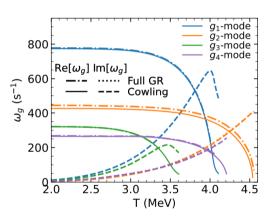
- Composition of matter: nuclear matter (Yang), hyperons, pions, quark matter (Harutyunyan), dark matter (Harris)
- Thermodynamic conditions: Temperature, density, particle fractions, magnetic fields (Tambe, Kumamoto)
- Neutrino opacities: trapped, free-streaming, in-between (Lin, Brodie)



Equilibration rate $\boldsymbol{\gamma}$

Composition and Bulk Viscosity

Ripley et al. 2312.11659, Ghosh et al. 2306.14737



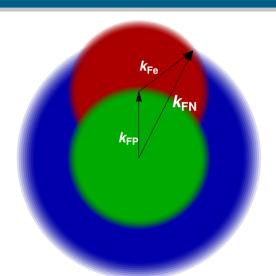
Alexander Haber | University of Southampton

- g-modes are driven by composition gradient
- equilibration rates first damp, then kill off the modes

Urca processes in npe - matter

direct Urca (dU)

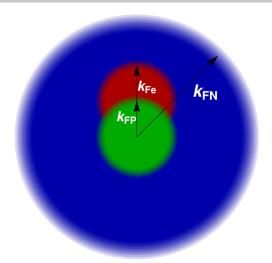
neutron decay: $n \rightarrow p + e^- + \bar{\nu}_e$ electron capture: $p + e^- \rightarrow n + \nu_e$


Strongly degenerate npe-matter: dominated by particles on their Fermi surface (FS)

$$egin{align} \Gamma_{dU,ND} & \propto \prod_{i=1}^4 \int rac{d^3p_i}{2E_i} \sum_{
m spins} |M|^2 \delta^4(E-p) imes f_n(1-f_p)(1-f_e) \ \end{split}$$

Direct Urca Threshold

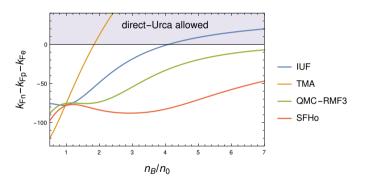
Above threshold: proton fraction $\geq 11\%$



- Momentum conservation on FS demands $\vec{k}_{Fn} \leq \vec{k}_{Fp} + \vec{k}_{Fe}$
- If momentum cons. on FS possible: rate dominated by direct Urca
- fast cooling, low bulk viscosity, $\gamma \propto T^4$

Direct Urca Threshold

Below threshold: proton fraction too low



- Momentum conservation on FS demands $\vec{k}_{Fp} \leq \vec{k}_{Fp} + \vec{k}_{Fe}$
- If momentum cons. on FS not possible: rate heavily suppressed
- In-medium corrections important: modified Urca, NWA Alford, Haber, Zhang arXiv:2406.13717 (See Alford talk)
- slow cooling, higher bulk viscosity, $\gamma \propto {\it T}^{\rm 6}$

Direct Urca Threshold

strongly EOS depended

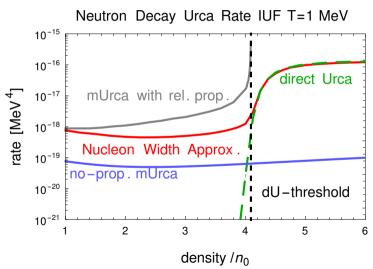
- Momentum conservation on FS demands $\vec{k}_{Fn} \leq \vec{k}_{Fp} + \vec{k}_{Fe}$
- Proton fraction x_p is monotonic with density
- ▶ Need $x_p \approx 11\%$ for $k_{Fn} = k_{Fp} + k_{Fe}$
- Threshold density = direct Urca threshold
- Impact on cooling, bulk viscosity,

The Nucleon Width Approximation (NWA) 2406.13717

Simple, improvable, consistent

- Nucleons in medium undergo constant collisions
- → Nucleons in medium are unstable to strong interaction "decays"
- Should include nucleon lifetime/width as imaginary mass component

Nucleon Width Approximation - NWA

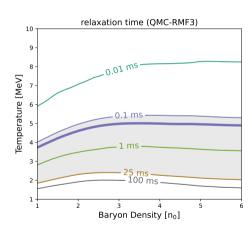

$$\Gamma^{
m NWA} = \int_{-\infty}^{\infty}\!\! dm_{
m n} dm_{
m p} \Gamma^{
m dUrca}(m_{
m n},m_{
m p})\, R_{
m n}(m_{
m n}) R_{
m p}(m_{
m p}) \; .$$

with the Breit-Wigner spectral function

$$R_a(m) \equiv rac{1}{\pi} rac{W_a/2}{(m - M_a^*)^2 + W_a^2/4} \; .$$

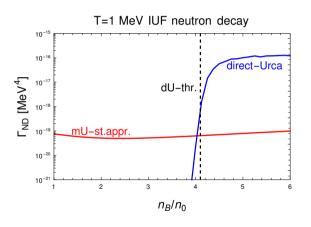
NWA rates

Summary



- EOS might not tell us what dense matter is made of
- Transport properties are more sensitive to phases of matter
- Neutron star mergers are extremely dynamical transport matters
- Some dissipative effects can be directly captured by implementing the underlying microscopic processes
- Flavor equilibration strongly depends on composition and thermodynamic environment

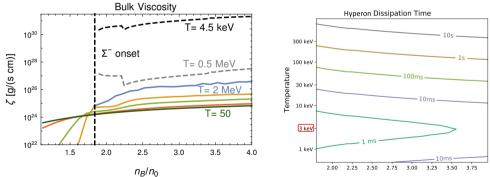
 There is a lot of work ahead of us on the theory front!


- ▶ kHz oscillation ~ ms timescale
- Three distinct regimes: frozen resonant instantaneous equilibration
- QMC-RMF models: Alford, Brodie, Haber, Tews: 2205.10283 (Compose)

Direct Urca and Modified Urca

T = 1 MeV - neutrino transparent, IUF-EOS

standard calculation of mU:


- Widely used in cooling codes, all over the field
- Completely missing in neutrino opacities tables (NuLib,...) for mergers
- crude, inconsistent, not systematically improvable, wrong, but easy
- ► Full phase space calculation for direct Urca: arXiv:2306.06180, arXiv:2108.03324

Hyperonic Bulk Viscosity: Equilibration of Strangeness Alford, A.H. 2009.05181

Contributing processes: change strangeness by 1

(1)
$$n + n \Leftrightarrow p^+ + \Sigma^-$$
 (2) $n + p^+ \Leftrightarrow p^+ + \Lambda$ (3) $n + n \Leftrightarrow n + \Lambda$ (4) $\Lambda + \Lambda \Leftrightarrow \Lambda + n$

Strangeness changing rates might play role in local heating + phase conversion dissipation.