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Motivation

Ultimate goal:
Understanding the phase diagram of fundamental matter as described by QCD using
gravitational waves from neutron star mergers

R. Hurt/Caltech-JPL

We probably have to go beyond the equation of state to do this!

Alexander Haber | University of Southampton
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Masquerade Problem
We need to go beyond the Equation of State

▶ EoS might be able to “hide” underlying
degrees of freedom

▶ Need observables that depended on
phases of matter

▶ Dynamical properties: transport, viscosity,
chemical equilibration,...
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Transport as better discriminator of different phases

Equation of State = Pressure(energy density)

What would you measure?

Alexander Haber | University of Southampton
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Neutron Star Mergers

Hanauske, M.; Steinheimer, J. et al. Particles 2019

▶ Mergers test properties of dense matter at high densities (up to ≈ 4 − 7 nsat) and high
temperatures (up to T ≈ 60 − 80 MeV)

▶ "T = 0 common knowledge" needs to be reevaluated: especially weak interactions

Alexander Haber | University of Southampton
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What does the weak interaction do for us?
Flavor/Chemical/Beta Equilibrium

Flavor equilibrium: neutron decay and electron capture balance
n + · · · → p + e− + . . . p + e− + · · · → n + · · ·

▶ Only weak interactions can change
particle content

▶ Cold equilibrium: µn = µp + µe

▶ finite T correction:
Alford, Harris: 1803.00662,
Alford, Haber, (Harris), Zhang:
2108.03324 , 2306.06180

Alexander Haber | University of Southampton
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Neutron Star Mergers
Prime environment for transport effects

Alford, Bovard et.al., PRL 120 (2018)

▶ Tidal interactions will drive us out of
equilibrium (g-modes)

▶ Oscillations in merger drive matter out of
equilibrium

▶ Weak interactions try to drive matter back
to equilibrium

▶ impact depends on timescale of oscillations
and equilibration times

▶ Linear response probably insufficient

Alexander Haber | University of Southampton
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Include Equilibration in Simulations
Most, A.H., Harris, Zhang, Alford, Noronha; ApJL 967 2024 arXiv:2207.00442

δµ = µn − (µp + µe)

Alexander Haber | University of Southampton
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Include Equilibration in Simulations
Most, A.H., Harris, Zhang, Alford, Noronha; arXiv:2207.00442

Gravitational Wave Signal
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Difference same order as finite T , resolution effects, uncertainty in EOS, ...
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Bulk Viscosity from Flavor Equilibration
Path of fluid element as it is compressed and decompressed

Density Oscillations in merger drive matter out of equilibrium
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Bulk Viscosity from Flavor Equilibration
Path of fluid element as it is compressed and decompressed

Density Oscillations in merger drive matter out of equilibrium
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Bulk Viscosity from Flavor Equilibration
Path of fluid element as it is compressed and decompressed

Density Oscillations in merger drive matter out of equilibrium
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{xP , nB} plane equiv. to {P,V} plane → traversing a path in P-V plane leads to
∫

PdV - work
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Bulk Viscosity

Bulk viscosity
Resonace effect between 2 competing time scales

driving force: external density oscillation ω ⇐⇒ response: internal re-equilibration γ

ζ ∼ γ
ω2+γ2

What influences the rate?
▶ Composition of matter: nuclear matter (Yang), hyperons,

pions, quark matter (Harutyunyan), dark matter (Harris)
▶ Thermodynamic conditions: Temperature, density,

particle fractions, magnetic fields (Tambe, Kumamoto)
▶ Neutrino opacities: trapped, free-streaming, in-between

(Lin, Brodie)

Alexander Haber | University of Southampton
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Composition and Bulk Viscosity
Ripley et al. 2312.11659, Ghosh et al. 2306.14737

Alford, Haber, Zhang 2306.06180 Alford, Haber 2009.05181
If we see damping in inspiral → exotic matter

Alexander Haber | University of Southampton
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Falvor Equilibration and g-modes
Zhao, Rau, Haber, Harris, Constantinou, Han 2504.12230

▶ g-modes are driven by composition gradient
▶ equilibration rates first damp, then kill off

the modes

Alexander Haber | University of Southampton
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Urca processes in npe - matter

direct Urca (dU)
neutron decay: n → p + e− + ν̄e electron capture: p + e− → n + νe

▶ Strongly degenerate npe-matter:
dominated by particles on their Fermi surface (FS)

ΓdU,ND ∝
4∏

i=1

∫
d3pi

2Ei

∑
spins

|M|2δ4(E − p)×

fn(1 − fp)(1 − fe)

Alexander Haber | University of Southampton
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Direct Urca Threshold
Above threshold: proton fraction ≥ 11%

kFP

kFe

kFN ▶ Momentum conservation on FS
demands k⃗Fn ≤ k⃗Fp + k⃗Fe

▶ If momentum cons. on FS
possible: rate dominated by direct
Urca

▶ fast cooling, low bulk viscosity,
γ ∝ T 4

Alexander Haber | University of Southampton
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Direct Urca Threshold
Below threshold: proton fraction too low

kFN

kFP

kFe

▶ Momentum conservation on FS
demands k⃗Fn ≤ k⃗Fp + k⃗Fe

▶ If momentum cons. on FS not
possible: rate heavily suppressed

▶ In-medium corrections important:
modified Urca, NWA Alford, Haber,
Zhang arXiv:2406.13717 (See Alford
talk)

▶ slow cooling, higher bulk viscosity,
γ ∝ T 6

Alexander Haber | University of Southampton
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Direct Urca Threshold
strongly EOS depended

direct-Urca allowed
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▶ Momentum conservation on FS
demands k⃗Fn ≤ k⃗Fp + k⃗Fe

▶ Proton fraction xp is monotonic
with density

▶ Need xp ≈ 11% for kFn = kFp +kFe

▶ Threshold density = direct Urca
threshold

▶ Impact on cooling, bulk viscosity,
...

Alexander Haber | University of Southampton
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The Nucleon Width Approximation (NWA) 2406.13717
Simple, improvable, consistent

▶ Nucleons in medium undergo constant collisions
→ Nucleons in medium are unstable to strong interaction "decays"
▶ Should include nucleon lifetime/width as imaginary mass component

Nucleon Width Approximation - NWA

ΓNWA =

∫ ∞

−∞
dmndmpΓ

dUrca(mn,mp)Rn(mn)Rp(mp) .

with the Breit-Wigner spectral function

Ra(m) ≡ 1
π

Wa/2
(m − M∗

a )
2 + W 2

a /4
.

Alexander Haber | University of Southampton
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NWA rates

dU-threshold

mUrca with rel. prop .

direct Urca

no-prop . mUrca

Nucleon Width Approx .
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Summary

▶ EOS might not tell us what dense matter is made of
▶ Transport properties are more sensitive to phases of matter
▶ Neutron star mergers are extremely dynamical - transport matters
▶ Some dissipative effects can be directly captured by implementing the underlying

microscopic processes
▶ Flavor equilibration strongly depends on composition and thermodynamic environment

There is a lot of work ahead of us on the theory front!

Alexander Haber | University of Southampton
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Flavor Equilibration Time
Alford, Haber, Zhang, 2306.06180

▶ kHz oscillation ∼ ms timescale
▶ Three distinct regimes: frozen - resonant -

instantaneous equilibration
▶ QMC-RMF models: Alford, Brodie, Haber,

Tews: 2205.10283 (Compose)
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Direct Urca and Modified Urca
T = 1 MeV - neutrino transparent, IUF-EOS

direct-Urca

mU-st.appr.

dU-thr.
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T=1 MeV IUF neutron decay

▶ standard calculation of mU:
▶ Widely used in cooling codes, all over the

field
▶ Completely missing in neutrino opacities

tables (NuLib,...) for mergers
▶ crude, inconsistent, not systematically

improvable, wrong, but easy
▶ Full phase space calculation for direct Urca:

arXiv:2306.06180, arXiv:2108.03324

Alexander Haber | University of Southampton
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Hyperonic Bulk Viscosity: Equilibration of Strangeness
Alford, A.H. 2009.05181

Contributing processes: change strangeness by 1

(1) n + n ⇔ p+ +Σ− (2) n + p+ ⇔ p+ + Λ (3) n + n ⇔ n + Λ (4) Λ + Λ ⇔ Λ + n

Σ- onset
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Strangeness changing rates might play role in local heating + phase conversion dissipation.
Alexander Haber | University of Southampton
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