The Status of the Axial-vector Form Factor and its Uncertainties in Lattice QCD

Rajan Gupta Theoretical Division, T-2 Los Alamos National Laboratory, USA

Acknowledgements

Thanks to my collaborators (PNDME and NME collaborations)

Tanmoy Bhattacharya, Vincenzo Cirigliano, Yong-Chull Jang, Balint Joo, Huey-Wen Lin, Emanuele Mereghetti, Santanu Mondal, Sungwoo Park, Oleksandr (Sasha) Tomalak, Frank Winter, Junsik Yoo, Boram Yoon

Thanks for computer resources

OLCF (INCITE HEP133), ERCAP@NERSC (HEP, NP), USQCD@JLAB, LANL IC

- USQCD Community white paper: Lattice QCD and Neutrino-Nucleus Scattering, *Eur.Phys.J.A* 55 (2019) 11, 196
- Snowmass 2021 White Paper <u>Theoretical tools for neutrino scattering: interplay between lattice QCD, EFTs, nuclear physics,</u> <u>phenomenology, and neutrino event generators</u>. e-Print: <u>2203.09030</u> [hep-ph]

Publications on Form Factors

- AFF: R. Gupta et al, (PNDME) PhysRevD.96.114503 (2017)
- VFF: Y-C Jang, et al, (PNDME) PhysRevD.101.014507 (2020)
- AFF: Y-C Jang et al, (PNDME) PRL 124 (2020) 072002
- Both: S. Park, et al, (NME) PRD 105, 054505 (2022)
- AFF: Y-C Jang, et al, (PNDME) arXiv:2305:11330

Outline:

- What LQCD can provide for v-nucleus oscillation experiments
 - Axial and vector form factors of nucleons [nuclei are much more challenging]
 - Nuclear corrections in nuclei: $(p, n) \rightarrow (C^{12}, O^{16}, Ar^{40})$
- Challenges to the calculations of nucleon matrix elements
 - Signal-to-noise falls as $e^{-(M_N-1.5M_\pi)\tau}$
 - Excited states in nucleon correlation functions
 - Extrapolation in $\{a, M_{\pi}, M_{\pi}L\}$
- FF must satisfy PCAC
 - What we learned from $\langle N(p_f) | A_4(q) | N(p_i) \rangle$
 - Towers of $N\pi$, $N\pi\pi$, states contribute to axial and PS correlators
- Comparison of published results for g_A , G_A
- Comparison with MINERvA and ν -D analyses
- Summary of unpublished results for g_A , G_A
- Transition matrix elements
- Results for G_E , G_M
- Future

ν energy range covers complex physics

- Incoming neutrino energy and flux not known precisely
- Dynamics of struck Argon nucleus is too complex to simulate directly and connect to final states seen in the detectors

Goal: Inputs for DUNE

Matrix elements (form factors) for $\nu - {}^{40}$ Ar scattering $\langle X \mid A_{\mu}(q) \mid {}^{40}Ar \rangle$ $\langle X \mid V_{\mu}(q) \mid {}^{40}Ar \rangle$

Building blocks: Starting with nucleons and different energy regions:

 $\langle p | J^w_\mu(q) | n \rangle$ Quasi-elastic

 $\langle n\pi | J^w_\mu(q) | n \rangle, \langle \Delta | J^w_\mu(q) | n \rangle$ Resonant

 $\langle X | J^w_\mu(q) | n \rangle$ DIS

Including nuclear effects in scattering off complex nuclear targets

Nuclear many body Hamiltonian takes as input matrix elements involving successively more multi-particles

- One nucleon $\langle p | J^+_{\mu}(q) | n \rangle$
- Transition $\langle n\pi | J^w_\mu(q) | n \rangle, \langle \Delta | J^w_\mu(q) | n \rangle$

- Two nucleon $\langle n p | J^{w+}_{\mu}(q) | n n \rangle$

See Snowmass 2021 white paper: 2203.09030 [hep-ph]

The v-n differential cross-section:

$$\begin{aligned} \frac{d\sigma}{dQ^2} \begin{pmatrix} \nu_l + n \to l^- + p \\ \bar{\nu}_l + p \to l^+ + n \end{pmatrix} \\ &= \frac{M^2 G_F^2 \cos^2 \theta_c}{8\pi E_\nu^2} \left\{ A(Q^2) \pm B(Q^2) \frac{(s-u)}{M^2} + C(Q^2) \frac{(s-u)^2}{M^4} \right\}, \end{aligned}$$

$$\begin{split} A(Q^2) &= \frac{(m^2 + Q^2)}{M^2} \left[(1 + \tau) F_A^2 - (1 - \tau) F_1^2 + \tau (1 - \tau) F_2^2 + 4\tau F_1 F_2 \right] \\ &- \frac{m^2}{4M^2} \left((F_1 + F_2)^2 + (F_A + 2F_P)^2 - 4 \left(1 + \frac{Q^2}{4M^2} \right) F_P^2 \right) \right], \\ B(Q^2) &= \frac{Q^2}{M^2} F_A(F_1 + F_2), \\ C(Q^2) &= \frac{1}{4} (F_A^2 + F_1^2 + \tau F_2^2). \end{split}$$

 $\langle NA_{\mu}N \rangle \rightarrow$ linear combination of F_A , \tilde{F}_P $\langle NV_{\mu}N \rangle \rightarrow G_E$, G_M

$$F_A$$
 = axial form factor
 $G_E = F_1 - \tau F_2$ Electric
 $G_M = F_1 + F_2$ Magnetic
 $\tau = Q^2/4M^2$
 $M = M_p = 939$ MeV
m=mass of the lepton

Analysis of (e, μ , v)-n scattering involves **5** Form Factors & 3 charges g_A , μ , g_n^*

- $G_E(Q^2)$ Electric
- $G_M(Q^2)$ Magnetic
- $G_A(Q^2)$ Axial
- $\tilde{G}_P(Q^2)$ Induced pseudoscalar
- $G_P(Q^2)$ Pseudoscalar (extracted from $\langle NPN \rangle$)
- Lattice methodology is common: all calculated at the same time
- Precise experimental data exist for $G_E(Q^2)$ and $G_M(Q^2)$
- Axial ward identity (PCAC) relates $G_A(Q^2)$, $\tilde{G}_P(Q^2)$, $G_P(Q^2)$
- $G_F(Q^2 = 0) = 1$
- $G_M(Q^2 = 0) = \mu = 4.7058$
- $G_A(Q^2 = 0) = g_A = 1.276(2)$ Axial charge
- $\tilde{G}_P(Q^2 = 0.88m_\mu^2) = g_p^* = 8.06(55)$ Induced pseudoscalar charge

- Conserved vector charge
- Magnetic moment

$\Gamma^n \rightarrow ME \rightarrow \text{Axial-vector Form Factors, } G_A, \widetilde{G}_P, G_P$

On each ensemble characterized by $\{a, M_{\pi}, M_{\pi}L\}$

$$\left\langle N(p_f) \Big| A^{\mu}(q) \Big| N(p_i) \right\rangle = \overline{u}(p_f) \left[\gamma^{\mu} G_A(q^2) + q_{\mu} \frac{\tilde{G}_P(q^2)}{2M} \right] \gamma_5 u(p_i)$$

$$\left\langle N(p_f) \Big| P(q) \Big| N(p_i) \right\rangle = \overline{u}(p_f) G_P(q^2) \gamma_5 u(p_i)$$

PCAC [$\partial_{\mu}A_{\mu} = 2mP$] relates G_A , \tilde{G}_P , G_P

Essential steps in the analysis

- Remove ESC from correlation functions Γ^n to obtain ME within ground-state nucleon
- Decompose ME into form factors $G(Q^2)$ on each ensemble { $a, M_{\pi}, M_{\pi}L$ }
- Parameterize this $G(Q^2)|_{a,M_{\pi},M_{\pi}L}$
- Perform CCFV extrapolation to get $G(Q^2)|_{cont}$
- Parameterize this $G(Q^2)|_{cont}$

Model averaging should include model choices at each step that have significant effect on result

Calculations of nucleon 2,3-point functions using LQCD are mature

Spectrum (energies E_i & amplitudes A_i) and ME are extracted from fits to the spectral decomposition of 2- and 3-point functions

$$\Gamma^{2pt}(\tau) = \sum_{i} |A_{i}|^{2} e^{-E_{i}\tau}$$

$$\Gamma_{0}^{3pt}(t,\tau) = \sum_{i,j} A_{i}^{*}A_{j}\langle i|O|j\rangle e^{-E_{i}t-E_{j}(\tau-t)}$$
Extract $\langle 0|O|0\rangle$

Radial excited States: N(1440), N(1710) Towers of multihadrons states $N(\vec{k})\pi(-\vec{k}) > 1200 \text{ MeV}$ $N(0)\pi(\vec{k})\pi(-\vec{k}) > 1200 \text{ MeV}$

but removing ESC from multihadron states remains a challenge

Challenges for nucleon ME

- Need large τ to "kill" states with <u>small</u> mass gap ($\Delta M \sim 300$)
- Cannot go to large enough τ because the signal/noise degrades as $e^{-(M_N 1.5M_\pi)\tau}$
 - Signal: 2-pt: $\tau \sim 2 \text{fm}$; 3-pt: $\tau \sim 1.5 \text{fm}$
- Typical interpolating operator \widehat{N} couples to the nucleon, its excitations and multi-hadron states with the same quantum numbers
- As $\vec{q} \rightarrow 0$, the towers of $N\pi$, $N\pi\pi$, states become arbitrarily dense above ~1230 MeV (the Δ region)
- Quantities impacted by $N\pi$, $N\pi\pi$, states should be analyzed on $M_{\pi} \leq 200 \text{ MeV}$ ensembles
- Excited states giving significant contribution to a particular ME are not known *a priori*. χ*PT is a very useful guide*
- The potential of variational methods for isolating the ground state is just starting to be realized!

- Corrections from pion loops arise in all Γ^n
- Loops that originate or end at sources are ESC. These can be removed by a perfect nucleon source.
- Loops that originate on the nucleon line give rise to both: corrections to the physical result and excited state contributions (from pion going on-shell in Minkowski)
 - The latter are suppressed exponentially by the mass gap
 - Unless there are large cancellations, both should be considered in
 (i) removing excited state contamination in Γⁿ to get ME
 (ii) Chiral fits to the data

 χPT : $N\pi$ state coupling is large in the axial channel

Enhanced coupling to $N\pi$ state: Since the pion is light, the vertex \bigcirc can be anywhere in the lattice 3-volume

$$\sim V^{-1}$$
 $A_i^* \langle i | A_4 | j \rangle \sim V$

Oliver Bär: Phys. Rev. D 99, 054506 (2019), Phys. Rev. D 100, 054507 (2019)

Decomposition of ground state matrix elements: $\langle N_{\tau}A_{\mu}(t)N_{0} \rangle$ provides an over-determined set

Choosing "3" the direction of spin projection

$$\left\langle N(p_f) \left| A_{1,2}(q) \left| N(p_i) \right\rangle \right. \rightarrow \left. - \frac{q_{1,2}q_3}{2M} \left. \tilde{G}_P \right. \\ \left\langle N(p_f) \left| A_3(q) \left| N(p_i) \right\rangle \right. \rightarrow \left. \left[\frac{q_3^2}{2M} \left. \tilde{G}_P - (M+E) G_A \right] \right] \right\} \right\} \left. \begin{array}{c} \text{Gives both} \\ \left. G_{A}, \left. \tilde{G}_P \right. \right. \\ \left. G_{A}, \left. \tilde{G}_P \right. \right] \right\} \right\} \right\}$$

$$\left\langle N(p_f) \middle| A_4(q) \middle| N(p_i) \right\rangle \rightarrow -q_3 \left[\frac{E-M}{2M} \tilde{G}_P - G_A \right]$$

Redundant. Dominated by excited states

Data driven evidence for $N\pi$ excited state

- $\langle N_{\tau}A_4(t)N_0\rangle$ has large ESC
- Fits with $N\pi$ as the first excited state are preferred

FF obtained including $N\pi$ state satisfy PCAC

Gupta et al, PhysRevD.96.114503 (2017) → Jang et al, PRL 124 (2020) 072002

Constraints once FF are extracted from ground state matrix elements

1) PCAC ($\partial_{\mu}A_{\mu} = 2\widehat{m}P$) requires

$$2\hat{m}G_P(Q^2) = 2M_N G_A(Q^2) - \frac{Q^2}{2M_N}\tilde{G}_P(Q^2)$$

2) In any [nucleon] ground state

$$\partial_4 A_4 = \left(E_q - M_0 \right) A_4$$

3) G_A , \tilde{G}_P extracted from $\langle N(p_f)|A_i(q)|N(p_i)\rangle$ must be consistent with $\langle N(p_f)|A_4(q)|N(p_i)\rangle$

2017 \rightarrow 2019: Resolution with PCAC and PPD

Gupta et al, PhysRevD.96.114503 → Jang et al, PRL 124 (2020) 072002

On including low mass $N_{p=0}\pi_p$ and $N_p\pi_{-p}$ excited states neglected in previous works, FF satisfy PCAC and PPD at ~5%

•Also see RQCD Collaboration: JHEP 05 (2020) 126, <u>1911.13150</u>

Mass gaps extracted from fits match the above picture

 ΔM_1^{A4} and ΔE_1^{A4} are outputs of 2state fits and not driven by priors

How large is the " $N\pi$ " effect?

Output of a simultaneous fit to $\langle A_i \rangle, \langle A_4 \rangle, \langle P \rangle$ (called $\{4^{N\pi}, 2^{sim}\}$ fit) increases the form factors by:

$$G_A \sim 5 \%$$

 $\tilde{G}_P \sim 45 \%$
 $G_P \sim 45 \%$

 $\langle A_i \rangle, \langle A_4 \rangle, \langle P \rangle$ correlators

Consistency in the extraction of g_A

- g_A from forward ME versus $g_A = G_A(Q^2 \to 0)$
- With / without including $N\pi$ state in the analysis
- PCAC

 G_A , \tilde{G}_P , G_P do not satisfy PCAC

 G_A , \tilde{G}_P , G_P with $N\pi$ satisfy PCAC

Essential steps in the analysis

- Remove ESC from correlation functions Γ^n to obtain ME within ground-state nucleon
- Decompose ME into form factors $G(Q^2)$ on each ensemble { $a, M_{\pi}, M_{\pi}L$ }
- Parameterize this $G(Q^2)|_{a,M_{\pi},M_{\pi}L}$
- Perform CCFV extrapolation to get $G(Q^2)|_{cont}$
- Parameterize this $G(Q^2)|_{cont}$

Model averaging should include model choices at each step that have significant effect on result

If ESC is the largest systematic and fits do not select between $\{A_i, E_i\}$

- 2-state fit: Model average different E_1
- 3-state fit: Model average over $\{E_1, E_2\}$

Calculations reviewed in 2305.11330

Collab.	Ens	Lowest M _π (MeV)	Excited State	Q^2	Continuum- chiral-finite- volume extrap	g_A
PNDME 23	13	2 physical	With $N\pi$	$z^2 + z^2$	CCFV	1.292(53)(24)
Mainz 22	14	2 physical	Simultaneous ESC and Q^2	<i>z</i> ²	CCFV	1.225(39)(25)
NME 21*	7 (13)	2 @ 170 →1 Phy	With <i>N</i> π	<i>z</i> ²	Ignore $\{a, M_{\pi}^2, M_{\pi}^2 L\}$ dependence	1.32(6)(5)
ETMC 20*	1 (3)	$1 \rightarrow 3$ physical	Without $N\pi$	Only data for G_A	<i>{a}</i>	1.283(22)
RQCD* 19/23	36 (47)	2 Phy 2 Phy	With $N\pi$ only for \tilde{G}_P , G_P	Only data for G_A		$1.229 - 1.302$ $[1.284_{27}^{28}]$

PNDME: arXiv:2305.11330, NME: PRD 105, 054505 (2022), RQCD: JHEP 05, 126 (2020), PRD 107, 051505 (2023) Mainz: PRD 106, 074503 (2022) ETMC: PRD 103, 034509 (2021) *New data in the pipeline

Comparing axial form factor from LQCD

Expected improvements in lattice calculations $M_{\pi} \rightarrow 135; a \rightarrow 0; L \rightarrow \infty$ • $Q^2 = p^2 - (E(p) - M)^2$

- $p = \frac{2\pi}{La}n = \frac{2\pi}{La}(i, j, k)$
- Fixed $\beta = 6/g^2$ (fixed *a*) - $M_{\pi} \rightarrow 135$ MeV keeping $M_{\pi}L$ fixed $\Rightarrow Q^2$ decreases
- Fixed M_π, take a →0 keeping L in fermi fixed
 La fixed ⇒ Q² stays constant
- Fixed M_{π} and a: take $L \to \infty$
 - p decreases $\Rightarrow Q^2$ decreases

 Q_{max}^2 in lattice data will decrease but DUNE requires larger Q_{max}^2

Comparing prediction of x-section using AFF from $\nu - D$ and PNDME with MINERvA data

<u>*T. Cai, et al., (MINERvA) Nature*</u> volume 614, pages 48–53 (2023); Phys. Rev. Lett. 130, 161801 (2023) Oleksandr Tomalak, Rajan Gupta, Tanmoy Bhattacharya, arXiv:2307.14920

Mapping the AFF

- $0 < Q^2 < 0.2 \text{ GeV}^2$
 - This region will get populated by simulations with $M_{\pi} \approx 135$ MeV, $a \rightarrow 0$, $M_{\pi}L > 4$
 - MINER ν A data has large errors
 - Characterized by g_A and $\langle r_A^2 \rangle$ and $G_A(Q^2)$ parameterized by a z-expansion with a few terms
- $0.2 < Q^2 < 1 \,\,{
 m GeV^2}$
 - Lattice data mostly from $M_{\pi} > 200$ MeV simulations
 - Competitive with MINER ν A data. Cross check of each other
- $Q^2 > 1 \,\,{
 m GeV^2}$
 - Lattice needs new ideas
 - MINER ν A and future experiments

Unpublished data and looking ahead

Update from ETMC (3 $M_{\pi} \approx 135$ MeV ensembles)

2+1+1-flavor twisted mass ensembles

Excited state fits

- 2-state checked against 3-state
- $N\pi$ state not included
- 1^{st} excited state mass $\approx xx$ MeV

PCAC test of form factors

$$PCAC = \frac{\frac{m_q}{m_N}G_5(Q^2) + \frac{Q^2}{4m_N^2}G_P(Q^2)}{G_A(Q^2)}$$

Large cut-off effects in twisted mass involving pions

Update from CalLAT Collaboration (A. Meyer, A. Walker-Loud)

domain-wall on HISQ calculation using sequential prop through sink $48^3 \times 64$ ensemble (a12m130): $a^{-1} = 1.66$ GeV; $M_{\pi} = 132$ MeV Gaussian sources for quark propagators 1000 X 32 (configurations X measurements)

Update from NME Collaboration (Sungwoo Park, R.G., ...)

2+1-flavor clover fermions using sequential prop through sink12 Ensembles; Gaussian sources for quark propagators

Update from PNDME Collaboration (Y-C Jang, R.G., ...arXiv:2305:11330)

Clover-on-HISQ calculation. Thirteen 2+1+1-flavor HISQ ensembles. Sequential propagators through nucleon sink; Wuppertal sources for quark propagators

Updates from PACS

Talk by Ryutaro Tsuji

Stout smeared O(a) improved Wilson quark and Iwasaki gauge actions. 2+1 flavors

1.3

1.2

0.9

0

 $G_{A}(q^{2})$

 Φ

¢ ⊕

∳ ____

Update from LHP/RBC/UKQCD Collaboration (S. Ohta arXiv:2211.16018)

2+1-flavor domain-wall-fermions $48^3 \times 96$ ensemble: $a^{-1} = 1.730(4)$ GeV Gaussian sources for quark propagators 120 configurations, ## measurements

Data at $\tau = 8,9,10$ do not show significant change indicating small excited state effect

Slower fall-off than PNDME 23 data

Comparison with unpublished data

Electric & Magnetic FF

- The extraction of electric and magnetic form factors is insensitive to the details of the excited states
- Vector meson dominance $\rightarrow N\pi\pi$ state should contribute (some evidence)
- The form factors do not show significant dependence on the lattice spacing or the quark mass
- Good agreement with the Kelly curve. Validates the lattice methodology
- Improve precision and get data over larger range of parameter values

Variational with Multi-hadron states NPB205 [FS5] (1982) 188

See

- Barca et al, <u>2211.12278</u>, <u>2110.11908</u>
- NPLQCD Collaboration, Phys.Rev.Lett. 120 (2018) 15, 152002
- Nuclear matrix elements from lattice QCD for electroweak and beyond-Standard-Model processes, 2008.11160 [hep-lat]

Summary

- Challenges in lattice calculations of nucleon matrix elements:
 - Signal to noise degrades as $e^{-(M_N-1.5M_\pi)t}$
 - removing multi-hadrons excited states to get ground state ME
 - including multi-hadrons in initial and/or final state for transition ME
- Continue to develop a robust analysis strategy for removing dominant excited states in various nucleon matrix elements
- Improve chiral and continuum extrapolation. Simulate at more $\{a, M_{\pi}\}$
- Current 0.04 < Q^2 < 1 GeV². Extend to larger Q^2 for DUNE
- Transition matrix elements
- Goal: Perform a comprehensive analysis of scattering data with input of lattice results for g_A , $G_E(Q^2)$, $G_M(Q^2)$, $G_A(Q^2)$, $\tilde{G}_P(Q^2)$

Improvements in algorithms and computing power are needed to reach few percent precision