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To determine the equation of state P(p),
one needs to measure Mns and/or Rns.
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Measuring the masses requires neutron stars
in binary systems or pulse profile modelling.
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Measuring the radius precisely is
rather difficult for neutron stars.

To measure the radius of a | '~ ““isff_’ -
star, we need to: | -
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1. observe the surface
thermal emission

2. correctly model this \ \Gesstien
emission N\ B ekt
3. know the distance
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Neutron stars come in many flavours, with
different properties and observational signhatures.
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Neutron stars come in many flavours, with
different properties and observational signhatures.
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The emission from the
entire surface needs to
be visible



Neutron stars come in many flavours, with
different properties and observational signhatures.
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Highly magnetised
atmospheres are
difficult to model

For B=1010 G, opacities
of free-free processes in
106 K atmosphere are
unaffected
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1. Low mass X-ray binaries in quiescence
2. Millisecond pulsars

3. Thermonuclear bursts in X-ray binaries



1. We will start with low-mass X-
ray binaries.




Quiescent low-mass X-ray binaries are
ideal systems for radius measurements.

Surface thermal emission at | SRR
Teff ~ 100 K, powered by e

residual heat from the deep
crust radiating outwards
through the atmosphere
with Lx = 103233 erg/sec

Spectral fitting of this
surface emission gives us

Tesi and Fx « (R../D)2

9G My ) —1/2

Ry =FRns(l+2)=~Rns |1 :
ns (1 + 2) Nb( R (2



A radius measurement was obtained
from Cen X-4 (a known field LMXB)
observed during quiescence.
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Globular clusters host an over-
abundance of LMXB systems...

’OPticalf
Image -

..and they have independently
measured distances.
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The first globular cluster gLMXB

was discovered in Omega Centauri.

X-ray telescope
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Because of gravitational redshift, the radius
Is degenerate with the unknown mass.

Bogdanouv et al. 2016



Because of gravitational redshift, the radius
Is degenerate with the unknown mass.
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We want to find which equation of state is

common to all these M-R measurements.

. - qLMXBs in
v s globular
T A C : clusters
S o 1 7 —— 47Tuc
D : — M13
2 v - _: — M28
> : M30
D . —— NGC6397
1 - OMCEN




A solution consists in combining these
observations in a statistical analysis.
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We used a physically-driven, parameterisation of the
equation of state is preferable.

Meta-model of €sat = Esat + =

J. Margueron et al.

€sym = Es_vm +Lsymx+
G
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The measurements of these three
parameters improve over previous estimates.

Baillot d’Etivaux, SG et al. 2019

Our 20 measurements:
+ Lsym ~ 25 — 60 MeV
+ Ksym ~ -250 — 130 MeV
+ Qsat ~ -200 — 1900 MeV

Ranges of value from
experimental and
theoretical estimates:

+ Lsym ~ 20 — 90 MeV
+ Qsat ~ -1300 — 1900 MeV




Our analysis results in Mns—Rns or in P-p space
are consistent with other measurements.
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There remains some discussion
points and possible caveats! (=

+ Why only use qLMXBs in globular — Field LMXB may not

clusters ? return to full quiescence
+ What is the composition of the . Hydrogen, Helium or
something else

neutron star atmosphere ¢

+ Is the surface magnetic field really No measurement, but
— ted for LXMB
negligible ¢ e
+ Is the emission really from the 1 No Con;traints exist,
Bl

entire surface ?

+ What are the effects of assuming b Sasho i, bi?S
. € K measuremen
slowly rotating neutron stars?




Another question: Could we measure
the mass to break the M-R degeneracy?
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This requires identifying the companion
star and determining the orbital parameters
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2. Rotation powered millisecond pulsars
also have thermal surface emission.

Surface magnetic field (Gauss)
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The surface emission from rotation-powered MSPs
with known masses can also be used to extract the
radius with phase-average spectroscopy.

The nearest MSP
PSR J0437-4715
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In the far UV, the Rayleigh-Jeans tail of the surface
thermal emission gives the handle to constrain the
heutron star size.

PSR J0437-4715

Hot polar caps
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In the far UV, the Rayleigh-Jeans tail of the surface
thermal emission gives the handle to constrain the
heutron star size.
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We find a radius for PSR J0437-4715
consistent with other measurements.
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This method may be applicable to another
MSP with observed far UV emission.

PSR J2124-3358

Optical Far UV

Rangelov et al. 2017
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3. During accretion outbursts, LMXBs
experience thermonuclear explosion from
the neutron star surface.

Surface magnetic field (Gauss)
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Some of these thermonuclear
R : . 4rGeMyns
bursts reach a critical luminosity | Leda = —

and push out the photosphere.
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Different analysis method and LMXB spectral
states result in different constraints.
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A lot of uncertainties remain and make
the measurements poorly constrained.
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Recent developments in the field of Type |
X-ray bursts ?

1. A new method



The direct spectral fits with realistic models during the
burst evolution avoids using color-correction factors.
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Recent developments in the field of Type |
X-ray bursts ?

1. A new method

2 A new instrument



The observation of type | X-ray bursts with 48
NICER shows the whole burst evolution in &
the soft X-ray band.
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In the RXTE band, the drop in flux comes from the
temperature drop as the photosphere expands. With
its 0.3-10 keV range, NICER sees the full evolution



Recent developments in the field of Type |
X-ray bursts ?

1. A new method
2 A new instrument

3. A new problem



But NICER observations of type | X-ray burst also
showed the presence of a un-modelled excess at
low energies.

Burst Peak

Photon flux

10

1
Energy (keV)

Keek et al. 2018
Giiver et al. 2021, 2022



Bonus slide: The inner extent of an accretion disk
gives an upper limit on the neutron star size
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CONCLUSIONS

1. Quiescent Low mass X-ray binaries

Several qLMXBs can be combined, but
assumptions may bias the results

2. Cold surface of millisecond pulsars

Only 1 MSP so far, but great potential if
combined with pulse profile modelling
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3. Thermonuclear bursts in X-ray binaries

Very promising “direct spectral fit” method, but
still some physical processes to clarify
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There remains some discussion
points and possible caveats! (=
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+ Why only use gqLMXBs in globular i Field LMXB may not
clusters ¢

return to full quiescence




There remains some discussion
points and possible caveats! (=

—

+ Why only use qLMXBs in globular — Field LMXB may not

return to full quiescence

clusters ?

+ What is the composition of the —> Hydrogen, Helium or
) something else
neutron star atmosphere ¢




The atmospheric composition of an accreting
heutron star depends on the donor star.

A

H-atmosphere
thermal emission

~70% hydrogen
seen by observer '

_ ~28% helium
e ~2% “metals”

Photosphere = 1 cm

Helium




Assuming the wrong composition
may severely bias the result.

qLMXB in M30 qLMXB in M13 gLMXB in M28
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Can we tell if a neutron star
atmosphere is composed of H or He?

Extremely high S/N spectra permit detection of the subtle
variations between H and He atmospheres

NS simulated with
He-atmosphere,
and fitted with

normalized counis s ' xaV !

ga— ~106 photons
H-atmosphere P
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Can we tell if a neutron star
atmosphere is composed of H or He?

Identifying the donor star in the crowded
environments of globular clusters

+ Very difficult with ground based (e.g., VLT), . 1
even with AO "~ NGC 6397

+ Difficult with Hubble Space Telescope Lpinke gt al. 20141

+ Easier with JWST
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There remains some discussion
points and possible caveats! (=

+ Why only use qLMXBs in globular — Field LMXB may not

return to full quiescence

clusters ?

+ What is the composition of the —> Hydrogen, Helium or
) something else
neutron star atmosphere ¢

+ Is the surface magnetic field really — 'i‘:(p”e‘ifessg‘f%ggt
negligible ?




There remains some discussion
points and possible caveats! (=

+ Why only use qLMXBs in globular i Field LMXB may not
clusters ? return to full quiescence

+ What is the composition of the —> Hydrogen, Helium or
) something else
neutron star atmosphere ¢

+ Is the surface magnetic field really — 'iip”e‘ifesszif‘f;hggt
negligible ?

S . No constraints exist,
+ Is the emission really from the el e
entire surface ¢




Assuming a uniform surface temperature
may bias the radius measurement.
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Can we tell whether the surface
temperature is uniform or not?

Non-uniform surface No X-ray pulsations for
manifests as X-ray pulsations some specific geometries

Can we tell from the X-ray spectra?



A hot spot that does not
generate X-ray pulsations
may be detected spectrally.
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There remains some discussion
points and possible caveats! (=

+ Why only use gLMXBs in globular i Field LMXB may not
clusters ? return to full quiescence

+ What is the composition of the Hydrogen, Helium or
neutron star atmosphere ? something else

+ Is the surface magnetic field reall 5 No measurement, but
s ) 5 Y expected for LXMBs
negligible ¢
+ Is the emission really from the entire i M e
8 e

surface ?

Fast rotation may bias
the R measurement

+ What are the effects of assuming S—
slowly rotating neutron stars?



Rotation broadens the spectrum and
nheglecting it may bias the radius.
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The MCMC samples the parameters
space 1o fits the observed X-ray spectra.

Spectral models EoS model
v

Sample NS parameters i Sample EoS parameters
(NH,i - kTi, MNS,i 5 ) = (Lsym, Ksym, Qsat) 1

Get the Get MNs-RNs
corresponding Rns i relation

Full set of NS
parameters

Compare to get
the likelihood

X-ray Spectra
of 7 neutron stars S :
Distribution of

Lsym, I<sym, Qsat



The ATHENA X-ray Observatory will

drastically improve constraints!

A R-SCIOBJ-331
RNS — +1.7% “ Athena shall constrain the equation
Rns 1AM = of state of neutron stars by obtaining
) 2 X-ray spectra of seven quiescent
7 qLMXBs with ATHENA low mass X-ray binaries with a

good distance estimate.”

2.5 cem_ M30 at ATHENA'’s resolution




