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Overview of our model

 We wish to use the abundance data from stars to better understand 

the production mechanisms of heavy elements. 

 Production Mechanisms of Iron and Heavier Elements:

 AGB Stars: ~1 Gyr delay time

 Type 1a Supernova: ~1 Gyr delay time, 1 every ~100 year average 

occurrence (our galaxy)

 Type II Supernova: ~10 Myr delay time, 1 every ~30 year average 

occurrence (our galaxy)

 Neutron Star Mergers: ~200 Myr delay time, 1 every ~105-107 year 

average occurrence (our galaxy)

 Metal-poor stars will be dominated by Type II Supernova and Neutron 

Star Mergers



Overview of our model (2)

 We assume that there exist a small number of sources 

which each produce a characteristic amount of each of 

the elements.

 This characteristic amount is spread into a characteristic 

mass of ISM, creating a characteristic concentration of the 

element relative to hydrogen. 

 Therefore, the elemental abundance in any star must be 

the result of a linear combination of the contributions 

from these sources.
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How many templates?

 For two templates, 

you would expect 

the data to be 

linear.

 For three 

templates, you 

would expect the 

data to be planar. 
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Two templates: the mathematically best 

solution 

 Our data sample has 211 stars, with an average measurement error of 0.605σ

 In 140/211 (66.3%) of stars, all three measurements agree within 1σ

 In 200/211 (94.8%) of stars, all three measurements agree within 2σ

 In 206/211 (97.6%) of stars, all three measurements agree within 3σ
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Extracting physical meaning from the 

templates

 It is very unusual to produce Europium without Barium. Similarly, the 

templates can be simplified to eliminate non-dominant contributions.

 New proposed templates: We identify the first with Type II Supernova, and 

the second with Neutron Star Mergers
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Two templates: the physically motivated 

solution 

 Our data sample has 211 stars: with an average error of 0.615σ

 In 141/211 (66.8%) of stars, all three measurements agree within 1σ

 In 197/211 (93.4%) of stars, all three measurements agree within 2σ

 In 206/211 (97.6%) of stars, all three measurements agree within 3σ
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Predictions for the two-template results

 There should be a linear relationship between Sr/Fe and 

Ba/Fe, Eu/Fe:

 There should be a constant Ba/Eu ratio.
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Sr/Fe vs Ba/Fe



Sr/Fe vs Eu/Fe



Ba/Eu



What is going on with high Ba/Eu values?

 ABG stars will start to have contributions around [Fe/H]~-

2

 Additionally, there could be changes in the elemental 

abundances after star formation, which allows for 

influence from much more recent timescales. 

 The most sensible thing to do is to prune these data 

points; our model does not explain them.

 We therefore remove all data points (16/211) which have 

(Ba/Eu)>1.0



New Templates with Pruned Data 

([Ba/Eu]<0.0)

 Our data sample has 195 stars: with an average error of 0.55σ

 In 141/195 (72.3%) of stars, all three measurements agree within 1σ

 In 189/195 (97.0%) of stars, all three measurements agree within 2σ

 In 192/195 (98.5%) of stars, all three measurements agree within 3σ
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Mixing Ratio of Events

 There is additional information in the coefficients: the amount of each 

template. What can this tell us about event sizes and frequency?

 Three relevant parameters:

 X: The amount of (Sr/H) produced by a single supernova event

 Y: The amount of (Sr/H) produced by a single neutron star merger event

 F: The frequency of neutron star merger events relative to supernova events

 We would expect X/(YF) to be constant, and equal to ratio of the average 

amount of Sr obtained from supernova to Sr obtained from neutron star 

mergers. 



Strontium Production Ratio
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What about event size?

 We can calculate the probability we get N1 Supernova events with N2 Neutron 

Star Merger events given the relative frequency F:

 We can use this to calibrate the size of the events: if events are too small, 

the spread of the data will be probabilistically impossible, and if events are 

too big, the data doesn’t have enough spread. 
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Event Sizes

 Practically, Neutron Star Mergers are much less common than Type II Supernovae, 
which suggests F<<1, and therefore log10(Y) ~ -3 and log10(X) << -3



Conclusions

 The data can be well fit by a model with two types of events: one which 

produces dominantly Fe and Sr, which we identify as Type II Supernovae, and 

one which produces dominantly Sr, Ba, and Eu, which we identify as Neutron 

Star Mergers. 

 The data includes some anomalous (Ba/Eu) measurements, which could be 

created through processes that can not be modelled by this simple 

formulation.

 The mixing data suggests that Neutron Star Mergers must produce 

approximately 4 times as much Sr as Supernovae. 

 Additionally, the variance of the mixing suggests that at least one of the 

events must have a large yield (log10(Sr/H)~ -3), which given the relative 

frequency of the two events, must be Neutron Star Mergers. 
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