

A Model for Abundances in Metal-poor Stars

Axel Gross, University of Minnesota

In collaboration with Yong-Zhong Qian and Zewei Xiong

Overview of our model

- We wish to use the abundance data from stars to better understand the production mechanisms of heavy elements.
- Production Mechanisms of Iron and Heavier Elements:
 - AGB Stars: ~1 Gyr delay time
 - Type 1a Supernova: ~1 Gyr delay time, 1 every ~100 year average occurrence (our galaxy)
 - Type II Supernova: ~10 Myr delay time, 1 every ~30 year average occurrence (our galaxy)
 - Neutron Star Mergers: ~200 Myr delay time, 1 every ~10⁵-10⁷ year average occurrence (our galaxy)
- Metal-poor stars will be dominated by Type II Supernova and Neutron Star Mergers

Overview of our model (2)

- We assume that there exist a small number of sources which each produce a characteristic amount of each of the elements.
- This characteristic amount is spread into a characteristic mass of ISM, creating a characteristic concentration of the element relative to hydrogen.
- Therefore, the elemental abundance in any star must be the result of a linear combination of the contributions from these sources.

$$\left(\frac{E}{H}\right)_{star} = \sum_{i=1}^{n} x_i \left(\frac{E}{H}\right)_i \qquad \longrightarrow \quad \left(\frac{E}{Fe}\right)_{star} = \sum_{i=1}^{n} x_i \left(\frac{E}{Fe}\right)_i \qquad \sum_{i=1}^{n} x_i = 1$$

E = Fe, Sr, Ba, Eu

E = Sr, Ba, Eu

How many templates?

$$\left(\frac{E}{Fe}\right)_{star} = \sum_{i=1}^{n} x_i \left(\frac{E}{Fe}\right)_i \qquad \sum_{i=1}^{n} x_i = 1$$

For two templates, you would expect the data to be linear.

For three templates, you would expect the data to be planar.

Two templates: the mathematically best solution

$$\begin{bmatrix} Fe/Fe \\ Sr/Fe \\ Ba/Fe \\ Eu/Fe \end{bmatrix} = \begin{bmatrix} 1.0 \\ 0.352 \\ 0.001 \\ 0.301 \end{bmatrix}, \begin{bmatrix} 1.0 \\ 8.83 \\ 9.42 \\ 20.16 \end{bmatrix}$$

- Our data sample has 211 stars, with an average measurement error of 0.605σ
- In 140/211 (66.3%) of stars, all three measurements agree within 1σ
- In 200/211 (94.8%) of stars, all three measurements agree within 2σ
- In 206/211 (97.6%) of stars, all three measurements agree within 3σ

Extracting physical meaning from the templates

$$\begin{bmatrix} Fe/Fe\\Sr/Fe\\Ba/Fe\\Eu/Fe \end{bmatrix} = \begin{bmatrix} 1.0\\0.352\\0.001\\0.301 \end{bmatrix}, \begin{bmatrix} 1.0\\8.83\\9.42\\20.16 \end{bmatrix}$$

- It is very unusual to produce Europium without Barium. Similarly, the templates can be simplified to eliminate non-dominant contributions.
- New proposed templates: We identify the first with Type II Supernova, and the second with Neutron Star Mergers

$$\begin{bmatrix} Fe/Sr\\Sr/Sr\\Ba/Sr\\Eu/Sr \end{bmatrix} = \begin{bmatrix} A\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\B\\C \end{bmatrix}$$

Two templates: the physically motivated solution

$$\begin{bmatrix} Fe/Sr \\ Sr/Sr \\ Ba/Sr \\ Eu/Sr \end{bmatrix} = \begin{bmatrix} 3.461 \\ 1.0 \\ 0.0 \\ 0.0 \end{bmatrix}, \begin{bmatrix} 0.0 \\ 1.0 \\ 1.025 \\ 2.549 \end{bmatrix}$$

- Our data sample has 211 stars: with an average error of 0.615σ
- In 141/211 (66.8%) of stars, all three measurements agree within 1σ
- In 197/211 (93.4%) of stars, all three measurements agree within 2σ
- In 206/211 (97.6%) of stars, all three measurements agree within 3σ

Predictions for the two-template results

$$\begin{bmatrix} Fe/Sr \\ Sr/Sr \\ Ba/Sr \\ Eu/Sr \end{bmatrix} = \begin{bmatrix} 3.461 \\ 1.0 \\ 0.0 \\ 0.0 \end{bmatrix}, \begin{bmatrix} 0.0 \\ 1.0 \\ 1.025 \\ 2.549 \end{bmatrix}$$

There should be a linear relationship between Sr/Fe and Ba/Fe, Eu/Fe:

$$\left(\frac{Sr}{Fe}\right)_{star} = \left(\frac{Sr}{Fe}\right)_{1} + \left(\frac{Sr}{Eu}\right)_{2} \left(\frac{Eu}{Fe}\right)_{star} = 0.2889 + 0.392 \left(\frac{Eu}{Fe}\right)_{star}$$

$$\left(\frac{Sr}{Fe}\right)_{star} = \left(\frac{Sr}{Fe}\right)_{1} + \left(\frac{Sr}{Ba}\right)_{2} \left(\frac{Ba}{Fe}\right)_{star} = 0.2889 + 0.976 \left(\frac{Ba}{Fe}\right)_{star}$$

There should be a constant Ba/Eu ratio.

$$\left(\frac{Ba}{Eu}\right)_{star} = \left(\frac{Ba}{Eu}\right)_2 = 0.402$$

Sr/Fe vs Ba/Fe

Sr/Fe vs Eu/Fe

Ba/Eu

What is going on with high Ba/Eu values?

- ABG stars will start to have contributions around [Fe/H]~-2
- Additionally, there could be changes in the elemental abundances after star formation, which allows for influence from much more recent timescales.
- The most sensible thing to do is to prune these data points; our model does not explain them.
- We therefore remove all data points (16/211) which have (Ba/Eu)>1.0

New Templates with Pruned Data ([Ba/Eu]<0.0)

$$\begin{bmatrix} Fe/Sr \\ Sr/Sr \\ Ba/Sr \\ Eu/Sr \end{bmatrix} = \begin{bmatrix} 3.50 \\ 1.0 \\ 0.0 \\ 0.0 \end{bmatrix}, \begin{bmatrix} 0.0 \\ 1.0 \\ 1.01 \\ 2.71 \end{bmatrix}$$

- Our data sample has 195 stars: with an average error of 0.55σ
- In 141/195 (72.3%) of stars, all three measurements agree within 1σ
- In 189/195 (97.0%) of stars, all three measurements agree within 2σ
- In 192/195 (98.5%) of stars, all three measurements agree within 3σ

Mixing Ratio of Events

- There is additional information in the coefficients: the amount of each template. What can this tell us about event sizes and frequency?
- Three relevant parameters:
 - > X: The amount of (Sr/H) produced by a single supernova event
 - > Y: The amount of (Sr/H) produced by a single neutron star merger event
 - F: The frequency of neutron star merger events relative to supernova events
- We would expect X/(YF) to be constant, and equal to ratio of the average amount of Sr obtained from supernova to Sr obtained from neutron star mergers.

Strontium Production Ratio

What about event size?

We can calculate the probability we get N₁ Supernova events with N₂ Neutron Star Merger events given the relative frequency F:

$$P(N_1, N_2) = \frac{(N_1 + N_2)!}{N_1! N_2!} \left(\frac{F}{F+1}\right)^{N_2} \left(\frac{1}{F+1}\right)^{N_1}$$

We can use this to calibrate the size of the events: if events are too small, the spread of the data will be probabilistically impossible, and if events are too big, the data doesn't have enough spread.

Event Sizes

Practically, Neutron Star Mergers are much less common than Type II Supernovae, which suggests F<<1, and therefore log10(Y) ~ -3 and log10(X) << -3</p>

Conclusions

- The data can be well fit by a model with two types of events: one which produces dominantly Fe and Sr, which we identify as Type II Supernovae, and one which produces dominantly Sr, Ba, and Eu, which we identify as Neutron Star Mergers.
- The data includes some anomalous (Ba/Eu) measurements, which could be created through processes that can not be modelled by this simple formulation.
- The mixing data suggests that Neutron Star Mergers must produce approximately 4 times as much Sr as Supernovae.
- Additionally, the variance of the mixing suggests that at least one of the events must have a large yield (log10(Sr/H)~ -3), which given the relative frequency of the two events, must be Neutron Star Mergers.