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Neutrino Oscillations

. Early conjecture by Pontecorvo (1950’s) that ne
zero masses and could mix

. Consistent with Wolfenstein (1979) and Mikheyev & Smir
(1985) solution to solar neutrino problem

. Pantaleone (1992) pointed out non-linear effects could be
important in dense media

. Samuel (1993) did early simulations and saw novel effects



Neutrino Mass

Mass eigenbasis is not coincident with Weak eigenbasis
1. Unitary Transformation in vacuum: PMNS matrix
2. Neutrinos oscillate between weak eigenstates
3. Density matrix for neutrino distribution

normal mass hierarchy inverted mass hierarchy

Mass squared
differences:

dmZ =17.5x 107° eV~
om2. = 2.6 x 1073 eV?

atm

c/o George Fuller 3
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Sigl & Raffelt (1993)

1. Refractive Index Matrix:
a. NgXxXNg matrix with off-diagonal terms for neutrino

b. Both test neutrino and refractive index matrix describ

density matrix
2. Evolution of exact M-particle Green’s functions can be expanded

pertubatively in 1-particle functions
pp = — i[Qp, pp] + i{[Hing, Dp))

-5 | a0 D)

3. Solve QKEs for charge-current, neutral current, and self-interaction
terms




. Based upon the Bogoliobov-Born-Green-Kirkwood-Y

Volpe et al (2013)

hierarchy with truncation

k k<k’ dt

Z.dpl...s _
dt

. Tower of Equations: truncate after p;

P12 = P1pP2 T+ Ci2

. Consistent with the mean field and collision terms in Sigl & Raffelt
(1993)



Blaschke & Cirigliano (20

1. Finite-temperature field-theory approach first used in
Fuller, Cirigliano (2013)
2. M-particle Green’s functions truncated to single-particle
perturbative expansion akin to Sigl and Raffelt (1993)

' Generalized 2Nf X 2Nf
Neutrinos: J— F(gj,ﬁ) density matrices

: : . A N: number of flavors
Antineutrinos: ' — F(:):, ﬁ) 2 helicity states

7’7+ occupation numbers

P frr fir ij

L flavor coherence

-f }JR f RR. fr.r @ spin coherence
frr : opposite helicity



Neutrino Density Matrices &

1. Ignore spin coherence and wrong helicity states

f(¢,7,p) = (fie Lz) f(t, 7 p) =

€T

2. Only keep single-particle correlation functions

3. QKEs from Blaschke & Cirigliano (2016):

Drift Term Force Term  Coherent Term Collision Term
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QKEs in the Earl

Change array dimensions from Boltzmann to QKE:
2 General

{file)}, {Tz(ﬁ)} — fij(e)a?ij(e) ?:;zgflnr:s:,;ren

€: Energy-like variable

Equations of motion for neutrinos: H: Hamiltonian-like
potential (coherent)

_ C: Collision term f
= —i|H, f| + C|f] slaschke & Cirgliano (2016)

—> Nonlinear coupled ODEsg



Coherent Term in the Early Uni

H=Hy, + Hy+ Hs

1
H _ M2 ]L Vacuum Oscillations
% 2€Tcm . 3 M* = diag(0, 6m?), £dmz,,)
HA — \/§GF(L -+ L) Asymmetric Term
SV2G el ~  Symmetric term
Hq = \/— - (E —= (3082 HwE) (groportionalto

2
SmW energy density)



Self-Interacting Term (Neglect

VoG L = H,

Self-Interacting term (nonlinear in density matrices):

H, - {fﬁf’ [ @401 - coslott. .0 - 7 (1,7,

ﬁ : q’ Angle between
_— 3-momenta

g vectors

cos ¥ =



Collisions

Positron-Electron Annihilation
v(k)v(g3) — e (g2)e (q1)
Loss Potential (Blaschke & Cirigliano 2016)

. 2 . . h
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Amplitudes

ME(q1,q2, 03, k) = (5}3(613(11)(/6(12) + 5?(613(12)(@1))5(4)(16 — g3 — q1 + q2)

Mo (a1, 02,93, k) = m2(kqz)6™W (k — g3 — q1 + q2)




Collisions (cont.)

Matrices in Weak eigenbasis

I 7 sin? Gy, 0
Yy, = 0 —1 +sin® Oy
i 0 0 —% +sin

Y = sin? Oy x 1

Collision Term

CLf(e)] = 5 (T £} — 5 {TT7.1 — f(e)}



Early Universe work in 3 flavor

Collisions only HandC

Damping procedure for off-diagonal collision
terms

A. Dolgov et al (2002)

G. Mangano et al (2005)

Mixed procedures for off-diagonal
P. de Salas & S. Pastor (2016)

QKE formalism for off-diagonal
Akita & Yamaguchi (2020)
Froustey et al (2020)
Bennet et al (2021)




Logical Progression of Neutrino Dec
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Fast Flavor Instability -- Quall

. As neutrino moves through compact object environm
a. Neutrinos propagate through field of other neutrin
b. Self-energy diagrams have (relatively) large amplitude

Non-linear self-interactions sensitive to asymmetry of neutrinos vs.
anti-neutrinos = lepton number

Self-interacting term can couple to vacuum and create spectral
split: (Slow) Collective Oscillations [see Duan, Fuller, Qian 2010]

Lepton number crossings (in angle) can give rise to rapid flavor
transformation (Sawyer, 2005): Fast Flavor Conversion



ELN Crossing

Z =10 Z >0

Maximum d
n N 4 :
Entropy €Z cos 0 Crossing

Relation | 4 sinh(Z)




Collective FFC

Much work has been done on characterizing FFC in
environments

. Asymptotic states via conservation law for lepton number a
crossing disappearance in ELN-XLN [cf. H. Nagakura]
a. Characterize quasi-steady state with angular moments

. Scan over large volume of simulation space using angular moments
[cf. J. Froustey]

Flavor depolarization in 1D box and sensitivity to initial
perturbations [cf. Z. Xiong]



Collisional Instabilities

1. Associated with asymmetries between neutrino and
collision rates — can couple to FFC

2. Instability in homogeneous and isotropic conditions [cf. H. D

a. Energy dependent scattering
b. Two kinds of instabilities with resonance-like features

3. FFC energy-independent but collisions are not [cf. H. Nagakura]
a. Isoenergetic scattering via neutral current
b. Emission and absorption via charge current

4. Instabilities in spherical symmetry around neutrinosphere
[cf. Z. Xiong]



Thermodynamics of Oscillating Neutrin
[cf. L. Johns]

E q u | | | b ratio N Of nheut ri nNom |X| N g Length scales, coarse-grainings, & transport theories

Microscale Mesoscale Macroscale i

De Broglie Oscillation Collisional |  No further
length length mean free path i scales
1

ldB < losc <K [ mifp

Thermalization set by fluctuations
in the neutrino system

Exact
many-body
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Miscidynamics |
1

] Hydro-

I dynamics

I—'—l
Computationally infeasible Inapplicable

V Miscidynamics:

bridge kinetics and hydrodynamics
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(0 + P - Ox)ptd = iCed



Conclusion

Mean-field/QKEs give the evolution of the neutrino fla
single particle correlation functions (reduced density ma

. The Early Universe provides a symmetrical system to solve the
robustly: adiabaticity

Instabilities exist in compact object environment: fast flavor and
collisional

Compact Objects do not exhibit the same symmetry as the Early Universe
[cf. S. Richers]



Next INT workshop:

Beyond the QKEs and
the standard model —
implications on
nuclear and dark
physics
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