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My collaborators

• Main part of talk based on Phys.Rev.D 110 (2024) 7, 076008,
Phys.Rev.D 110 (2024) 11 (with Kazuki Ikeda, Ismail Zahed) +
onging work with Felix Ringer, Jake Montgomery and Ismail Zahed

• Small advertisement of work to appear with Adrien Florio, David
Frenklakh, Dima Kharzeev, Andrea Palermo and Shuzhe Shi
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Why study PDFs and FFs?

• Parton distribution functions (PDFs): probability density to find
partons in hadron as function of fraction x of the hadron’s
momentum (carried by parton).

• Fragmentation functions (FFs) describe how high-energy parton
transforms into a jet of hadrons; counterpart of PDFs but describe
"reverse" process: parton hadronizes

• PDFs and FFs crucial for understanding internal structure of hadrons
and dynamics of partonic interactions

• PDFs and FFs central for analyses of most high energy processes in
QCD (i.e. data from LHC, RHIC, EIC).
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The Light Front

Light-front time: x+ = t + z , Light-front-space: x− = t − z

On light front:
• hadrons composed of frozen partons due to time dilation and

asymptotic freedom.
• hard processes can be split into perturbatively calculable hard block

times non-perturbative matrix elements like PDFs and FFs. 3



PDFs are real time quantities

• PDFs inherently non-perturbative and valued on light front; hard to
access in standard Euclidean lattice formulations →
quasi-distributions [Ji; ’13]: light-cone correlations of quarks and
gluons calculated by boosting matrix elements of spatial correlations
to large momentum

• In Hamiltonian time evolution can compute both. Goal: Benchmark
qPDF vs PDF (in 1+1d)
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Quark fragmentation

• Light front formulation of fragmentation functions (FFs) was
suggested by Collins and Soper.

• Formulation is fully gauge invariant but inherently non-perturbative.
• Collins and Soper FFs are still not accessible to first principle QCD

lattice simulations, due to their inherent light front structure
• Introduce concept of quasi-FF
• Drell-Levy-Yan: FFs may be approximated from PDFs using crossing

and analyticity symmetries (assuming factorization etc)
• Goal: Crosscheck DLY FF with qFF
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Generalized parton distributions (GPDs)

• GPDs: more detailed info on partonic structure of hadrons:
correlations between longitudinal parton momentum and transverse
spatial position → 3d picture of partonic content of hadrons

• Here: Establish first non-perturbative analysis of the qGPDs in
massive QED2
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Building a computational framework

Idea:

Create controlled theoretical framework to benchmark performance
and accuracy of quantum simulations in nuclear physics

0. Problem where 1+1d toy model can be generalized to QCD4.
1. 1+1 d system that can be solved in the continuum limit
2. Solve corresponding discretized version using exact diagonalization

and tensor networks
3. Design quantum circuit
4. Quantum simulation in d = 1 + 1
5. ... d = 3 + 1
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Lattice Schwinger model in 1+1d



The massive Schwinger model: QED2

Massive Schwinger model: [Schwinger; ’62], [Coleman; ’76]

S =
∫

d2x
(
1
4F 2

µν + ψ(i /D −m)ψ
)

with /D = /∂ − ig /A.

• ψ fermion field (Dirac spinor), ψ̄ = ψ†γ0

• Dµ = ∂µ − igA covariant derivative: coupling of gauge field Aµ to
fermion field. Charge of fermion: g .

• m mass of fermion (electron). Mass term breaks chiral symmetry
explicitly (m = 0 → exactly solvable)

• Fermions interact with gauge field (E-field between charged
fermions), leading to confinement (confines fermions into bound
states, like mesons in QCD).

• Interaction between fermions and gauge field → charge screening
(vacuum polarizes around charges); modifies vacuum significantly.
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The massive Schwinger model: QED2

Staggered fermions: ψ(0, z = na) = 1√
a

(
ψe(n)
ψo(n)

)
= 1√

a

(
ϕn:even

ϕn+1:odd

)
Optional: Jordan-Wigner map to spins ϕn =

∏
m<n[+iZm] 12 (Xn − iYn).

Spin-Hamiltonian:

H = 1
4a

N−2∑
n=1

(XnXn+1 + YnYn+1) + m
2

N−1∑
n=0

(−1)nZn + ag2

2

N−2∑
n=0

L2
n

Ln = L0 +
∑n

m=0
Zm+(−1)m

2 .

⨯ ⨯ ⨯
0-2 2n=
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2
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2
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First excited state

Use open boundary conditions + eliminate gauge field using Gauss’s
law; solve system with exact diagonalization and tensor networks

Consider mass gap mη of first excited state |η(0)〉 (meson-like state).

Strong coupling m/g � 1/π:
(split in pseudo-scalar mass due to U(1) anomaly + chiral condensate)

m2
η = m2

S + m2
π = g2

π
− 4πm〈ψψ〉0,

with chiral condensate 〈ψψ〉0 = − eγE
2π mS , where γE = 0.577.

mη

mS
=
(
1 + 2eγE

m
mS

) 1
2

≈ 1 + eγE
m
mS
≈ 1 + 1.78

m
mS

Weak coupling m
g �

1
π : mη → 2m.
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Mass gap of first excited state

Mass gap in finite spatial box receives finite size corrections
E0 =

√
m2

s + π2/L2 with L = N · a and m2
s = g2/π.
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Red-dashed line fit to E
E0

= 0.99 + 1.76 m
E0

green-dashed line E
E0

= 0.33+1.99m
E0

. Crossing from strong to weak coupling
at about m/g ∼ 1/3.

Works well numerically (even for a small number of gridpoints). 11



Boost operator in QED2

Boost excited state at equal time toward light cone K =
∫

dx xH.

η′ is the lowest massive meson in the spectrum at strong coupling

|η(χ)〉 = e iχK|η(0)〉, χ ≡ 1
2 ln
(
1 + v
1− v

)
,

〈η(χ)| :H : |η(χ)〉 = mη coshχ|η(χ)〉, 〈η(χ)| :P : |η(χ)〉 = mη sinhχ.

with pµ = γmη(1, v), γ = coshχ = 1/
√
1− v2.

To benchmark the accuracy of the boost, consider

∆(v) ≡ 〈η(v)| :H : |η(v)〉 = 〈η(v)|H|η(v)〉 − E0.
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Boosted excited state: exact diagonalization

∆(v) ≡ 〈η(v)| :H : |η(v) ≡ mη γ(χ); fix mlat=0, N = 24, g = 1, a = 1
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rel err

Error in excess of 10% (at around v & 0.83), and in excess of 20% (at
around v & 0.91). Also, the overlap 〈η(0)|0(v)〉 is nonzero.

Large amount of resource needed (already in 1+1d). 24 gridpoints far
too little ⇒ Quantum hardware needed eventually to study 3+1 d
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Boosted excited state using matrix product states
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Tensor network calculation with N = 180 and lattice spacing a =
0.33. Largest symmetric error only 1.2%!
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Where is the limit?

χ = 1
2 log

(
1+v
1−v

)
;χ = 2↔ v = 0.964;χ = 3↔ v = 0.995;χ = 4↔ 0.999
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Where is the limit?

χ = 1
2 log

(
1+v
1−v

)
;χ = 2↔ v = 0.964;χ = 3↔ v = 0.995;χ = 4↔ 0.999
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Summary for N=202

χ = 1
2 log

(
1+v
1−v

)
;χ = 2↔ v = 0.964;χ = 3↔ v = 0.995;χ = 4↔ 0.999
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Light front wavefunctions

Light front wavefunctions ϕn(ζ) in 2-particle Fock-space approx solve:
(ζP symmetric momentum fraction of partons, ζ = 2x − 1) [Bergknoff; ’77]

M2
nϕn(ζ)

= 1
2m2

S

∫ 1

−1
dζ ′ ϕn(ζ ′) + 4m2

1− ζ2ϕn(ζ)− 2m2
S PP

∫ 1

−1
dζ ′ ϕn(ζ ′)− ϕn(ζ)

(ζ ′ − ζ)2

’t Hooft equation + U(1) anomaly; Mn is mass gap
Due to pole: ϕn(±1) != 0, PDF: qη(x) = |ϕ(x)|2.
Expansion using orthonormal Jacobi polynomials P2β,2β

n [Mo, Perry; ’93]
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3/π (black) using

13 Jacobi polynomials.
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Boosted quasi-distributions

PDF for boosted pseudo-scalar (in rest frame) defined as (leading order
in p+ →∞)

qη(x , v) =
+∞∫
−∞

dz
4π e−izζp1

〈η(0)| e−iχK ψ(0, z)[z ,−z ]γ+γ5ψ(0,−z) e iχK |η(0)〉.

with p1 = γmηv and ζ = 2x − 1 with x the parton fraction. Here
γ+ = γ0 + γ1, [z ,−z ] is link along spatial direction. PDA similar.

Both defined at equal time for fixed boost, reduce to Ji’s light front
partonic functions in large rapidity limit χ� 1.

Now consider matrix element with vacuum expectation value subtracted,
i.e.

D(na)− 〈0|e−iχ(v)K(ϕ†n +ϕ†n+1)(ϕ−n +ϕ−n+1)e iχ(v)K |0〉
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PDFs from matrix product states (tensor networks)
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(blue, green,red); real part roughly zero. 20



PDFs from tensor networks (preliminary)
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(Pre-liminary) Tensor network results for v=0.995055 (χ = 3) in red.
Black curve is two-particle Fock space solution. 21



Hamiltonian evolution to light front

Trade boost for Hamiltonian time evolution. Use the boost and "time"
identities:

e−iχKψ(0,−z)e iχK = eχγ
5/2ψ(−γvz , γz)

ψ(−vz , z) = e−ivzHψ(0, z)e ivzH

Resulting eventually in:

qη = 1
2π
∑

n
e−inζamηv 〈η(0)| (ϕ†n + ϕ†n+1) e−i2vnH (ϕ−n + ϕ−n+1) |η(0)〉

Problem so far: bond dimension in TN simulation is growing very fast
during time evolution
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Collins-Soper fragmentation functions

On light front, gauge-invariant definition of the QCD quark
fragmentation Q → Q + H was given by Collins and Soper. Introduce the
spatially symmetric qFF

dηq (z , v) = 1
z

∫ dZ
4π e−i( 2

z−1)P(v)Z

Tr
(
γ+γ5〈0|ψ(−Z )[−Z ,∞]†a†out(P(v))aout(P(v))[∞,Z ]ψ(Z )|0〉

)
where P(v) = γ(v)mηv is momentum fraction carried by the emitted η
from mother quark jet with momentum P(v)/z .

The asymptotic time limit implements the LSZ reduction on source field

a†out(P)aout(P) = 2
f 2 e iHt |ψ†γ5ψ(0,P(v))|2e−iHt |t→+∞.

Computed C(Z , v ,∞) in lattice model. Compare to PDFs estimated

using DLY dDLY (z , v) = zd−3 pη
(

1
z , v
)
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Quasi-GPDs

Light front GPD for η′ in QED2 is off-diagonal ME of analogue of
leading twist-2 quark operator in QCD4

H(x , ξ, t) = 1
2

∫ +∞

−∞

dz−
2π e iζP+z−

×

〈
P + ∆

2
∣∣ψ(−z−)[−z−,+z−]−γ+γ5ψ(+z−)

∣∣P − ∆
2
〉
.

where []− is Wilson-line along light cone direction

2D: no transverse momentum; skewness is tied to momentum transfer
through mass-shell condition m2

η = t
4

(
1− 1

ξ2

)
. In our language:

H(x , ξ, t, v) = 1
2

∫ +∞

−∞

dz
2π e−izζP1(v)×

〈η(0)| e−i(χ(v)+ξ+)K ψ(0,−z)[−z ,+z ]Sγ+γ5ψ(0,+z) e i(χ(v)+ξ−)K |η(0)〉.
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Conclusions and Outlook

Conclusions:

• Introduced the concept of quasi-fragmentation functions
• Formulated quasi-distribution functions/amplitudes and

quasi-fragmentation functions in language suitable for quantum
computation

Outlook (in progress):

• qGPD (Generalized Parton Distribution) works analogous ⇒ info
about skewness

• Much finer lattices are needed for the comparison → tensor networks
• Check the proposal for the qFF versus the FF computed from DLY
• Multi-flavor case
• Set up the calculation on a quantum computer
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Mimicking “jet production”

H(t) = Hkin + Hm + HE (t); HE (t) = ag2

2

N−1∑
n=1

Ln − θ

(
t
a −

∣∣∣∣n − N
2

∣∣∣∣
)2

Graphics taken from [Florio, Frenklakh, Ikeda, Kharzeev, Korepin, Shi, Yu; ’23]
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Effective temperature from local observables

Preliminary

Condensate
Kinetic Energy

Cond-Cond correlator
Entanglement Entropy

Thermodynamics
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We fixed g = 0.5/a, m/g = 0.5 and N = 100. Temperature extracted
from 10 middle sites. 27



Extracting effective temperature from overlaps

Logic:

1. At a given time t choose subsystem A of length L and compute
reduced density matrix.

2. Generate thermal wave functions (characterized by T ) for a system
of length N2.

3. Compute thermal (reduced) density matrix for a subsystem of size. L
4. Compute fidelity and trace distance between reduced density matrix

of jet simulation and thermal (reduced) density matrix.
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Effective temperature from overlaps
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Preliminary. We fixed g = 0.5/a, m/g = 0.5 and N = 100. Subsystem
of size 4 moved through lattice. 29



Time dependent temperature from overlaps

Preliminary. We fixed g = 0.5/a, m/g = 0.5 and N = 100. Subsystem
of size 2 centered in the middle as a function of time. Thermal states are
traced from N2 = 12 to L = 2.
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adapted from https://commons.wikimedia.org/wiki/File:View_of_Mount_Rainier_from_Drumheller_Fountain.jpg
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Gauge fixing

Introduce a lattice electric field operator Ln = E (an)/g , a lattice vector
potential φn = agA1(an) and link operator Un = e−iagA1(an). Recall
Hamiltonian

HL = − i
2a

N−1∑
n=1

[
U†nχ†nχn+1 − Unχ

†
n+1χn

]
+ ag2

2

N−1∑
n=1

L2
n + m

N∑
n=1

(−1)nχ†nχn ,

Use remaining freedom to perform a space- only dependent gauge
transformation to set all gauge links to unity:

χn → Ωnχn, χ
†
n → χ†nΩ†n, Un → Ωn+1UnΩ†n

Ω1 = 1,Ωn =
∏n−1

i=1 U†i Wilson line [z ,−z ] collapses to 1 between
ψ̄(0, z)..ψ(0,−z) since
[−z , z ] ∼

∏
−z<n<z

Un =
∏

−N/2<n<−z
U†n

∏
−N/2<n<z

Un.
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Quark fragmentation

• Quark fragmentation (Field and Feynman): quark jet model to
describe meson production in semi-inclusive processes

• Quark jet model independent parton cascade model: hard parton
depletes its longitudinal momentum by emitting successive mesons
through chain process (e.g. string breaking in Lund model)

• Jet fragmentation and hadronization important for collider
experiments to extract partonic structure of matter, gluon helicity in
nucleons and mechanism behind the production of diffractive dijets.

• FFs describe how a high-energy parton transforms into a jet of
hadrons; counterpart of PDFs but describe "reverse" process: parton
hadronizes
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Collins-Soper fragmentation functions (I)

Measures the amount of meson outgoing from the quark.

On light front, gauge-invariant definition of the QCD quark
fragmentation Q → Q + H was given by Collins and Soper. Introduce the
spatially symmetric qFF

dηq (z , v) = 1
z

∫ dZ
4π e−i( 2

z−1)P(v)Z

Tr
(
γ+γ5〈0|ψ(−Z )[−Z ,∞]†a†out(P(v))aout(P(v))[∞,Z ]ψ(Z )|0〉

)
where P(v) = γ(v)mηv is momentum fraction carried by the emitted η
from mother quark jet with momentum P(v)/z .

The asymptotic time limit implements the LSZ reduction on source field

a†out(P)aout(P) = 2
f 2 e iHt |ψ†γ5ψ(0,P(v))|2e−iHt |t→+∞.
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Collins-Soper fragmentation function (II)

The symmetric qFF can be recast in terms of the spatial qFF correlator

dηq (z , v) = 1
z

∫ dZ
4π e−i( 2

z−1)P(v)Z C(Z , v ,∞),

C(Z , v , t)= 2
f 2 Tr

(
γ+γ5〈0|ψ(0,−Z )[−Z ,∞]†e iHte iχ(v)K|ψ†γ5ψ(0,mη)|2

e−iχ(v)Ke−iHt [∞,Z ]ψ(0,Z )|0〉
)
.

Under combined boost and time evolution, the equal-time fermion field is
now lying on the light cone.

Computed C(Z , v ,∞) in lattice model using exact diagonalization/tensor
networks.
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Discretized Lattice qFF

Recall:

C(Z , v , t)= 2
f 2 Tr

(
γ+γ5〈0|ψ(0,−Z )[−Z ,∞]†e iHte iχ(v)K|ψ†γ5ψ(0, 0)|2

e−iχ(v)Ke−iHt [∞,Z ]ψ(0,Z )|0〉
)
.

Same discretization as for PDF. New element:

|ψ†γ5ψ(0, 0)|2 = 1
a2

∣∣∣∣∑
n

(σ+
n σ
−
n+1 − σ

+
n+1σ

−
n )
∣∣∣∣2,

where σ±n = 1
2 (Xn ± iYn). Discretized form of the symmetric spatial qFF:

C(n, v , t) = 4
aF 2

∑
i,j=e,o

e inγamη 〈0|ψi (−n)e iHt |ψ†γ5ψ(0, 0)|2e−iHtψ†j (n)|0〉.
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Drell-Levy-Yan relation

Crossing symmetry and charge conjuga-
tion: Estimate of the CS FF in terms of
PDFs using the DLY

dDLY (z , v) = zd−3 pη
(
1
z , v

)

pη ≡ |ϕ2|2 ∼ probability of finding parton of momentum fraction x in
hadron p(x). DLY: is related to the amount of meson spit out by parton
with fraction of momentum z .

Using the EVP:

dDLY (z , 1) = z̄2
z(z̄µ2 + z2ᾱ)2

(
f −

∫ 1

0
dx ϕ(x)

(x − 1/z)2

)2

with µ2 = M2/m2
S and 1 + ᾱ = α = m2/m2

S . 37



DLY
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Strong coupling DLY fragmentation function (light quarks): β = 0
(blue) and β = 0.2 (red). The divergence for small masses (small β) is in
agreement with the exact bosonization description of QED2

DLY fragmentation function for heavy quarks: FF is peaked in the
forward (jet) direction, with a strong suppression as z → 0 (vanishes for
1 = z = 0).
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Can it work on a QC? [Li, Xing, Zhang (QuNu Collaboration), arXiv:2406.05683]

In NJL model using QuSpin
and projectQ

39


	Lattice Schwinger model in 1+1d
	

	Numerical methodology

