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My collaborators

= Main part of talk based on Phys.Rev.D 110 (2024) 7, 076008,
Phys.Rev.D 110 (2024) 11 (with Kazuki lkeda, Ismail Zahed) +
onging work with Felix Ringer, Jake Montgomery and Ismail Zahed
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= Small advertisement of work to appear with Adrien Florio, David
Frenklakh, Dima Kharzeev, Andrea Palermo and Shuzhe Shi




Why study PDFs and FFs?

= Parton distribution functions (PDFs): probability density to find
partons in hadron as function of fraction x of the hadron's
momentum (carried by parton).

= Fragmentation functions (FFs) describe how high-energy parton
transforms into a jet of hadrons; counterpart of PDFs but describe
"reverse" process: parton hadronizes

= PDFs and FFs crucial for understanding internal structure of hadrons
and dynamics of partonic interactions

= PDFs and FFs central for analyses of most high energy processes in
QCD (i.e. data from LHC, RHIC, EIC).



The Light Front

Light-front time: x* = t + z, Light-front-space: x~ =t —z

Minkowski coordinates Light front coordinates

On light front:
= hadrons composed of frozen partons due to time dilation and
asymptotic freedom.
= hard processes can be split into perturbatively calculable hard block
times non-perturbative matrix elements like PDFs and FFs.



PDFs are real time quantities

= PDFs inherently non-perturbative and valued on light front; hard to
access in standard Euclidean lattice formulations —
quasi-distributions [Ji; '13]: light-cone correlations of quarks and
gluons calculated by boosting matrix elements of spatial correlations
to large momentum

= In Hamiltonian time evolution can compute both. Goal: Benchmark
qPDF vs PDF (in 14+1d)




Quark fragmentation

= Light front formulation of fragmentation functions (FFs) was
suggested by Collins and Soper.

= Formulation is fully gauge invariant but inherently non-perturbative.

= Collins and Soper FFs are still not accessible to first principle QCD
lattice simulations, due to their inherent light front structure

= Introduce concept of quasi-FF

= Drell-Levy-Yan: FFs may be approximated from PDFs using crossing
and analyticity symmetries (assuming factorization etc)

= Goal: Crosscheck DLY FF with qFF




Generalized parton distributions (GPDs)

= GPDs: more detailed info on partonic structure of hadrons:
correlations between longitudinal parton momentum and transverse
spatial position — 3d picture of partonic content of hadrons

= Here: Establish first non-perturbative analysis of the qGPDs in
massive QED?2

pion valence
+ cloud , quarks
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Building a computational framework

Create controlled theoretical framework to benchmark performance

and accuracy of quantum simulations in nuclear physics

0. Problem where 1+1d toy model can be generalized to QCDy,.
1. 1+1 d system that can be solved in the continuum limit

2. Solve corresponding discretized version using exact diagonalization
and tensor networks

3. Design quantum circuit
4. Quantum simulationind =1+1
o d=3+41
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Lattice Schwinger model in 1+1d




The massive Schwinger model: QED,

Massive Schwinger model:

5= [ ax (372 + 60 - mv) with D = 3~ gh

= 1) fermion field (Dirac spinor), 1 = 1T~°
= D, = 0, — igA covariant derivative: coupling of gauge field A, to
fermion field. Charge of fermion: g.

= m mass of fermion (electron). Mass term breaks chiral symmetry
explicitly (m = 0 — exactly solvable)

= Fermions interact with gauge field (E-field between charged
fermions), leading to confinement (confines fermions into bound
states, like mesons in QCD).

= Interaction between fermions and gauge field — charge screening
(vacuum polarizes around charges); modifies vacuum significantly.



The massive Schwinger model: QED,

¥Pn+1:0dd

Staggered fermions: (0, z = na) = \/5 <Zegn;> = ﬁ < Prieven )

Optional: Jordan-Wigner map to spins @, = [ ], [+iZm]5(Xn — iY2).

Spin-Hamiltonian:

= N-1 ag? 12
H= Xa X Y, Yn -1)"Z, 2
432( +1+ +1)+2n§::0( 1)"Zn+ = ;Ln




First excited state

Use open boundary conditions + eliminate gauge field using Gauss's
law; solve system with exact diagonalization and tensor networks

Consider mass gap m,, of first excited state |1(0)) (meson-like state).
Strong coupling m/g < 1/7:

(split in pseudo-scalar mass due to U(1) anomaly + chiral condensate)

2

m? = m + m? = & — am m(Gu)o,
with chiral condensate (1)1))g = —e;—:ms, where vg = 0.577.

1
m 2 m
77:(1—&-2e75m) %1+e751%1—|—1.78—
mg mgs mg mg

. L.
Weak coupling 7 > - my, — 2m.
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Mass gap of first excited state

Mass gap in finite spatial box receives finite size corrections

Eo = \/m2+7w2/L2 with L= N-aand m? = g?/m.

E, E;
Eo,n=20 Eo,n-20
- e
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Red-dashed line fit to £ =0.99 + 1.76 2
0 0

© o E _ 0.3341.99m
green-dashed line E = £

at about m/g ~ 1/3.

. Crossing from strong to weak coupling

Works well numerically (even for a small number of gridpoints). 11



Boost operator in QED2

Boost excited state at equal time toward light cone K = [dx xH.

7’ is the lowest massive meson in the spectrum at strong coupling
1 14+v

—In ,

2 1—v

(O] H: n(x)) = my coshx|n(x)), (n(x)|:P:[n(x)) = m, sinhx.

In(x)) = e”¥n(0)), x

with p* = ym, (1, v), v = coshy = 1/v1 — v2.
To benchmark the accuracy of the boost, consider

A(v) = (n(v)] H: [n(v)) = (n(v)[H|n(v)) - Eo.
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Boosted excited state: exact diagonalization

A(v) = (n(v)| :H: [n(v) = myy(x); fix ma=0, N=24,g=1,a=1

AW); Moy (v) rel err

35 . ]
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Error in excess of 10% (at around v 2 0.83), and in excess of 20% (at
around v > 0.91). Also, the overlap (1(0)|0(v)) is nonzero.

Large amount of resource needed (already in 1+1d). 24 gridpoints far
too little = Quantum hardware needed eventually to study 3+1 d
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Boosted excited state using matrix product states

35
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Tensor network calculation with N = 180 and lattice spacing a =

0.33. Largest symmetric error only 1.2%!
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Where is the limit?

Energy Difference vs gap*cosh(x)
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Where

Momentum

is the limit?

Momentum vs gap*sinh(x)
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Summary for N=202

First Deviation Point (>10% symmetric, x = 0.6) vs a

X at first deviation
| |

®  Energy deviation
u Momentum deviation

0.2 0.4 0.6 0.8 1.0

X = %m(}f;);x — 245 v=0.964y =3 ¢ v =0995 y = 4 < 0.999
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Light front wavefunctions

Light front wavefunctions ¢,(¢) in 2-particle Fock-space approx solve:
(¢P symmetric momentum fraction of partons, { = 2x — 1) [Bergknoff; '77]

Mr%‘Pn(C)

1, /1 / - 4m? 2 /1 / ‘Pn(C/) - @n(C)
= - d¢’ v, + ——pn(() —2ms PP d¢’ —— =
2m5. ) C ¥ ((- ) 17<290 (C) S . C (C/_C)z

't Hooft equation + U(1) anomaly; M, is mass gap

Due to pole: (1) = 0, PDF: g,(x) = |p(x)[2.
Expansion using orthonormal Jacobi polynomials P25:28 (o, perry; 03]

28" 8= 0.1v3/r (blue),

B =+/3/7 (red),

B = 10v/3/7 (black) using
13 Jacobi polynomials.
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0.5
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Boosted quasi-distributions

PDF for boosted pseudo-scalar (in rest frame) defined as (leading order

in py — 00)
+:>od
ay(x.v) = / e P (0)] e E (0, 2) 2, —2l "y (0, —2) € [5(0)).

with p* = ym,v and ¢ = 2x — 1 with x the parton fraction. Here
vt =4% 4+, [z, —z] is link along spatial direction. PDA similar.

Both defined at equal time for fixed boost, reduce to Ji's light front
partonic functions in large rapidity limit y > 1.

Now consider matrix element with vacuum expectation value subtracted,
i.e.

D(na) — (0™ (@ +-0] 1) (9-nto-ni1)e™V|0)

19



PDFs from matrix product states (tensor networks)

N=422, m=0.18, g=0.5, a=0.0625

0.15F

0.10f

0.05F

0.00

Im(D)

-0.05f

-0.10F

-0.15F L 1
-2 -1 0 1 2

z
Parameters: m = 0.18, N = 422, a = 0.0625, g = 0.5. x = [2,2.5, 3]
(blue, green,red); real part roughly zero. 20




PDFs from tensor networks (preliminary)

N=422, m=0.18, g=0.5, a=0.0625

0.5

L
O oo
o

—1‘.0 —C:.5 0.0 0:5 1:0
X
(Pre-liminary) Tensor network results for v=0.995055 (x = 3) in red.

Black curve is two-particle Fock space solution. 2l



Hamiltonian evolution to light front

Trade boost for Hamiltonian time evolution. Use the boost and "time"
identities:

e XEy(0, —z) e = eX75/27/)(—7vz, ~z)

’l/)(*VZ, Z) _ efivzH,d}(O’ z)eivzH
Resulting eventually in:

1 —inCamyv —i2vn
G =52 € "M ()] (9] + ohir) e (pon + 9-nia) [1(0))

Problem so far: bond dimension in TN simulation is growing very fast
during time evolution
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Collins-Soper fragmentation functions

On light front, gauge-invariant definition of the QCD quark
fragmentation @ — Q + H was given by Collins and Soper. Introduce the
spatially symmetric qFF

1 dz —i(2-1)P(v)Z

d;z(Lv):; e (:-1P()
Tr <VWS<0I¢(—Z)[—Z’ OO]Taiut(P(V))aout(P(V))[OQZ]7/)(Z)|0>)

where P(v) = v(v)m,v is momentum fraction carried by the emitted n

from mother quark jet with momentum P(v)/z.

The asymptotic time limit implements the LSZ reduction on source field

2 .
3l (P)aout(P) = ﬁe'HtW)'Vs?/)(o; P(v))Pe™ ™00

Computed C(Z, v,0) in lattice model. Compare to PDFs estimated

using DLY dpuy (2, v) = 29~ p, (; V)
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Quasi-GPDs

Light front GPD for 1’ in QED?2 is off-diagonal ME of analogue of
leading twist-2 quark operator in QCD4

1 [T dz= -
_ = He  iKPTz
H(x, &, t) 2/ o€ X

— 00

(P+ S22 b2 Ly )P - ).

where []_ is Wilson-line along light cone direction

2D: no transverse momentum; skewness is tied to momentum transfer

through mass-shell condition m% = 2(1 — 512> In our language:

1 [T®dz _,
H(X,E7 t, \/) = 5/ i e—/ZCPl(V)X

(n(0)] e XITEIEG(0, —2)[~2, +2]57 "7 (0, +2) XIHEIE [5(0)).

— 00
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Conclusions and Outlook

Conclusions:

= Introduced the concept of quasi-fragmentation functions

» Formulated quasi-distribution functions/amplitudes and
quasi-fragmentation functions in language suitable for quantum
computation

Outlook (in progress):
= qGPD (Generalized Parton Distribution) works analogous = info
about skewness
= Much finer lattices are needed for the comparison — tensor networks
= Check the proposal for the qFF versus the FF computed from DLY
= Multi-flavor case

= Set up the calculation on a quantum computer

25



Mimicking “jet production”

2
2 N—1
ag N
H(t) = Hyin + Hm + He(t); He(t) = > L,—0|-— n—=
n=1

Graphics taken from [Florio, Frenklakh, lkeda, Kharzeev, Korepin, Shi, Yu; '23]
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Effective temperature from local observables

I Y AV DN I I IR I
0.6
S
= 04 — Condensate
&~ — Kinetic Energy
— Cond-Cond correlator
0.2 — Entanglement Entropy
— Thermodynamics
0.0 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1

10 15 20 25 30 35

t [1/M;]
We fixed g = 0.5/a, m/g = 0.5 and N = 100. Temperature extracted

from 10 middle sites. 27



Extracting effective temperature from overlaps

B

we)
[
=

Logic:
1. At a given time t choose subsystem A of length L and compute
reduced density matrix.

2. Generate thermal wave functions (characterized by T) for a system
of length N,.

3. Compute thermal (reduced) density matrix for a subsystem of size. L

4. Compute fidelity and trace distance between reduced density matrix
of jet simulation and thermal (reduced) density matrix.

28



Effective temperature from overlaps

0.65 AR 010
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0.60 I !
/ F 0.12
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—® | (.10
050 f —
= L 0.08S
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——ost  0.00
! ! ! !
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Lattice Position

Preliminary. We fixed g = 0.5/a, m/g = 0.5 and N = 100. Subsystem
of size 4 moved through lattice. 20



Time dependent temperature from overlaps

L=2 Thermal State Overlap Evolution

0.7 » Preliminary —nd
N ©Gep =079 o 1000[ ez, Preliminary
2 ? e S ¥ %
06 $0.995 A o Pt PP Qf
> 2] ® o of 0.995
o (X7 1S ° Ld s
° ¢ 14 T
_os g oo & o ® 0990
s = el o9 ¢ ]
= 'E‘ 0.985 & & L 09859
=04 5 ® N
T
Z 0980 1 0.980 E
0.3 E 2
Y £ 0.975
] 50975 IS
0.2 / $
4 = Mean: 0.993
0970 ° ox 10
0 5 10 15 20 25 [ 5 10 15 20 25 30
t1/M.] Time

Preliminary. We fixed g = 0.5/a, m/g = 0.5 and N = 100. Subsystem
of size 2 centered in the middle as a function of time. Thermal states are
traced from Np = 12 to L = 2.
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https://commons.wikimedia.org/wiki/File:View_of_Mount_Rainier_from_Drumheller_Fountain.jpg

Gauge fixing

Introduce a lattice electric field operator L, = E(an)/g, a lattice vector
potential ¢, = agAi(an) and link operator U, = e~"241(27)  Recall

Hamiltonian

—1

I

~53 ) [U,fxixnﬂ - UnX;rH-lX"}
n—=

g ZL2+mZ( 1)"xh X

Use remaining freedom to perform a space- only dependent gauge

Ht =

transformation to set all gauge links to unity:
Xn = Qoxns Xh = X5 Un = Qo UnQ)
Q0 =1Q,= H;’;ll U] Wilson line [z, —z] collapses to 1 between

(0, 2)..4(0, —z) since
Fzz~ T U= T U T Un

—z<n<z —N/2<n<—z —N/2<n<z
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Quark fragmentation

= Quark fragmentation (Field and Feynman): quark jet model to
describe meson production in semi-inclusive processes

= Quark jet model independent parton cascade model: hard parton
depletes its longitudinal momentum by emitting successive mesons
through chain process (e.g. string breaking in Lund model)

= Jet fragmentation and hadronization important for collider
experiments to extract partonic structure of matter, gluon helicity in
nucleons and mechanism behind the production of diffractive dijets.

= FFs describe how a high-energy parton transforms into a jet of
hadrons; counterpart of PDFs but describe "reverse" process: parton
hadronizes

quark
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Collins-Soper fragmentation functions (1)

Measures the amount of meson outgoing from the quark.

On light front, gauge-invariant definition of the QCD quark
fragmentation Q@ — Q + H was given by Collins and Soper. Introduce the
spatially symmetric qFF

7 1 dz —i(2-1)P(v)Z
dq’(z7v):; e (:-1P()

Tr <7+75<0|¢(—Z)[—Z’ 0] alut (P(v)) aout (P(v)) oo, Z]w(Z)IO>)

where P(v) = v(v)m,v is momentum fraction carried by the emitted n
from mother quark jet with momentum P(v)/z.

The asymptotic time limit implements the LSZ reduction on source field

2 . i
aiut(P)aout(P) = ﬁe’Ht|¢T’75¢(O»P(V))|26 Ht|tﬁ+oc"
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Collins-Soper fragmentation function (I1)

The symmetric qFF can be recast in terms of the spatial qFF correlator

1 [dZ _;
dl(z,v) = . / Ee*’(%*l)’p(")z C(Z,v,),

2 —
C(Z, v, t)=5Tr (v+75<ow(07 =2)[=Z, o] e e X sy (0, my) 2

e XK=t [0 7145(0, Z )|0>> :

Under combined boost and time evolution, the equal-time fermion field is
now lying on the light cone.

Computed C(Z, v, o0) in lattice model using exact diagonalization/tensor
networks.
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Discretized Lattice qFF

Recall:

C(Z,v,0)= ,iTr( 2(0[1(0, = 2)[=Z, o] et XM [y Ty53(0,0) 2

e XK=t (g 7135(0, Z )0>> :

Same discretization as for PDF. New element:

Z(U:_U;H - U:ﬂ";)

n

2

1Yiys1(0,0)> = =

32

)

where o = %(X +7Y,). Discretized form of the symmetric spatial qFF:

C(n, v, t) F2 > ememi(0]gh;(—n)e™ T ysy(0,0) e ] (n)[0).

i.j=e,o

36



Drell-Levy-Yan relation

Crossing symmetry and charge conjuga-
tion: Estimate of the CS FF in terms of
PDFs using the DLY

1
dpiy(z,v) = 2973 p, (, V>

PHYSICAL REGION FOR
SCATTERING PROCESS (i}

PHYSICAL REGION FOR
ANNIHILATION PRPCESS (ii)

Py = |02|? ~ probability of finding parton of momentum fraction x in
hadron p(x). DLY: is related to the amount of meson spit out by parton
with fraction of momentum z.

Using the EVP:
32 ! o(x) ’
dDLy(Z, 1) z(?uz + 22&)2 < A X(X — 1/2)2)

with y? = M?/m% and 1 + & = a = m?*/mz. 37
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Strong coupling DLY fragmentation function (light quarks): 5 =0
(blue) and 8 = 0.2 (red). The divergence for small masses (small 3) is in
agreement with the exact bosonization description of QED2

DLY fragmentation function for heavy quarks: FF is peaked in the
forward (jet) direction, with a strong suppression as z — 0 (vanishes for
1=2z=0).
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work on a QC?
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In NJL model using QuSpin = @q -H. -
and projectQ H3 == zH = quort -,

LOCAL SIHO 31,
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