Towards Lattice QCD Calculations of Pion Production

紧 Fermilab

Anthony V. Grebe
Michael Wagman

October 31, 2023

Motivation

Image credit: Fermilab

Deep Underground Neutrino Experiment

- Beam from Fermilab to South Dakota to study ν oscillations
- Oscillation parameters depend on $P\left(\nu_{\mu} \rightarrow \nu_{e}\right)$ as function of L / E
- Experimental ν beams inherently broadband
- Will require reconstruction of E_{ν}
- Need energy-dependent cross-sections for ν-nucleus interactions

Image credit: B. Abi et al. (DUNE Collaboration), 2006.16043

ν-A Cross-Sections

- Several varieties of nuclear many-body methods (A. Lovato, Tues. 9:00)
- GFMC (J. Carlson et al., 1412.3081), AFDMC (A. Lovato et al., 2206.10021), spectral functions (N. Steinburg, Tues. 11:10)
- All require nuclear Hamiltonian + couplings to external currents
- ν - A cross-sections $\leftarrow \nu$ - N cross-sections

ν - N Cross-Sections

- Quasi-elastic regime - based on nucleon elastic form factor
- DIS regime - perturbative
- Factorization theorems, nucleon PDFs
- Resonant regime - dominated by $N \rightarrow \Delta$
- Peak of DUNE beam
- Need ~3\% uncertainty for DUNE (D. Simons et al., 2210.02455)

Image credit: Adapted from J. A. Formaggio, G. P. Zeller (1305.7513)

\triangle Neutrinoproduction

$$
\nu_{\mu} N \rightarrow \mu \Delta
$$

- Mediated through electroweak current

$$
\bar{N}\left(\gamma_{\mu}-\gamma_{\mu} \gamma_{5}\right) \Delta
$$

- Vector component known from eN $\rightarrow e \Delta$
- Axial component difficult to measure experimentally
- Δ resonance above $N \pi \pi$ threshold

$$
\Delta \rightarrow N \pi, N \pi \pi
$$

- Goal: Understand $N \pi, N \pi \pi$ spectrum up to m_{Δ}

$N \rightarrow \Delta$ Form Factors

- $N \rightarrow \Delta$ transition factorizes as

$$
\begin{aligned}
& \left\langle\Delta\left(p^{\prime}, s^{\prime}\right)\right| A_{\mu}^{3}|N(p, s)\rangle=i \sqrt{\frac{2}{3}}\left(\frac{m_{\Delta} m_{N}}{E_{\Delta}\left(\mathbf{p}^{\prime}\right) E_{N}(\mathbf{p})}\right)^{1 / 2} \\
& \quad \bar{u}_{\Delta}^{\lambda}\left[\left(\frac{C_{3}^{A}\left(q^{2}\right)}{m_{N}} \gamma^{\nu}+\frac{C_{4}^{A}\left(q^{2}\right)}{m_{N}^{2}} p^{\prime \nu}\right)\left(g_{\lambda \mu} g_{\rho \nu}-g_{\lambda \rho} g_{\mu \nu}\right) q^{\rho}+C_{5}^{A}\left(q^{2}\right) g_{\lambda \mu}+\frac{C_{6}^{A}\left(q^{2}\right)}{m_{N}^{2}} q_{\lambda} q_{\mu}\right] u_{N}
\end{aligned}
$$

- Need to extract $C_{3}^{A}, C_{4}^{A}, C_{5}^{A}, C_{6}^{A}$ as functions of q^{2}

Figure credit: E. Hernandez et al., 1001.4416

Extracting Form Factors

- Target: Know all $C_{i}^{A}\left(q^{2}\right)$ with few-percent uncertainty
- Experimental data have large ($\gtrsim 15 \%$) statistical uncertainties
- Additional systematic uncertainties from deuteron binding
- 4 form factors - need to measure various kinematics, polarizations
- Models of QCD \rightarrow relations among C_{i}^{A}
- Uncontrolled systematics from model assumptions

$$
\begin{aligned}
C_{5}^{A} \propto Q^{2} C_{6}^{A} & C_{3}^{A} \\
& \sim 0 \\
& C_{4}^{A} \sim-\frac{C_{5}^{A}}{4}
\end{aligned}
$$

Lattice QCD

- Discretize equations of QCD on 4-dimensional space-time lattice
- Finite box required (extrapolate $L \rightarrow \infty$ at end)
- Non-perturbative (works for large coupling constants)
- First-principles, model-independent solution to hadronic physics
- Only input $=$ Lagrangian of $\operatorname{QCD}\left(\left\{m_{q}\right\}, \alpha_{s}\right)$
- Systematically controllable errors (A. Kronfeld, Mon. 1:30 pm)

Image credit: JICFuS, Tsukuba

Brute Force Is The Last Resort of the Incompetent

Image credit: Oak Ridge National Laboratory

Finite Volume Spectrum

$$
\begin{gathered}
E_{N \pi}=\sqrt{m_{N}^{2}+\mathbf{p}^{2}}+\sqrt{m_{\pi}^{2}+\mathbf{p}^{2}} \\
\mathbf{p} \in 2 \pi \mathbb{Z}^{3} / L
\end{gathered}
$$

- Parities: $P(N)=P(\Delta)=1$, $P(\pi)=-1$
- $P(N \pi)=-1$, needs momentum to match $P(\Delta)$
- $P(N \pi \pi)=1=P(\Delta)$ even at $\mathbf{p}=0$

Matching to Many-Body

Two main options to match to nuclear EFT:
(1) Lellouch-Lüscher formalism (Lellouch and Lüscher, hep-lat/0003023; Briceño et al., 1706.06223)

- Extrapolate lattice results to infinite volume
- Relies on extracting phase shifts from FV spectrum
- Worked out in 2-particle case, progress in 3-particle case but not completely resolved (Hansen and Sharpe, 1901.00483)
(2) Finite-volume EFT matching
- Perform nuclear EFT calculations within finite box
- Can then match directly to lattice QCD calculation

Excited State Contamination

- Determine particle energies from correlation functions

$$
C_{2}(t)=\left\langle\mathcal{O}(t) \mathcal{O}^{\dagger}(0)\right\rangle=\sum_{n} \frac{Z_{n}^{2}}{2 E_{n}} e^{-E_{n} t}
$$

- Sum runs over all states with same quantum numbers as \mathcal{O}
- At large Euclidean time, dominated by ground state

$$
C_{2}(t) \rightarrow \frac{Z_{0}^{2}}{2 E_{0}} e^{-E_{0} t}
$$

- Cannot take $t \rightarrow \infty$ due to noisy data
- At moderate t, can have contamination from higher-energy states

Importance of $N \pi$ State

- Need to compute $N \rightarrow N$ matrix elements for form factors
- $N \pi$ only separated from N by m_{π} (if $L=\infty$)
- $N \pi$ final state suppressed by $e^{-m_{\pi} t}$
- $e^{-m_{\pi} t} \approx 0.25$ if $t=2 \mathrm{fm}$
- Overlap factors Z_{n} can be large for $N \pi$ states
- Form factors can be wrong due to contamination unless $N \pi$ state accounted for (R. Gupta, Mon. 2:40 pm)

Figure credit: C. Alexandrou et al., 2011.13342

Variational Methods

- Interpolating operator \mathcal{O} for state not unique
- Can take many operators $\left\{\mathcal{O}_{i}\right\}$ with same quantum numbers
- \mathcal{O}_{i} will have different overlaps to ground, excited states \rightarrow different contamination
- Optimal linear combination of \mathcal{O}_{i} has minimal contamination
- Found via generalized eigenvalue problem (GEVP)

Figure credit: G. Silvi et al., 2101.00689

\triangle Resonance on Lattice

Figure credit: G. Silvi et al., 2101.00689

Importance of $N \pi \pi$ State

- Useful to remove states above energy level of interest
- Essential to understand those below level of interest
- $m_{N}+2 m_{\pi}<m_{\Delta}$
$(1.21 \mathrm{GeV}<1.23 \mathrm{GeV})$

Figure credit: C. Alexandrou et al., 2307.12846

Methodology

- Want to compute

$$
\langle N(\tau) \pi(\tau) \pi(\tau) \bar{N}(0) \bar{\pi}(0) \bar{\pi}(0)\rangle
$$

- Naïvely requires all-to-all propagators (timeslice-to-self π loops)
- Cost: $O\left(V^{2}\right)$ for inversions, $O\left(V^{6}\right)$ for contractions
- Contraction cost reduced to $O\left(V^{3}\right)$ by computing sequential propagators through π
- Contraction cost further reduced by eightfold by parity projecting all quarks

Propagator Sparsening

- Nearby sites on lattices highly correlated
- Can compute propagators on coarse grid without much loss of information (W. Detmold et al., 1908.07050; Y. Li, 2009.01029; S. Amarasinghe et al., 2108.10835)
- In momentum space, corresponds to incomplete Fourier projection
- Loss of information further reduced by Gaussian smearing
- Sparsening by factor of f in each direction reduces inversion costs by f^{3} and seqprop construction cost in contractions by f^{9}

Ensemble Details

- $a=0.15 \mathrm{fm}, L=4.8 \mathrm{fm}, m_{\pi, P}=135 \mathrm{MeV}$ HISQ ensemble from FNAL/MILC
- Clover fermions used for valence quarks ($m_{\pi \text {,val }} \approx 170 \mathrm{MeV}$)
- Gradient flow smearing used to reduce mixed-action artifacts
- Propagators computed using QUDA multigrid inverter (M. Clark et al., 0911.3191, 1612.07873) on 8^{3} grid on each timeslice
- Gaussian smearing applied at source and sink

Contraction Code

- Standalone code to read in propagators from QUDA and compute $N \pi, N \pi \pi$ contractions
- Designed to support CPU and GPU targets
- Leverages MKL BLAS or cuBLAS for sequential propagator construction
- Performs all Wick contractions from these sequential propagators
$N \pi, \mathbf{p}=0$

$N \pi \pi, \mathbf{p}=0$

$$
N \pi, I=1 / 2,|\mathbf{p}|=1
$$

Conclusions

- $N \rightarrow \Delta$ and therefore $N \rightarrow N \pi, N \pi \pi$ axial transitions needed for DUNE
- Spectroscopy calculations - first step in producing good $N \pi(\pi)$ interpolators
- Future plans:
- Increased statistics
- GEVP to study states in same parity/isospin sectors
- Finite-volume phase shifts to study Δ resonance
- 3-point functions for axial/vector form factors

Isospin Splitting in $N \pi$

Δ Resonance on Lattice

Figure credit: G. Silvi et al., 2101.00689

