Motivation	

Towards Lattice QCD Calculations of Pion Production

‡ Fermilab

Anthony V. Grebe Michael Wagman

October 31, 2023

Image credit: Fermilab

Motivation	Lattice QCD	Methodology	Results
0000000			

Deep Underground Neutrino Experiment

- Beam from Fermilab to South Dakota to study ν oscillations
- Oscillation parameters depend on $P(
 u_{\mu} \rightarrow
 u_{e})$ as function of L/E
- $\bullet~{\rm Experimental}~\nu$ beams inherently broadband
- Will require reconstruction of E_{ν}
- Need energy-dependent cross-sections for ν -nucleus interactions

Image credit: B. Abi et al. (DUNE Collaboration), 2006.16043 A. Grebe 2/25

Motivation	Lattice QCD	Methodology	Results
0000000	00000000	0000	0000
ν -A Cross-Sections			

- Several varieties of nuclear many-body methods (A. Lovato, Tues. 9:00)
 - GFMC (J. Carlson et al., 1412.3081), AFDMC (A. Lovato et al., 2206.10021), spectral functions (N. Steinburg, Tues. 11:10)
- All require nuclear Hamiltonian + couplings to external currents
- ν -A cross-sections $\leftarrow \nu$ -N cross-sections

Motivation	Lattice QCD	Methodology	Results
0000000			
$\nu - N$ Cross-Sections			

- Quasi-elastic regime based on nucleon elastic form factor
- DIS regime perturbative
 - Factorization theorems, nucleon PDFs
- Resonant regime dominated by $N \rightarrow \Delta$
 - Peak of DUNE beam
 - Need ~3% uncertainty for DUNE (D. Simons et al., 2210.02455)

Image credit: Adapted from J. A. Formaggio, G. P. Zeller (1305.7513)

Motivation	Lattice QCD	Methodology	Results
0000000			
A Neutrinoproduction			

$$u_{\mu} N
ightarrow \mu \Delta$$

- Mediated through electroweak current $ar{N}(\gamma_{\mu}-\gamma_{\mu}\gamma_{5})\Delta$
- ullet Vector component known from $eN \to e\Delta$
- Axial component difficult to measure experimentally
- Δ resonance above $N\pi\pi$ threshold

 $\Delta \rightarrow N\pi, N\pi\pi$

• Goal: Understand $N\pi$, $N\pi\pi$ spectrum up to m_{Δ}

Motivation	Lattice QCD	Methodology	Results
00000000			
$N \rightarrow \Lambda$ Form Factors			

•
$$N
ightarrow \Delta$$
 transition factorizes as

$$\begin{split} \Delta(p',s')|A_{\mu}^{3}|N(p,s)\rangle &= i\sqrt{\frac{2}{3}} \left(\frac{m_{\Delta}m_{N}}{E_{\Delta}(\mathbf{p}')E_{N}(\mathbf{p})}\right)^{1/2} \\ \bar{u}_{\Delta}^{\lambda} \left[\left(\frac{C_{3}^{A}(q^{2})}{m_{N}}\gamma^{\nu} + \frac{C_{4}^{A}(q^{2})}{m_{N}^{2}}p'^{\nu}\right) \left(g_{\lambda\mu}g_{\rho\nu} - g_{\lambda\rho}g_{\mu\nu}\right)q^{\rho} + C_{5}^{A}(q^{2})g_{\lambda\mu} + \frac{C_{6}^{A}(q^{2})}{m_{N}^{2}}q_{\lambda}q_{\mu}\right] u_{N} \end{split}$$

• Need to extract $C_3^A, C_4^A, C_5^A, C_6^A$ as functions of q^2

Motivation
00000000

Lattice QCD 000000000 Methodology 0000

Bubble Chamber Fits

Figure credit: E. Hernandez et al., 1001.4416

A. Grebe 7/25

Motivation	Lattice QCD	Methodology	Results
0000000			
Extracting Form Fac	ctors		

- Target: Know all $C_i^A(q^2)$ with few-percent uncertainty
- Experimental data have large ($\gtrsim 15\%)$ statistical uncertainties
- Additional systematic uncertainties from deuteron binding
- 4 form factors need to measure various kinematics, polarizations
- Models of QCD \rightarrow relations among C_i^A
- Uncontrolled systematics from model assumptions

A. Grebe 8/25

Motivation	Lattice QCD	Methodology	Results
00000000	●00000000	0000	0000
Lattice QCD			

- Discretize equations of QCD on 4-dimensional space-time lattice
- Finite box required (extrapolate $L \rightarrow \infty$ at end)
- Non-perturbative (works for large coupling constants)
- First-principles, model-independent solution to hadronic physics
- Only input = Lagrangian of QCD ($\{m_q\}, \alpha_s$)
- Systematically controllable errors (A. Kronfeld, Mon. 1:30 pm)

Image credit: JICFuS, Tsukuba

Motivation	Lattice QCD	Methodology	Results
0000000	o●ooooooo	0000	0000
Brute Force Is	The Last Resort of the	Incompetent	

Image credit: Oak Ridge National Laboratory

Motivation	Lattice QCD	Methodology	Results
00000000	00●000000	0000	0000
Finite Volume	Spectrum		

$$egin{aligned} \mathcal{E}_{m{N}\pi} &= \sqrt{m_{m{N}}^2 + m{p}^2} + \sqrt{m_{\pi}^2 + m{p}^2} \ & \mathbf{p} \in 2\pi\mathbb{Z}^3/L \end{aligned}$$

- Parities: $P(N) = P(\Delta) = 1$, $P(\pi) = -1$
- P(Nπ) = -1, needs momentum to match P(Δ)
- $P(N\pi\pi) = 1 = P(\Delta)$ even at $\mathbf{p} = 0$

Matching to	Many-Body		
Motivation	Lattice QCD	Methodology	Results
0000000	000●00000	0000	0000

Two main options to match to nuclear EFT:

- Lellouch-Lüscher formalism (Lellouch and Lüscher, hep-lat/0003023; Briceño et al., 1706.06223)
 - Extrapolate lattice results to infinite volume
 - Relies on extracting phase shifts from FV spectrum
 - Worked out in 2-particle case, progress in 3-particle case but not completely resolved (Hansen and Sharpe, 1901.00483)
- Inite-volume EFT matching
 - Perform nuclear EFT calculations within finite box
 - Can then match directly to lattice QCD calculation

Evoluted State (Company to action		
0000000	00000000	0000	0000
Motivation	Lattice QCD	Methodology	Results

Excited State Contamination

• Determine particle energies from correlation functions

$$\mathcal{C}_2(t) = \langle \mathcal{O}(t) \mathcal{O}^{\dagger}(0)
angle = \sum_n rac{Z_n^2}{2E_n} e^{-E_n t} \, .$$

ullet Sum runs over all states with same quantum numbers as ${\cal O}$

• At large Euclidean time, dominated by ground state

$$C_2(t)
ightarrow rac{Z_0^2}{2E_0}e^{-E_0t}$$

- Cannot take $t
 ightarrow \infty$ due to noisy data
- At moderate *t*, can have contamination from higher-energy states

Importance of $N\pi$ State		
Motivation Lattice QCD 00000000 000000000	Methodology 0000	Results 0000

- Need to compute N → N matrix elements for form factors
- $N\pi$ only separated from N by m_{π} (if $L = \infty$)
- $N\pi$ final state suppressed by $e^{-m_{\pi}t}$
 - $e^{-m_{\pi}t} \approx 0.25$ if t = 2 fm
 - Overlap factors Z_n can be large for $N\pi$ states
- Form factors can be wrong due to contamination unless Nπ state accounted for (R. Gupta, Mon. 2:40 pm)

Figure credit: C. Alexandrou et al., 2011.13342

Variational Methods

- \bullet Interpolating operator ${\mathcal O}$ for state not unique
- Can take many operators $\{O_i\}$ with same quantum numbers
- \mathcal{O}_i will have different overlaps to ground, excited states \rightarrow different contamination
- Optimal linear combination of \mathcal{O}_i has minimal contamination
 - Found via generalized eigenvalue problem (GEVP)

Figure credit: G. Silvi et al., 2101.00689

Δ Resonance on Lattice

Figure credit: G. Silvi et al., 2101.00689

A. Grebe 16/25

line in automas of			
0000000	00000000	0000	0000
Motivation	Lattice QCD	Methodology	Results

Importance of $N\pi\pi$ State

- Useful to remove states above energy level of interest
- Essential to understand those below level of interest
- $m_N + 2m_\pi < m_\Delta$ (1.21 GeV < 1.23 GeV)

Figure credit: C. Alexandrou et al., 2307.12846

00000000	00000000	●000	0000
Methodology			

• Want to compute

 $\langle N(\tau)\pi(\tau)\pi(\tau)\bar{N}(0)\bar{\pi}(0)\bar{\pi}(0)\rangle$

- Naïvely requires all-to-all propagators (timeslice-to-self π loops)
- Cost: $O(V^2)$ for inversions, $O(V^6)$ for contractions
- Contraction cost reduced to ${\cal O}(V^3)$ by computing sequential propagators through π
- Contraction cost further reduced by eightfold by parity projecting all quarks

0000000	00000000	0000	0000
Propagator Sparsening			

- Nearby sites on lattices highly correlated
- Can compute propagators on coarse grid without much loss of information (W. Detmold et al., 1908.07050; Y. Li, 2009.01029; S. Amarasinghe et al., 2108.10835)
 - In momentum space, corresponds to incomplete Fourier projection
- Loss of information further reduced by Gaussian smearing
- Sparsening by factor of f in each direction reduces inversion costs by f^3 and seqprop construction cost in contractions by f^9

Motivation	Lattice QCD	Methodology	Results
0000000	00000000	○○●○	0000
Ensemble Details			

- a = 0.15 fm, L = 4.8 fm, $m_{\pi,P} = 135$ MeV HISQ ensemble from FNAL/MILC
- ullet Clover fermions used for valence quarks ($m_{\pi,{\sf val}} \approx 170$ MeV)
- Gradient flow smearing used to reduce mixed-action artifacts
- Propagators computed using QUDA multigrid inverter (M. Clark et al., 0911.3191, 1612.07873) on 8³ grid on each timeslice
- Gaussian smearing applied at source and sink

0000000	0000000	0000	0000
Viotivation	Lattice QCD	Methodology	Results

- Standalone code to read in propagators from QUDA and compute $N\pi$, $N\pi\pi$ contractions
- Designed to support CPU and GPU targets
- Leverages MKL BLAS or cuBLAS for sequential propagator construction

Contraction Code

• Performs all Wick contractions from these sequential propagators

Motivation	Lattice QCD	Methodology	Results
00000000	00000000	0000	●000
$N\pi$, $\mathbf{p}=0$			

Motivation	Lattice QCD	Methodology	Results
00000000	00000000	0000	0●00
$N\pi\pi$, $\mathbf{p}=0$			

Motivation	Lattice QCD	Methodology	Results
0000000	00000000	0000	00●0
$N\pi$, $I = 1/2$, $ \mathbf{p} = 1$			

- $N
 ightarrow \Delta$ and therefore $N
 ightarrow N\pi, N\pi\pi$ axial transitions needed for DUNE
- Spectroscopy calculations first step in producing good $N\pi(\pi)$ interpolators
- Future plans:
 - Increased statistics
 - GEVP to study states in same parity/isospin sectors
 - Finite-volume phase shifts to study Δ resonance
 - 3-point functions for axial/vector form factors

A. Grebe 1/2

Δ Resonance on Lattice

Figure credit: G. Silvi et al., 2101.00689

A. Grebe 2/2