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Cabibbo Unitarity:  
overconstraining power of SM 



Status of Cabibbo unitarity 

3

|Vud |2 + |Vus |2 + |Vub |2 = 0.9985(6)Vud
(4)Vus

∼ 10−5∼ 0.95 ∼ 0.05

 and  determinations  
inconsistent with the SM 
Vud Vus

Superallowed nuclear β : |Vud | = 0.9737 (3)
At	variance	with	kaon	decays	+	Cabibbo	unitarity

|Vud | = 0.9743 (9)But	consistent	with	the	free	neutron	decay:

PDG [S = 2.5] : |Vus | = 0.2243(8)
Unitarity → |Vud | = 0.9745(2)

K → πℓν : |Vus | = 0.2233(5)

Unitarity → |Vud | = 1 − |Vus |2 = 0.9747(1)

K → μν
π → μν

: |Vus /Vud | = 0.2311(5)

Unitarity → |Vud | = [1 + |Vus /Vud |2 ]−1/2 = 0.9743(1)
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Cabibbo Unitarity - 3 anomalies

Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

Status of first-row unitarity

29

= −0.00176(56) −3.1σ

= −0.00098(58) −1.7σ

= −0.0174(73) −2.4σ

3 observables: |Vus|Kℓ3, |Vus/Vud|Kμ2, Vud
2 quantities to determine: Vus, Vud

3 ways to test unitarity

Kμ2 result shows better agreement with unitarity than Kℓ3 result 
when  |Vud| obtained from beta decays:

= −0.0164(63) −2.6σ

Δ(3)CKM uses no information from β decays:

Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

Status of first-row unitarity

29

= −0.00176(56) −3.1σ

= −0.00098(58) −1.7σ

= −0.0174(73) −2.4σ

3 observables: |Vus|Kℓ3, |Vus/Vud|Kμ2, Vud
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Kμ2 result shows better agreement with unitarity than Kℓ3 result 
when  |Vud| obtained from beta decays:

= −0.0164(63) −2.6σ

Δ(3)CKM uses no information from β decays:

SM	is	overconstraining:		
3	observables	-	2	unknowns	(if	unitarity	holds	-	1	unknown)

Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

Constraints on right-handed currents

30

• In SM, W couples only to LH chiral fermion states
• New physics with couplings to RH currents could explain          

both unitarity deficit and Kℓ3-Kμ2 difference
• Define ϵR = admixture of RH currents in non-strange sector

  ϵR + ΔϵR = admixture of RH currents in strange sector

From current fit:
ϵR = −0.69(27)×10−3 (2.5σ)
ΔϵR = −3.9(1.6)×10−3 (2.4σ)
ϵR = ΔϵR = 0 excluded at 3.1σ

Cirigliano et al.
PLB 838 (2023)
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Minimal	BSM	scenario:		
RH	SMEFT	Op’s	remove	over-constraints	of	SM	
SensiLvity	to	heavy	BSM	at	≤	10TeV
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Vincenzo’s	talk



 from superallowed  nuclear decaysVud 0+ − 0+

5

1. TransiLons	within	JP=0+	isotriplets	(T=1)	
2. Elementary	process:	p—>ne+ 	
3. Only	conserved	vector	current	
4. 15	measured	to	beYer	than	0.2%	
5. Internal	consistency	as	a	check	
6. SU(2)	good	—>	correcLons	~small

ν

7

“Superallowed” beta decays of I=1, Jp=0+ nuclei

Provides the best measurement 
of V

ud
 :

➢ 23 measured transitions
➢ 15 with ft-precision better 

than 0.23% 

Hardy and Towner, 2020 PRC

m
I
=+1→m

I
=0 m

I
=0→m

I
=-1 

: ft-precision better than t
n
 in
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_	values:	same	within	~2%	but	not	exactly!	
Reason:	SU(2)	slightly	broken	
a. RC	(e.m.	interacLon	does	not	conserve	isospin)	
b. Nuclear	WF	are	not	SU(2)	symmetric		
						(proton	and	neutron	distribuLon	not	the	same)

Exp.:	f	-	phase	space	(Q	value)		
t	-	parLal	half-life	(t1/2,	branching	raLo)
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Vud extraction: Universal RC and Universal Ft

6

To	obtain	Vud	—>	absorb	all	decay-specific	correcLons	into	universal	Ft

ft(1 + RC + ISB) = ℱt(1 + ΔV
R) = ft(1 + δ′ R)(1 − δC + δNS)(1 + ΔV

R)

QED Isospin-breaking Nuclear	structure Universal	RC~	Measured
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Average	of	14	decays Hardy,	Towner	1972	-	2020

|Vud |2 = 2984.43s
ℱt(1+ΔV

R)

|V0+−0+
ud | = 0.9737 (1)exp, nucl (3)NS (1)RC[3]total

Pre-2018:	ℱt = 3072.1 ± 0.7 s

PDG	2024:	ℱt = 3072 ± 2 s



BSM searches with superallowed beta decays
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J. C. HARDY AND I. S. TOWNER PHYSICAL REVIEW C 91, 025501 (2015)

standard deviations. Is there any way the |Vud | value in Eq. (10)
could possibly be shifted to this value? It can be seen in
Eq. (8) that |Vud |2 is inversely proportional to both F t and
(1 + !V

R). For F t to account for such a shift, it would have to
decrease by six standard deviations. That is unlikely enough
but, because all 14 measured transitions agree with one another
and with CVC, all 14 would have to undergo the same shift, a
virtual impossibility. The only other possibility is a shift in the
nucleus-independent radiative correction, !V

R, which would
have to be reduced from 2.36(4)% to 2.24%. This is a change
equal to three times the stated uncertainty which, while not
impossible, is rather unlikely.

(4) f+(0), fK/fπ correct, Kℓ3, Kℓ2 correct, unitarity
not satisfied. With |Vus | determined from Kℓ3 decays and
|Vus |/|Vud | from Kℓ2 decays, each with the Nf = 2 + 1 + 1
lattice coupling constants, a value of |Vud | can be obtained from
their ratio. The result, |Vud | = 0.9670(44), has a somewhat
larger error bar than other determinations from kaon physics
because no constraint to satisfy unitarity has been imposed.
Nevertheless, the result is two of its standard deviations away
from the nuclear β-decay value for |Vud | and the unitarity
sum is likewise not satisfied, with |Vu|2 = 0.985(9) and a
deficit, !CKM = −0.015(9), of 1.8 standard deviations. For
the β-decay value of |Vud | to be shifted into agreement with
this kaon-derived value would require the nucleus-independent
radiative correction !V

R to be increased from 2.36(4)% to
3.88%, 40 times its stated uncertainty. Surely this can be ruled
out.

One must conclude that there is no definitive answer for
|Vus | as of now since the two approaches to its measurement
from kaon decay are not completely consistent with one
another. On balance, though, the result for |Vus |/|Vud | obtained
from Kℓ2 and pion decays seems the most reliable because it
shows the greatest consistency as the lattice calculations have
improved, which reinforces the idea that systematic errors are
reduced when a ratio is used. If we then accept the Nf =
2 + 1 + 1 result on line 4 of Table XIII and combine it with
our result for |Vud | from Eq. (10), we get |Vus | = 0.2248(6)
and a unitary sum of |Vu|2 = 0.999 56(49).

D. Scalar currents

1. Fundamental scalar current

The standard model prescribes the weak interaction to be
an equal mix of vector (V ) and axial-vector (A) interactions
that maximizes parity violation. Searches for physics beyond
the standard model therefore seek evidence that parity is
not maximally violated (owing to the presence of right-hand
currents) or that the interaction is not pure V − A (owing to the
presence of scalar or tensor currents). The data in this survey
allow us to contribute to the search for a scalar interaction
because, if present, it would have a measurable effect on
superallowed 0+ → 0+ β transitions.

A scalar interaction would generate an additional term [5]
to the shape-correction function, which forms part of the
integrand of the statistical rate function, f , an integral over
the β-decay phase space. The additional term takes the form
(1 + bF γ1/W ), where W is the total electron energy in electron

Z of daughter
2010 30 400

3070

3080

3090

3060

FIG. 7. Corrected F t values from Table IX plotted as a function
of the charge on the daughter nucleus, Z. The curved lines represent
the approximate loci the F t values would follow if a scalar current
existed with bF = ±0.004.

rest-mass units, and γ1 =
√

[1 − (αZ)2]. The strength of the
scalar interaction is contained in the unknown constant, bF ,
which is called the Fierz interference term [218]. Thus, the
impact of a scalar interaction on the F t values would be to
introduce a dependence on ⟨1/W ⟩, the average inverse decay
energy of each β+ transition. No longer would the F t values
be constant over the whole range of nuclei but they would
instead exhibit a smooth dependence on ⟨1/W ⟩. Since ⟨1/W ⟩
is largest for the lightest nuclei, and decreases monotonically
with increasing Z and A, the largest deviation of F t from
constancy would occur for the cases of 10C and 14O.

We have reevaluated the statistical rate function, f , for
each transition using a shape-correction function that includes
the presence of the scalar interaction via a Fierz interference
term, bF , which we treat as an adjustable parameter. We then
obtained a value of bF that minimized the χ2 in a least-squares
fit to the expression F t = constant. The result we obtained is

bF = −0.0028 ± 0.0026, (17)

a marginally larger result than the value from our last survey [6]
but with the same uncertainty. Note that the uncertainty quoted
here is one standard deviation (68% CL), as obtained from the
fit. In Fig. 7 we illustrate the sensitivity of this analysis by
plotting the measured F t values together with the loci of F t
values that would be expected if bF = ±0.004. There is no
statistically compelling evidence for bF to be nonzero.1

The result in Eq. (17) can also be expressed in terms of
the coupling constants that Jackson, Treiman, and Wyld [218]
introduced to write a general form for the weak-interaction
Hamiltonian. Since we are dealing only with Fermi superal-
lowed transitions, we can restrict ourselves to scalar and vector
couplings, for which the Hamiltonian becomes

HS+V = (ψpψn)
(
CSφeφνe

+ C ′
Sφeγ5φνe

)

+ (ψpγµψn)
[
CV φeγµ(1 + γ5)φνe

]
, (18)

in the notation and metric of Ref. [218]. We have taken the
vector current to be maximally parity violating, as indicated

1It is interesting to note that if we were to derive an averageF t value
from the data while allowing bF to vary freely, the corresponding
value for |Vud | would become 0.9745(4), a result quite consistent
with the one we quote in Eq. (10), but with an uncertainty nearly
twice as large.

025501-20

Induced	scalar	CC	—>	Fierz	interference	bF

ℱtSM → ℱtSM (1 + bF
me

⟨Ee⟩ )

Independently	of	Vud	and	CKM	unitarity:	bounds	on	BSM	via	internal	consistency	of	the	data	base!

	~	consistent	with	0bF = − 0.0028(26)
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Figure 14: (Left) 90% CL constraints on ✏S,T at µ = 2 GeV from �-decay data, cf. Eq. (87), with ��2 = 4.61, (black ellipse), from the
analysis of pp ! e + MET + X at the 8-TeV LHC (20 fb�1) [12] (blue ellipse), and from radiative pion decay, cf. Eq. (118) [23] (orange
band). The green band shows the 90% CL bound (��2 = 2.71) using only superallowed Fermi decays. (Right) Same figure but using projected
�-decay data, cf. Eq. (100) (black) and projected LHC bounds from pp ! e+MET+X searches with 14 TeV and 300 fb�1 [23] (blue).

Requiring that the leading logarithmic part of the 2-loop correction is not larger than current bounds on the neutrino
mass, the following bounds were found [13]

|✏̃L| . 10�2
, (129)

|✏̃S ± ✏̃P | . 2⇥ 10�3
, (130)

|✏̃T | . 0.5⇥ 10�3
, (131)

where µ = 1 TeV was used as the initial running scale. The bounds on scalar and tensor interactions are about 3 times
stronger than those derived from LHC data in Eqs. (121)-(122) and orders of magnitude stronger than those from � decay,
cf. Section 4.5. The bound on the pseudoscalar coupling is also 3 times stronger than the LHC one, but still weaker than
that from pion decay, cf. Eq. (114). Finally, the neutrino-mass considerations above o↵er a valuable alternative probe for
the ✏̃L coupling, which can also be accessed through CKM unitarity, but with slightly less accuracy, cf. Eq. (79).

5.5. Electric dipole moments

It can be shown that in the SMEFT framework, the same dimension-6 e↵ective operators generating CP-violating
e↵ects in � decay would also generate at tree- or one-loop-level a non-zero nuclear and neutron Electric Dipole Moment
(EDM) [473]. As a result one can translate the stringent EDM bounds [474] in indirect limits on the �-decay CP-
violating coe�cients, such as D or R, which are two orders of magnitudes stronger than their direct limits from �-decay
measurements [13]. This takes into account the calculation of Ref. [475] that relaxed the EDM bound by an order of
magnitude with respect to Ref. [473].

In principle, these indirect bounds can be avoided through a fine-tuned cancellation with additional dimension-6
operators contributing to the EDMs, or using dimension-8 operators. The precise realization in specific models is however
nontrivial, as shown for instance for leptoquark models, where the connection with EDMs is still present, although the
indirect bounds can be relaxed in this case [473]. Finally, the EDM bounds can be avoided abandoning altogether the
SMEFT framework, introducing for example light new particles. Thus, current measurements of CP-violating coe�cients
in � decay can be considered as probes of the SMEFT framework itself, or at least its simpler realizations where large
fine-tunings are not considered. A recent and detailed review of the connection between EDMs and �-decay measurements
is presented in Ref. [13].

6. Conclusions

We have reviewed the role of precision measurements in nuclear and neutron � decay, as useful tools to improve our
understanding of fundamental interactions. Transitions with small nuclear-structure uncertainties (or none in neutron
decay) are used to learn about QCD, to extract the values of fundamental SM parameters such as Vud, and to search for
new physics.

First, we have introduced the theoretical formalism that describes � decay at the elementary level with special attention
to the latest developments, such as the precise calculations of the hadronic charges in the lattice, or the SMEFT framework

55

Beta	decay	vs.	LHC	on	S,T	
Complementarity	now	and	in	the	future!	

Gonzalez-Alonso et al 1803.08732

S,	T	interacLon	flips	helicity:	
Suppressed	at	high	energy

SM	maximally	over-constraining	in	the	case	of	superallowed	nuclear	beta	decays:	

Only	one	unknown	with	15	ways	to	measure	it



Precision Tests with Semileptonic Probes: 

1-loop Electroweak corrections - set up 
Identifying hadronic uncertainties



What enables 0.01% accuracy in SL processes?

9

At	0.01%	level	QCD	effects	likely	to	obscure	the	CKM	unitarity	test	
Way	out:	

- Conserved	quanLLes	—	no	QCD	effects	at	tree	level	
- Compute	SM	radiaLve	correcLons	to	 	
- Resum	large	logs	

Symmetries	ensure	straighrorward	interpretaLon	
But:	symmetry	breaking	(SU(2)	in	 	decay,	SU(3)	in	K	decays)	
Non-conserved	axial	current	affects	 	at	1-loop	

Decay	phase	space	—	hadronic	form	factors	affect	total	rate	
Small	phase	space	—>	FF	effect	small;	but	only	total	decay	rate	measured,	
integral	over	phase	space	usually	computed	theoreLcally	
Large	phase	space	—>	FF	effect	large,	must	and	can	be	measured	

LQCD	+	EFT	+	Data-Driven	[dispersion	theory,	phenomenology]

α, ααs, αα2
s , …

β
Vud, Vus



Main	uncertainty	where	the	scales	are	poorly	separated

RC to semileptonic probes: overall setup

10

Tree-level	amplitude

Electron	carries	away	energy	E	<	Q-value	of	a	decay

i = n, π±, K, A f = p, π, A′ 

e±

νe(ν̄e) ∼ Vud

RadiaLve	correcLons	to	tree-level	amplitude ∼ α/2π ≈ 10−3

Precision	goal 1 × 10−4

α
2π ( E

Λ , ln E
Λ , …)E-dep	RC:

Nuclear	scale

Λhad = 300 MeV
Hadronic	scale

MZ, MW ∼ 90 GeV
Weak	boson	scale

me ≈ 0.5 MeV

Qif = Mi − Mf = 1 − 10 MeV
Electron	mass

Decay	Q-value	(endpoint	energy)

Λnuc = 10 − 30 MeV

Λ

Energy	scales	Λ
Universal	

Nuclear	structure	dependent		
(QCD)

Nucleus-specific

Nuclear	structure	independent		
(QED)



How to ID, separate and connect scales?
1. IdenLfying	relevant	scales	relies	on	“measure	of	relevance”	-	arbitrary?	

2. Scale	separaLon	central	to	reliability	of	a	method		
EFT	relies	on	large	log	dominance	—	best	for	well-separated	scales	
DR	uses	unitarity,	analyLcal	structure	and	general	features	of	scaYering	data	
Lazce	does	NOT	separate	scales	but	has	to	stay	away	from	IR	and	UV	

3. Once	separated,	reconnect	scales	guided	by	a	general	principle:	
EFT	-	RGE	running	+	matching		
DR	-	analyLcity	

4. In	the	past,	details	of	scale	separaLon	o_en	neglected	when	puzng	things	
back	together	

5. EsLmate	uncertainLes	inherent	to	the	method	
EFT:	power	counLng	+	counter	terms	
Lazce:	errors	staLsLcal	+	systemaLcal	(finite	volume	+	discreLzaLon)	
DR:	staLsLcal	if	data	available;	model	errors	if	not

11



Radiative Corrections to  decay: sensitivity to scales from IR to UVβ

12

IR:	Fermi	func/on	(Dirac-Coulomb	problem)		
						+	Sirlin	func/on	(so_	Bremsstrahlung)

9
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Contributions of these diagrams are either exactly known (by CA) or depend only on UV 
physics which can be computed perturbatively

Radiative Corrections: Modern Treatment

Inner	RC:		
energy-	and	model-independent
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Contributions of these diagrams are either exactly known (by CA) or depend only on UV 
physics which can be computed perturbatively

Radiative Corrections: Modern Treatment
UV:	large	EW	logs	+	pQCD	correc/ons

-box:	sensi/ve	to	all	scalesγW
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The only piece that depends on physics at hadronic scale is the V*A term in the WJ�box 
diagram:

Its contribution to Rec (“m.d”: model-dependent) is:

where the forward Compton amplitude is defined as:

q q

Radiative Corrections: Modern Treatment

UV-sensiLve	 -box	on	free	neutron	 :	Sirlin,	Marciano,	Czarnecki	1967	-	2006	γW ΔV
R

ΔV
R = α

2π {3 ln MZ

Mp
+ ln MZ

MW
+ ãg} + δHO

QED + 2 □γW

All	non-enhanced	terms	 	—	only	need	to	~10%	—	doable	with	modern	methods!∼ α/2π ∼ 10−3

A

A′ 

ν
e+ ν

e+



𝛾W-box

3

FIG. 1: The �W -box diagram relevant for the �
� neutron decay.

III. DISPERSION REPRESENTATION OF THE ”INNER” �W -BOX CORRECTION TO gV .

The �W -box correction is shown in Fig. 1, and is defined as

T�W =
p
2e2GFVud

Z
d4q

(2⇡)4
ūe�µ(k/� q/+me)�⌫(1� �5)v⌫

q2[(k � q)2 �m2
e]

M2
W

q2 �M2
W

T �W
µ⌫ , (6)

where k is the outgoing momentum of the electron. The forward generalized Compton tensor for the �� decay process
W+n ! �p (W�p ! �n for the �+ process relevant for nuclei) represented by the lower blob in Fig. 1 is given by

Tµ⌫
�W =

Z
dxeiqxhp|T [Jµ

em(x)J⌫
W (0)]|ni (7)

with the following definitions of the electromagnetic and charged weak current:

Jµ
em =

2

3
ū�µu�

1

3
d̄�µd

Jµ
W = ūL�

µdL. (8)

Notice that the definition of Tµ⌫
�W above follows that in Ref. [6], which has a di↵erence of factor i comparing to more

common definitions in the analysis of deep-inelastic processes.
As the box diagram contains only one heavy boson propagator, it receives contribution from the loop momentum

q of all scales, ranging from infrared (i.e. q ⇠ me) to ultraviolet. The infrared-singular piece in T�W , together with
the electron and proton wavefunction renormalization as well as the real-photon bremsstrahlung diagrams, give rise
to the Fermi function F (�) and the outer-corrections �(1,2) which are known analytically. In the meantime, most
parts of the inner corrections from T�W to gV are either exactly known due to current algebra or depend only on
physics at high-scale and so are perturbatively calculable. The only piece that depends on the physics at the hadron
scale involves the vector-axial vector correlator in Tµ⌫

�W . Following a notation similar to that in Ref. [2], we define its
correction to the tree-level W -exchange amplitude as:

TW + TV A
�W = �

p
2GFVud

�
1 +⇤V A

�W

�
ūep/(1� �5)v⌫ , (9)

and so its connection to the older notation in [5] is just ⇤V A
�W = (↵/2⇡) (Re c)V A

�W . The explicit expression of ⇤V A
�W is

given by:

⇤V A
�W = 4⇡↵Re

Z
d4q

(2⇡)4
M2

W

M2
W +Q2

Q2 + ⌫2

Q4

T3(⌫, Q2)

M⌫
(10)

where Q2 = �q2, ⌫ = p · q/M with M the average nucleon mass, and T3(⌫, Q2) the parity-odd spin-independent
invariant amplitude of the forward Compton tensor Tµ⌫

�W defined through:

Tµ⌫
�W =

✓
�gµ⌫ +

qµq⌫

q2

◆
T1 +

1

(p · q)

✓
p�

(p · q)

q2
q

◆µ ✓
p�

(p · q)

q2
q

◆⌫

T2 +
i✏µ⌫↵�p↵q�
2(p · q)

T3. (11)

Notice that since ⇤V A
�W is insensitive to physics at the scale q ⇠ me, we have set me, k ! 0 as well as mn = mp = M

to arrive Eq. (10). Furthermore, the fact that the electromagnetic current comes as a mixture of an isoscalar and
isovector permits a decomposition of the forward amplitude in two isospin channels,

T3 = T (0)
3 + T (3)

3 . (12)

Box	at	zero	momentum	transfer*	(but	with	energy	dependence)

13

Hadronic	tensor:	two-current	correlator

3

FIG. 1: The �W -box diagram relevant for the �
� neutron decay.

III. DISPERSION REPRESENTATION OF THE ”INNER” �W -BOX CORRECTION TO gV .

The �W -box correction is shown in Fig. 1, and is defined as

T�W =
p
2e2GFVud

Z
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(2⇡)4
ūe�µ(k/� q/+me)�⌫(1� �5)v⌫

q2[(k � q)2 �m2
e]

M2
W

q2 �M2
W

T �W
µ⌫ , (6)

where k is the outgoing momentum of the electron. The forward generalized Compton tensor for the �� decay process
W+n ! �p (W�p ! �n for the �+ process relevant for nuclei) represented by the lower blob in Fig. 1 is given by

Tµ⌫
�W =

Z
dxeiqxhp|T [Jµ

em(x)J⌫
W (0)]|ni (7)

with the following definitions of the electromagnetic and charged weak current:

Jµ
em =

2

3
ū�µu�

1

3
d̄�µd

Jµ
W = ūL�

µdL. (8)

Notice that the definition of Tµ⌫
�W above follows that in Ref. [6], which has a di↵erence of factor i comparing to more

common definitions in the analysis of deep-inelastic processes.
As the box diagram contains only one heavy boson propagator, it receives contribution from the loop momentum

q of all scales, ranging from infrared (i.e. q ⇠ me) to ultraviolet. The infrared-singular piece in T�W , together with
the electron and proton wavefunction renormalization as well as the real-photon bremsstrahlung diagrams, give rise
to the Fermi function F (�) and the outer-corrections �(1,2) which are known analytically. In the meantime, most
parts of the inner corrections from T�W to gV are either exactly known due to current algebra or depend only on
physics at high-scale and so are perturbatively calculable. The only piece that depends on the physics at the hadron
scale involves the vector-axial vector correlator in Tµ⌫

�W . Following a notation similar to that in Ref. [2], we define its
correction to the tree-level W -exchange amplitude as:

TW + TV A
�W = �

p
2GFVud

�
1 +⇤V A

�W

�
ūep/(1� �5)v⌫ , (9)

and so its connection to the older notation in [5] is just ⇤V A
�W = (↵/2⇡) (Re c)V A

�W . The explicit expression of ⇤V A
�W is

given by:

⇤V A
�W = 4⇡↵Re

Z
d4q

(2⇡)4
M2

W

M2
W +Q2

Q2 + ⌫2

Q4

T3(⌫, Q2)

M⌫
(10)

where Q2 = �q2, ⌫ = p · q/M with M the average nucleon mass, and T3(⌫, Q2) the parity-odd spin-independent
invariant amplitude of the forward Compton tensor Tµ⌫

�W defined through:

Tµ⌫
�W =

✓
�gµ⌫ +

qµq⌫

q2

◆
T1 +

1

(p · q)

✓
p�

(p · q)
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◆µ ✓
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(p · q)

q2
q

◆⌫

T2 +
i✏µ⌫↵�p↵q�
2(p · q)

T3. (11)

Notice that since ⇤V A
�W is insensitive to physics at the scale q ⇠ me, we have set me, k ! 0 as well as mn = mp = M

to arrive Eq. (10). Furthermore, the fact that the electromagnetic current comes as a mixture of an isoscalar and
isovector permits a decomposition of the forward amplitude in two isospin channels,

T3 = T (0)
3 + T (3)

3 . (12)

General	gauge-invariant	decomposiLon	of	a	spin-independent	tensor

Tμν
γW = ∫ dxeiqx⟨ f |T[Jμ

em(x)Jν,±
W (0)] | i⟩

*Precision goal: 10-4; RC ~ 𝛼/2𝜋 ~ 10-3; recoil on top - negligible
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The only piece that depends on physics at hadronic scale is the V*A term in the WJ�box 
diagram:

Its contribution to Rec (“m.d”: model-dependent) is:

where the forward Compton amplitude is defined as:

q q

Radiative Corrections: Modern Treatment

TγW = − α
2π

2GFVud ∫
d4qM2

W

q2(M2
W − q2) ūeγβ(1 − γ5)uν ∑

i
Cβ

i (E, ν, q2)T γW
i (ν, q2)

Loop	integral	with	generally	unknown	forward	amplitudes

Known	funcLons	of	external	energy	E	and	loop	variables	𝜈,	q2

pμ = (M, 0⃗)
E = (pk)/M
ν = (pq)/M



𝛾W-box from Dispersion Relations



𝛾W-box from Dispersion Relations
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Dispersive Approach: Formalism

T1,2,3	-	analyLc	funcLons	inside	the	contour	C	in	the		
complex	ν-plane	determined	by	their	singulariLes		
on	the	real	axis	-	poles	+	cuts
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T γW
i (ν, Q2) = 1

2πi ∮ dz
T γW

i (z, Q2)
z − ν

, ν ∈ C

Structure	funcLons	 	are	NOT	data	—	but	can	be	related	to	dataFγW
i
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Dispersive Approach: Formalism

Forward	amplitudes	Ti	-	unknown;	
Their	absorpLve	parts	can	be	related	to		
producLon	of	on-shell	intermediate	states	
—>	a	𝛾W-analog	of	structure	funcLons	F1,2,3

Im T γW
i (ν, Q2) = 2πFγW

i (ν, Q2) X	=	inclusive	on-shell	physical	states
X



𝛾W-box from Dispersion Relations
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Crossing	behavior:	relate	the	le_	and	right	hand	cut	
Mismatch	between	the	iniLal	and	final	states	-	asymmetric;	
Symmetrize	-	𝛾	is	a	mix	of	I=0	and	I=1

T (I)
i (−ν, Q2) = ξ(I)

i T (I)
i (ν, Q2)

T γW,a
i = T (0)

i τa + T (−)
i

1
2 [τ3, τa]

ξ(0)
1 = + 1, ξ(0)

2,3 = − 1; ξ(−)
i = − ξ(0)

i
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Dispersive Approach: Formalism

T (I)
i (ν, Q2) = 2∫

∞

0
dν′ [ 1

ν′ − ν − iϵ
+ ξ(I)

i

ν′ − ν − iϵ ] F(I)
i (ν′ , Q2)

Re⇤even
�W =

↵

⇡N

1Z

0

dQ
2

1Z

⌫thr

d⌫
F

(0)
3

M⌫

⌫ + 2q

(⌫ + q)2
+O(E2)

Re⇤odd
�W (E) =

8↵E

3⇡NM

1Z

0

dQ
2

1Z

⌫thr

d⌫

(⌫ + q)3


⌥F

(0)
1 ⌥

✓
3⌫(⌫ + q)

2Q2
+ 1

◆
M

⌫
F

(0)
2 +

⌫ + 3q

4⌫
F

(�)
3

�
+O(E3)

Two	types	of	dispersion	relaLons	for	scalar	amplitudes

SubsLtute	into	the	loop	and	calculate	leading	energy	dependence



Input into dispersion integral

5

FIG. 3: Idealized structure of virtual photoabsorption on the nucleon (upper panel) and nuclei (lower panel). Plot taken from
the web but we’d need to make one ourselves.

Caution: We need to put back the superscript V A to ⇤�W because ⇤�W 6= ⇤V A
�W !! (i.e. V ⇥ A is NOT the only

non-zero piece in �W box diagram)
Compared to the old result by MS

⇤V A
�W =

↵

8⇡

Z 1

0

dQ2M2
W

M2
W +Q2

F (Q2), (17)

which only explicitly considered Q2 as a dynamical variable, our result allows for a greater detalization as we provide
a dispersion representation of that function,

F (Q2) =

Z 1

0
d⌫

8(⌫ + 2q)

M⌫(⌫ + q)2
F (0)
3 (⌫, Q2). (18)

This is the first essentially new result of our work. Armed with this new dispersive representation we can address
model dependence of the box graph calculation on a qualitatively new level. In doing so we can also rely on experi-
mental data: while F �W

3 (⌫, Q2) itself is not directly observable, its weak isospin partners F �Z
3 (⌫, Q2), FZZ

3 (⌫, Q2) and
FWW
3 (⌫, Q2) enter observables in inclusive electron and neutrino scattering.

IV. PHYSICS INPUT INTO THE DISPERSION RELATION FOR F
�W
3

It is informative to take a look at the general structure of the virtual photoabsorption spectrum displayed in Fig.
3. For a fixed value of Q2 one clearly sees three major structures as one goes from low to high energy ⌫: elastic peak
at Q2/(2M) (broadened by radiative corrections); nucleon resonances and non-resonant pion production starting
from the pion threshold [Q2 + (M +m⇡)2 �M2]/(2M) and up to roughly 2.5 GeV above the threshold; high-energy
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Dispersion	in	energy:		
scanning	hadronic	intermediate	states

Dispersion	in	Q2:		
scanning	dominant	physics	pictures
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W2 = M2 + 2Mν − Q2



Input into dispersion integral
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Figure 2: (Color online) Phase space of the structure functions

F (0)
3 and F ⌫p+⌫̄p

3 in the W 2–Q2 plane.

which will prove useful when comparing their results with

ours. Furthermore, since F (0)
3 depends directly on on-

shell intermediate hadronic states, it provides better han-
dle on the physics that may enter at various scales. Fig.
2 depicts the domain in the W 2–Q2 plane over which

F (0)
3 has support: the single-nucleon elastic pole is at

W 2 = M2, and the inelastic continuum covers the region
above W 2 > (M +m⇡)2.

Our parameterization of F (0)
3 is as follows:

F (0)
3 = FBorn +

8
<

:
FpQCD, Q2 & 2 GeV2

F⇡N+Fres+FR, Q2 . 2 GeV2 ,
(12)

where each component is given by

FBorn = �
1

4
(Gp

M +Gn
M )GA�(1� x) (13)

R 1
0 dxFpQCD =

1

12
[1 + pQCD] (14)

F⇡N = F�PT ⇥ (F p
1 + Fn

1 )
|GA|

gA
(15)

Fres = negligible (16)

FR = C�W fth
m2

!

m2
! +Q2

m2
a1

m2
a1

+Q2

✓
⌫

⌫0

◆↵⇢
0

, (17)

and supplies the dominant contribution to F (0)
3 in various

regions indicated in Fig. 2 which we describe next.
We obtain the elastic Born contribution at W 2 = M2

in (13) by using the updated values of the magnetic Sachs
form factor GM and the axial form factor GA for the
nucleon [25, 26]. Above threshold, W 2

� (M + m⇡)2,
we consider the dominant physics operating in various
of domains in the Q2–W 2 plane separately. At large

Q2 & 2 GeV2, the Nachtmann moment M (0)
3 reduces to

the Mellin moment and is fixed by the sum rule corrected
by pQCD in Eq. (14) by analogy with that of the polar-
ized Bjorken sum rule [MS]. At small Q2 . 2 GeV2, we

Figure 3: Regge exchange model (a) for F (0)
3 and (b) for

F ⌫p+⌫̄p
3 using vector meson dominance.

estimate the contribution (15) near the inelastic thresh-
old by computing the single pion production contribution
F�PT in Chiral Perturbation Theory (�PT) at leading
order. To improve the behavior of F�PT at larger Q2,
we replace the point-like nucleon vertices with measured
Dirac and axial nucleon form factors, F1 and GA. At
higher W 2, we investigated the impact of several low-
lying I = 1/2 resonances based on a few models [27–29],
and found their contributions to ⇤V A

�W to be negligible.

Finally, at large W 2, we use the form in Eq. (17) in-
spired by Regge phenomenology together with VMD [30]
as illustrated in Fig. 3a. In this picture, the Regge behav-
ior (⌫/⌫0)↵

⇢
0 arises from the exchange of the ⇢ trajectory

with intercept ↵⇢
0 = 0.477 [31], and is coupled to the ex-

ternal currents via a1 and ! mesons encoded by the VMD
factors m2

V /(m
2
V +Q2). We include a threshold function

fth = ⇥(W 2
� W 2

th)
�
1� exp[(W 2

th �W 2)/⇤2
th]

�
which

smoothly vanishes at the two-pion threshold point W 2
th =

(M +2m⇡)2 to model the smooth background in the res-
onance region [10]. We choose equal values for the Regge
and threshold scales of ⌫0 = ⇤th = 1 GeV, to ensure that
Regge behavior sets in around W 2

⇠ (2.5 GeV)2. The
function C�W (Q2) accounts for residual Q2-dependence
beyond that of the VMD, which we infer from experi-
mental data as explained below.

Since the isospin structure of F (0)
3 is (I = 0)⇥ (I = 1),

it is not directly accessible experimentally. However, in-
formation about the P -odd structure function with a
di↵erent isospin structure (I = 1)⇥ (I = 1) is available
from ⌫- and ⌫̄-scattering. In particular, data exists on
the first Nachtmann moment M⌫p+⌫̄p

3 for the combina-

tion F ⌫p+⌫̄p
3 = (FW�

3 + FW+

3 )/2 derived from the dif-
ference of ⌫p and ⌫̄p di↵erential cross sections. The data
by CCFR [32, 33], BEBC/Gargamelle [34] and WA25 [35]
cover a wide region of Q2 from 0.15 to 600 GeV2 (see Fig.
4). Although the precision below Q2

⇡ 1.4 GeV2 is less
satisfactory, we are able to use it to collect information
about the form of the analogous Regge coe�cient func-
tion CWW (Q2) for this structure function, and thereby
infer the form of the required C�W (Q2) as follows.

We parametrize the structure function F ⌫p+⌫̄p
3 in pre-

cisely the same way as in (12) for F (0)
3 , and establish

F ⌫p+⌫̄p
Born , F ⌫p+⌫̄p

pQCD , F ⌫p+⌫̄p
⇡N , F ⌫p+⌫̄p

res and F ⌫p+⌫̄p
R along sim-

ilar lines. In this case,
R 1
0 dxF ⌫p+⌫̄p

pQCD satisfies the Gross-

ParametrizaLon	of	the	needed	SF	
follows	from	this	diagram

πN:	relaLvisLc	ChPT	calculaLon	plus	nucleon	FF	

Resonances:	axial	excitaLon	from	PCAC	(Lalakulich	et	al	2006)	-	used	in	neutrino	event	generators	
																								isoscalar	photoexcitaLon	(PWA	MAID	and	PDG)	-	electron	and	γ	inelasLc	scaYering	

Above	resonance	region:	mulLparLcle	conLnuum	described	by	Regge	exchanges
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F(0)
3 ∝ ∫ dxeiqx⟨p | [Jμ,(0)

em (x), Jν,+
W (0)] |n⟩ ∼ ∫ dxeiqx ∑

X
⟨p |Jμ,(0)

em (x) |X⟩⟨X |Jν,+
W (0) |n⟩

7

with FS,V
1,2 = F p

1,2 ± Fn
1,2 and q the incoming momentum. The weak CC vertex is given by

�a,µ
W (q) =

h
FW
1 (Q2)�µ + FW

2 (Q2)i�µ↵ q↵
2M

+GA(Q
2)�µ�5

i
⌧a; (20)

here we do not display the pseudoscalar structure function g3(Q2) that does not contribute to the box diagram.
A straightforward calculation leads to the following expression for the elastic contribution to the structure function,

F (0),B
3 = �

Q2

8M
GA(Q

2)GS
M (Q2)�(⌫ �Q2/2M). (21)

where GS
M = FS

1 + FS
2 is the isoscalar magnetic Sachs form factor. The resulting contribution to the box correction

reads

⇤V A,Born
�W = �

↵

⇡

Z 1

0
dQ

2
p

4M2 +Q2 +Q
⇣p

4M2 +Q2 +Q
⌘2GA(Q

2)GS
M (Q2) (22)

Above, we neglected the Q2-dependence of the W -propagator since the integral converges way below Q2
⇠ M2

W due
to nucleon form factors. Notice that unlike Marciano and Sirlin who only account for the elastic contribution in the
low-Q2 part of the integral, in the dispersive approach it extends to all Q2.

Numeric evaluation with modern data on electromagnetic and weak form factors is reported in the Appendix A
and leads to

⇤V A,Born
�W =

↵

2⇡
(0.908± 0.049) = (1.05± 0.06)⇥ 10�3, (23)

slightly above the MS value [2],

⇤V A,Born
�W

���
MS

=
↵

2⇡
(0.829± 0.083) = (9.63± 0.96)⇥ 10�4. (24)

The two calculations agree within the errors, but the uncertainty in the MS calculation is rather arbitrarily assigned
as ±10%, whereas ours is derived from the most recent information on nucleon form factors and is half of that in MS.
This result is essentially model-independent: form factors are fixed by data on electron and neutrino scattering. If
future data will further constrain the form factors, the uncertainty can be further reduced.

B. DIS contribution

After we have separated out the elastic contribution, the remaining integral contains the contributions of the
inelastic states.

⇤Inel.
�W =

↵

⇡

Z 1

0

dQ2

1 + Q2

M2
W

Z 1

⌫⇡

d⌫

(⌫ + q)2
⌫ + 2q

M⌫
F (0),inel.
3 . (25)

To compute this integral, knowledge of inclusive intermediate hadronic states in the full ⌫, Q2 range is required. This
information is not available in general kinematics. At high Q2

� ⇤2, with ⇤ ⇠ 1 GeV a typical hadronic scale, a hard
virtual boson couples to perturbative quarks where the calculation simplifies.

We split the Q2-integral in Eq. (25) to below and above ⇤2, which should be chosen such as to ensure the DIS to
dominate above, and rewrite the high-Q2 integral in terms of x = Q2/(2M⌫),

⇤DIS
�W =

2↵

⇡

Z 1

⇤2

dQ2M2
W

Q2(Q2 +M2
W )

Z x⇡

0
dx

1 + 2
p

1 + 4M2x2/Q2

(1 +
p

1 + 4M2x2/Q2)2
F (0)
3 (x,Q2). (26)

In the parton model the structure function F (0)
3 depends on a combination of PDF’s

F (0)
3 (x) =

eu + ed
8

(d(x)� ū(x)). (27)

Born:	elasLc	FF	from	e-,	ν	scaYering	data	—	in	DR	language	present	at	all	 	(NOT	in	EFT!)Q2



Input into dispersion integral
Unfortunately,	no	data	can	be	obtained	for	
But:	data	exist	for	the	pure	CC	processes	

F �W (0)
3

8

Consequently, upon neglecting the terms ⇠ M2/Q2 and allowing x⇡ ! 1 we obtain

⇤V,DIS
�W ⇡

3↵

2⇡

Z 1

⇤2

dQ2M2
W

Q2(Q2 +M2
W )

Z x⇡

0
dx

eu + ed
8

(d(x)� ū(x)). (28)

Note that the neglected kinematically suppressed terms have no impact on the final result. Assuming further a
symmetric sea in the nucleon, ū = d̄, the integral over x simply gives the number of valence d-quarks inside the
neutron,

R 1
0 dx(d(x)� d̄(x)) = 2, and we obtain the large logarithm term already obtained by MS:

⇤DIS
�W ⇡

3↵

2⇡

eu + ed
4

ln
M2

W

⇤2
=

↵

4⇡
ln

MW

⇤
, (29)

An important result from Ref. [2] was to realize that all pQCD corrections to this leading logarithm term are identical
to those entering Bjorken sum rule. These corrections modify the leading log (LL) result for the M&S function F (Q2),

FLL(Q2) =
1

Q2
! F pQCD =

1

Q2

2

41� ↵MS
s

⇡
� C2

 
↵MS
s

⇡

!2

� C3

 
↵MS
s

⇡

!3
3

5 , (30)

with C2 = 4.583 � 0.333NF and C3 = 41.440 � 7.607NF + 0.177N2
F , NF standing for the number of e↵ective quark

flavors, and ↵MS
s (Q2) denotes the running strong coupling constant in the modified minimal subtraction scheme.

Numerically, the pQCD corrections reduce the large log ln(MZ/⇤) ⇡ 4.11 by roughly 8 %, Ag = �0.34 [2].
The first moment of the structure function F3 is also known as Gross-Llewellyn-Smith (GLS) sum rule. It is directly

accessible in neutrino and antineutrino deep inelastic scattering:

d2�⌫(⌫̄)

dxdy
=

G2
FME

⇡


xy2F1 +

✓
1� y �

Mxy

2E

◆
F2 ± x

✓
y �

y2

2

◆
F3

�
, (31)

so a measurement of the di↵erence of the neutrino and antineutrino cross sections gives F3 which arises as an inter-
ference between the axial and vector currents of the W .

GLS sum rule has been extensively studied in the literature. Fig. 5 displays the comparison of a compilation of
world data on GLS sum rule and the pQCD prediction. Note that it di↵ers from the pQCD running of Bjorken sum
rule in Eq. (30) just in one coe�cient at ↵2

s.

C. Inelastic contributions beyond DIS

In the remaining piece of the Q2-integral we can once again neglect the Q2-dependence of the W -propagator, and
it becomes

⇤lowQ2

�W =
↵

⇡

Z ⇤2

0
dQ2

Z 1

⌫⇡

d⌫

(⌫ + q)2
⌫ + 2q

M⌫
F (0)
3 . (32)

This contribution should be compared to the integral over what M&S called an interpolating contribution

⇤V A (0)
�W =

↵

8⇡

Z ⇤2

Q2
0

dQ2F INT(Q2), (33)

where the lower limit of integration was chosen to be Q2
0 = (0.823GeV)2. The respective function under the integral

was taken in the VDM-motivated form,

F INT(Q2) = �
1.490

Q2 +m2
⇢

+
6.855

Q2 +m2
A

�
4.414

Q2 +m2
⇢0
, (34)

with m⇢ = 0.776 GeV, mA = 1.230 GeV and m⇢0 = 1.465 GeV, and numerical coe�cients were obtained by imposing
three constraints:

I F INT(⇤2) = FDIS(⇤2)

II F INT((0.823GeV)2) = FBorn((0.823GeV)2)

III F INT(0) = 0. (35)
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Z 1

0
dx(up

v(x) + dpv(x)) = 3

�⌫p � �⌫̄p ⇠ F ⌫p
3 + F ⌫̄p

3 = up
v(x) + dpv(x)

Gross-Llewellyn-Smith	(number)	sum	rule

8

model (VDM)-motivated form,

F
INT(Q2) = �

1.490

Q2 +m2
⇢

+
6.855

Q2 +m
2
A

�
4.414

Q2 +m
2
⇢0
, (30)

with m⇢ = 0.776 GeV, mA = 1.230 GeV and m⇢0 = 1.465 GeV, and numerical coe�cients were obtained by imposing
three constraints:

I

Z 1

⇤2

dQ
2 M

2
W

M
2
W +Q2

F
INT(Q2) =

Z 1

⇤2

dQ
2 M

2
W

M
2
W +Q2

F
DIS

Q
2)

II lim
Q2!1

Q
4

"
F

INT(Q2)�
limQ2!1

�
Q

2
F

INT(Q2)
�

Q2

#
= 0

III F
INT(0) = 0. (31)

Finally, the matching point Q = 0.823 GeV is determined by requiring that FBorn(Q2) = F
INT(Q2) at that point.

Among the three conditions above, we show via explicit calculation that condition III does not hold. The latter
requires that the following superconvergence relation holds exactly,

Z 1

⌫⇡

d⌫

⌫2
F

(0)
3 (⌫, Q2 = 0) = 0. (32)

To the validity of this conjecture Ref. [3] asserts that this is required by chiral perturbation theory (ChPT), and
a more detailed proof will be reported in an upcoming work. Unfortunately, this proof has never been published. In
Appendix B we perform an explicit calculation in relativistic ChPT and demonstrate that this relation does not hold.

IV. PHYSICS INPUT TO F ⌫p+⌫̄p
3

It is informative to take a look at the general structure of the virtual photoabsorption spectrum displayed in Fig. 4.
For a fixed value of Q2 one clearly sees three major structures as one goes from low to high energy ⌫: elastic peak at
Q

2
/(2M) (broadened by radiative corrections); nucleon resonances and non-resonant pion production starting from the

pion threshold [Q2+(M +m⇡)2�M
2]/(2M) and up to roughly 2.5 GeV above the threshold; high-energy continuum

corresponding to multi-particle production that, depending on the value of Q2, can be economically described by
t-channel Regge exchanges (low Q

2) or quasi-free quark knock-out in the deep-inelastic regime (high Q
2). Exactly

the same structure is expected in neutrino scattering associated with the absorption of a virtual W -boson.

FIG. 4: Idealized structure of virtual photoabsorption on the nucleon.

Accordingly, we aim at describing F
⌫p+⌫̄p
3 at Q

2
 2 GeV2 as a sum of elastic (Born) contribution, non-resonant

⇡N continuum, several low-lying � and N
⇤-resonances, and the high-energy Regge contribution,

F
⌫p+⌫̄p
3, low�Q2 = F

⌫p+⌫̄p
3, el. + F

⌫p+⌫̄p
3,⇡N + F

⌫p+⌫̄p
3, R + F

⌫p+⌫̄p
3,Regge. (33)

Low-W	part	of	spectrum:		
neutrino	data	from	MiniBooNE,	Minerva,	…		
- axial	FF,	resonance	contribuLons,	pi-N	conLnuum	

High-W:	Regge	behavior	F3	∼	q𝓋	∼	x-𝛼,	𝛼	∼	0.5-0.7

Build	the	model	for	CC	process;	apply	an	isospin	rotaLon	to	obtain	γW

2W

2Q

( )2πmM +2M
Bo

rn

Parton + pQCD

Nπ Res.
+B.G

Regge
+VMD

2GeV2~

2GeV5~



F (0),Regge
3 (⌫, Q2) = CR(Q

2)

✓
⌫

⌫0

◆↵⇢
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ScaYering	at	high	energy	can	be	very	effecLvely	described	by	Regge	exchanges

γW-box:	conversion	of	W±	(charged,	I=1,	axial)	to	γ	(neutral,	vector,	I=0)	
requires	charged	vector	exchange	w.	I=1	-	ρ±	
effecLve	a1	-	ρ	-	ω	vertex

Regge	behavior	in	EW	processes:	hadron-like	behavior	of	HE	electroweak	probes	-		
Vector/Axial	Vector	Dominance	is	the	proper	language

Inclusive	ν	scaYering:	conversion	of	W±	(axial)	to	W±	(vector)		
requires	neutral	vector	exchange	w.	I=0	-	ω	
effecLve	a1	-	ω	-	ρ	vertex

Minimal	model	for	both	reacLons	-	check	with	data.

Input into dispersion integral



Using  data to constrain inputν/ν̄
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Marciano,	Sirlin	2006:	 	—>	ΔV
R = 0.02361(38) |Vud | = 0.97420(10)Ft(18)RC

DR	(Seng	et	al.	2018):	 	—>	ΔV
R = 0.02467(22) |Vud | = 0.97370(10)Ft(10)RC

6

Single-nucleon radiative correction

Major limitating factor in the DR treatment:  low quality of the neutrino data in the most 
interesting region: Q2 ~ 1GeV2

Neutrino scattering data Free neutron gW box

Better-quality data may come from the Deep Underground Neutrino Experiment (DUNE),
which is however not in reach in the near future.

The next major breakthrough has to come from first-principles calculations!

0.01 0.1 1 10 100
Q² (GeV²)

0

0.5

1

1.5

2

2.5

3

3.5

M
₃(1

,Q
²)

WA25
CCFR
BEBC/GGM-PS
Regge + Born + Δ
pQCD
INT + Born + Δ

Neutrino scattering data

Gross-Llewellyn-Smith		
(number)	sum	rule

Free -box = area under the curveγW

Isospin	symmetry	
+	hadronic	data

Seng,	MG,	Ramsey-Musolf,	1807.10197;	1812.03352

Shi_	upwards	by	3 	+	reducLon	of	uncertainty	by	factor	2	—>	confirmed	in	LQCDσ

LQCD	on	pion	+	pheno:	

LQCD	on	neutron:

Feng	et	al,	2003.09798		
Seng	et	al,	2003.11264ΔV

R = 0.02477(24)LQCDπ+pheno
Yoo	et	all,	2305.03198

ΔV
R = 0.02439(19)LQCDn Ma	et	al	2308.16755
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Matching	of	the	LQCD-computed	integrand	to	pQCD	

DiscreLzaLon	effects	preclude	one	from	going	to		
arbitrarily	high	scales	

pQCD	predicLon	reliable	above	 	
LQCD	reliable	below	—	sLtch	the	two	together

Q2 ≈ 1 − 2 GeV2

3

a more e�cient control over statistical uncertainties. We
refer to the calculation ofMLD

n using Eq. (8) and Eq. (11)
as the “direct” and “substitution” methods, respectively.

We introduce a four-momentum squared scale Q
2
cut

which separates the Q
2 integral into two regimes,

�V A
�W = �

V A,≤Q2
cut

�W + �V A,>Q2
cut

�W (13)

= ��
Q2

cut

0

dQ
2

Q2
+�

∞
Q2

cut

dQ
2

Q2
� m

2
W

m
2
W +Q2

Mn(Q2).

For �V A,≤Q2
cut

�W we use lattice results as inputs. Con-

versely, for �V A,>Q2
cut

�W , we utilize the perturbative QCD
and employ the leading twist contribution from the
operator product expansion [23–25]. Further details can
be found in Ref. [18]. A common representative value
for the scale of Q

2
cut is 2 GeV2. It is also feasible to

vary this value to investigate potential systematic e↵ects.

Numerical analysis: We use two lattice QCD gauge
ensembles at the physical pion mass, generated by RBC
and UKQCD Collaborations using 2 + 1-flavor domain
wall fermion [26]. The ensemble parameters are out-
lined in Table I. Both ensemble utilize Iwasaki + DSDR
action. For each configuration we produce 1024 point-
source and 1024 smeared-source propagators at ran-
dom spatial-temporal locations and calculate the corre-
lation function � p(tf)Jem

µ (x)JW,A
⌫ (y) †

n(ti)� with tf =
max{tx, ty} + �tf and ti = min{tx, ty} − �ti using the
random sparsening-field technique [27, 28]. Local vector
and axial vector current operators are contracted with
the renormalization factors quoted from Ref. [29]. We
calculate all the connected insertions, discarding discon-
nected insertions which vanish under the flavor SU(3)
limit.

Ensemble m⇡ [MeV] L T a
−1 [GeV] Nconf

24D 142.6(3) 24 64 1.023(2) 207
32D-fine 143.6(9) 32 64 1.378(5) 69

Table I. Ensembles used in this work. For each ensemble we
list the pion mass m⇡, the spatial and temporal extents, L
and T , the inverse of lattice spacing a

−1 [30], the number of
configurations used, Nconf.

To demonstrate the necessity of using the IVR method
in our calculation, we use the ensemble 24D as an exam-
ple and present in Fig. 2 the results of MSD

n (Q2
, ts) as

a function of Q2 for di↵erent values of ts. Notably, even
when increasing ts to 1.17 fm while maintaining �ti+�tf

fixed at 0.77 fm (resulting in a total source-sink separa-
tion of nearly 2 fm), significant temporal truncation ef-
fects persist. To incorporate the LD contribution, the
appropriate values for tg and ts must be determined.

We calculate the LD contribution to �V A,≤2GeV2

�W using

M
LD
n (Q2

, ts, tg) as inputs, labelling the relevant part of

Figure 2. SD and LD contributions to Mn(Q2) as a function
of Q2 with various choices of ts for 24D. �ti+�tf is set at 0.77
fm. The error band denoted as “SD+LD” is the lattice result
which incorporates the reconstruction of the LD contributions
using IVR.

Figure 3. The ratio defined in Eq. (14) as a function of ts.
Here, we employ 24D as an illustrative example. �ti +�tf is
fixed at 0.77 fm.

the box contribution as �V A,≤2GeV2

�W (ts, tg). For small
tg values, a visible contamination from excited states
is anticipated. To extend this analysis, we calculate

�V A,≤2GeV2

�W (ts, ts) with tg = ts for various ts values and
construct a ratio

Ratio =
�V A,≤2GeV2

�W (ts, tg)

�V A,≤2GeV2

�W (ts, ts)
, (14)

Ma,	Feng,	MG	et	al	2308.16755	

NUCLEON
12

Implications of the study

2. On free neutron and superallowed nuclear decays:

The “asymptotic” contribution is extracted 
from the pion lattice curve; result consistent

 with 2018 but much more solid

2018

2020 pQCD

It provides an independent assessment 
of the single-nucleon RC:

CYS, Feng, Gorchtein and Jin,
2020 PRD

Feng	et	al,	2003.09798;	Seng	et	al,	2003.11264	

PION

Phenomenologically:		
at	 	dominated	by	Regge;	
Regge	factorizes	and	is	universal	across	hadronic	processes

Q2 ≈ 1 − 2 GeV2

However,	apparently	the	matching	for	pion	and	nucleon	
work	quite	differently:	

In	pQCD	increase	as	funcLon	of	Q2	
Nicely	observed	for	pion	
For	nucleon	keeps	decreasing	

Unknown	lazce	systemaLcs/arLfacts?	



Unified Formalism for  and ΔV
R δNS

Λhad = 300 MeV

Electron mass

Λnuc = 10 − 30 MeV

Λ
MZ, MW ∼ 90 GeV

IR

UV

Universal correction ΔV
R

Nuclear structure δC, δNS
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 : the low-energy part of 𝛾W-boxδNS
NS	correcLon	reflects	extracLon	of	the	free	box	
DR:	a	framework	to	control	this	subtracLon! ΔV

R + δNS ∝ 2 □VA, nucl
γW

e−ν̄e

Ai → A* → Af

e−ν̄e

n → N* → p

Differences	due	to:	

Richer	excitaLon	spectrum	in	nuclei	

Different	quantum	numbers	
(spin,	isospin)

δNS = 2[ □VA, nucl
γW − □VA, free n

γW ]

ΔV
R ∝ 2 □VA, free n

γW

Early	insights	from	DR:		
reducLon	of	“elasLc	 W-box”	in	nuclei	underesLmated	
significant	energy	dependence	due	to	nuclear	polarizaLon

γ Seng et al, 1812.03352
MG, 1812.04229

*	Ab	ini/o	calcula/ons	do	not	use	DR:	structure	func/ons	more	complicated	than	their	moments

Ab	iniLo	nuclear	theory	for	 	with	controlled	uncertainty:	several	groups	acLve!δNS



 in ab-initio nuclear theoryδNS
Low-momentum	part	of	the	loop:	account	for	nucleon	d.o.f.	only	
Modern	framework:	ab	iniLo	methods	
NN	interacLon	derived	from	chiral	effecLve	field	theory	( EFT)	
Pions	integrated	out:	low	energies,	pions	not	dynamical,	only	nucleons	
Low-energy	coefficients	(LEC)	of	 EFT	fiYed	to	NN-scaYering	data		
(scaYering	phase,	length,	effecLve	range,	…)

χ

χ
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Evaluate T
3
 using No Core Shell Model (NCSM)

➢ Utilizes discrete harmonic oscillator (HO) basis up to 
N=N

max
+N

Pauli

➢ HO basis allows separation of CM and internal DOFs
➢ Test of convergence is possible with increasing N

max

➢ W-independence as another consistency check
➢ Nuclear interactions from Chiral EFT:

 NN-N4LO+3N
lnl

 NN-N4LO+3N*
lnl

Entem, Machleidt and Nosyk, 2017 PRC;
Gysbers et al., 2019 Nature;
Kravvaris, Navrátil, Quaglioni, Hebborn and Hupin, 2023 PLB

Various	methods	are	being	developed:		
No-Core	Shell	Model	(NCSM)	
Quantum	Monte	Carlo	
Coupled	Cluster	
In-Medium	Similarity	RenormalizaLon	Group

SystemaLcally	improvable	calculaLons,	controlled	uncertainty	esLmates



 for  in NCSMδNS
10C → 10B
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Evaluate T
3
 using No Core Shell Model (NCSM)

➢ Utilizes discrete harmonic oscillator (HO) basis up to 
N=N

max
+N

Pauli

➢ HO basis allows separation of CM and internal DOFs
➢ Test of convergence is possible with increasing N

max

➢ W-independence as another consistency check
➢ Nuclear interactions from Chiral EFT:

 NN-N4LO+3N
lnl

 NN-N4LO+3N*
lnl

Entem, Machleidt and Nosyk, 2017 PRC;
Gysbers et al., 2019 Nature;
Kravvaris, Navrátil, Quaglioni, Hebborn and Hupin, 2023 PLB
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Matrix element of the nuclear Green’s function evaluated 
with the Lanczos continued fraction method 

Step 1: Choose a initial vector

Step 2: Construct an n-vector basis through the following
             recursion

“Lanczos coefficients”:

Initial values:

Difficulty:
Inverting a 
large matrix!

Evaluate	the	m.e.	of	nuclear	Green’s	funcLon

Lanczos	conLnuous	fracLon	method
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Evaluate T
3
 using No Core Shell Model (NCSM)

➢ Utilizes discrete harmonic oscillator (HO) basis up to 
N=N

max
+N

Pauli

➢ HO basis allows separation of CM and internal DOFs
➢ Test of convergence is possible with increasing N

max

➢ W-independence as another consistency check
➢ Nuclear interactions from Chiral EFT:

 NN-N4LO+3N
lnl

 NN-N4LO+3N*
lnl

Entem, Machleidt and Nosyk, 2017 PRC;
Gysbers et al., 2019 Nature;
Kravvaris, Navrátil, Quaglioni, Hebborn and Hupin, 2023 PLB

Gennari	et	al,	2405.19281
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Numerical results

From “res,T
3
” From “res,T

3
”

➢ “res,T
3
” contribution is numerically the largest

➢ Different nuclear forces cause substantial re-distribution
between different contributions, but small change to the sum
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Fast convergence with increasing N
max

→ Intruder states are not an issue 

Check Ω-independence and convergence w.r.t. N
max 

:

Natural in EFT language; see Wouter Dekens’ talk

%

δNS = − 0.406(39) %

δNS = − 0.347(35) %

Compare	to	Hardy-Towner	(old-fashion	Shell	Model)

δNS = − 0.400(50) %
Dispersion	formalism:	correct	account	for	
quasielasLc	knockout	and	energy	dependenceHT	(2014) HT	(2020)

Seng	et	al,	1812.03352;		MG	1812.04229



Ab-initio  for  and  transitions in QMCδNS
10C → 10B 14O → 14N

δNS = − 0.429(73) % King	et	al	2509.07310Ab	iniLo	QMC	calculaLon	for	10C → 10B

Cirigliano	et	al,	2405.18469First	ab	iniLo	QMC	calculaLon	for	14O → 14N δNS = − 0.187(88) %

Compare	to	Hardy-Towner	2020: δNS = − 0.196(50) %

27

Gennari	et	al,	2405.19281δNS = − 0.406(39) %Compare	to	NCSM

δNS = − 0.400(50) % Hardy,	Towner,	PRC	2020Compare	to	a	previous	shell	model	esLmate

	in	the	EFT	language:	unknown	LEC	limit	the	accuracy	of	predicLonsδNS

NCSM	(Gennari	et	al)	—	in	progress,	stay	tuned!



Λhad = 300 MeV

Electron mass

Λnuc = 10 − 30 MeV

Λ
MZ, MW ∼ 90 GeV

IR

UV

Fermi fn with finite nuclear size

Universal correction ΔV
R

Nuclear structure δC, δNS

Finite nuclear size effects:  
 spectrum and β δC



Shape	factor	C:	spaLal	distribuLon	of	decay	probability
Fermi	func/on	F:	e+	in	Coulomb	field
Depend	on	finite	nuclear	size

QED + FNS corrections to -spectrumβ

Pure	QED

f = m−5
e ∫

E0

me

dEe | ⃗pe |Ee(E0 − Ee)2F(Ee)C(Ee)Q(Ee)R(Ee)r(Ee)

Unperturbed	beta	spectrum

29

g

e+

n

r
ch
(r)

r
cw
(r)

Photon	probes	the	enLre	nuclear	charge	
Only	outer	protons	can	decay:	all	neutron	states	in	the	core	occupied	
TransiLon	density	has	larger	radius

TradiLonally:	assumed	decay	probability	equally	distributed	across	the	nucleus,	ρcw ≈ ρch
But:	Isospin	symmetry	+	known	charge	distribuLons	of	T=1	members	implies

ρcw = Z0ρTz=0
ch − Z1ρTz=1

ch = 1
2 [Z−1ρTz=−1

ch − Z1ρTz=1
ch ]

Seng,	2212.02681
MG,	Seng	2311.16755

0+, T = 1, Tz = − 1
0+, T = 1, Tz = 0

0+, T = 1, Tz = 1ρcw
ρcw

ρTz=0
ch

ρTz=−1
ch

ρTz=1
ch



Impact of precise nuclear radii on Ft and Vud
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the ISB corrections δC when a nuclear shell-model
approach with Woods-Saxon radial wave functions is
employed [27,28]. Currently, these δC calculations are
the only ones considered to be sufficiently reliable to
evaluate F t values and thus Vud [10]. In the shell-model
approach, the ISB corrections are separated into two
components, δC ¼ δC1 þ δC2. The former is associated
with the configuration mixing within the restricted shell
model space while the latter, known as the radial overlap
correction, is derived from a phenomenological Woods-
Saxon potential and it depends on the nuclear charge
radius Rc.
Since Rcð26mAlÞ was previously unknown, the calcula-

tion of δC2 used Rc ¼ 3.040ð20Þ fm [27], an extrapolation
based on other, known nuclear charge radii. Our exper-
imental result, Rcð26mAlÞ ¼ 3.130ð15Þ fm, deviates from
this extrapolation by 4.5 standard deviations. This signifi-
cantly impacts the radial overlap correction which is
updated to δC2 ¼ 0.310ð14Þ% [55] compared to the pre-
vious 0.280(15) % [10]. The impacts of this sizable change
in δC2 are summarized in Fig. 2(a) and in Table II.
Despite 26mAl being the most accurately studied super-

allowed β emitter, the corrected F t value is shifted by
almost 1 full standard deviation to 3071.4(1.0) s. Its high
precision is maintained but, in terms of Rc in the calculation
of δC, the value now stands on a solid experimental basis.
The updated F t value of 26mAl also affects the F t value,
i.e., the weighted average over all 15 precisely studied
superallowed β emitters, which is shifted by one-half of its
statistical uncertainty, see inset in Fig. 2(a). To our knowl-
edge, this represents the largest shift in the F t value since
2009, see Fig. 2(b). This is a remarkable influence of a
single experimental result on a quantity which is based on
more than 200 individual measurements and which is
dominated in its uncertainty by theoretical corrections.
Accounting for 0.57 s, this statistical uncertainty con-

tains all experimental as well as those theoretical errors
which scatter “randomly” from one superallowed transition
to another. Previously, a single systematic theoretical
uncertainty of 0.36 s due to δ0R had to be added affecting
all superallowed β emitters alike [56]. In these circum-
stances, the shift in the F t value caused by the new charge

radius of 26mAl would have corresponded to ≈40% of its
total uncertainty. In the latest survey of superallowed β
decays [10], however, a systematic theoretical uncertainty
of 1.73 s in δNS was newly introduced, reflecting uncer-
tainties due to previously unaccounted contributions to the
nuclear-structure dependent radiative corrections. This
represents an almost threefold increase of the theoretical
error associated with δNS which now dominates the
uncertainty in the F t value. Considering our new charge
radius of 26mAl, one thus obtains an F t value of
3071.96(1.85) s.
The present work further implies a ΔCKM in the unitarity

test of the first row of the CKM matrix which is brought by
≈1=10σ closer towards unitarity. Although the magnitude
of this change is too small to resolve the tension to CKM
unitarity, it illustrates the importance of a comprehensive
examination of all relevant ingredients to Vud, especially
theoretical corrections which involve nuclear-structure
dependencies such as radiative and ISB corrections. In
terms of δC2, there remain seven superallowed β emitters in
which the nuclear charge radius is experimentally unde-
termined [62,63]. Among those, 10C and 14O are of specific
interest given their sensitivity to the Fierz interference term
which relates to scalar contributions in β decays. Moreover,
it has recently been proposed to constrain models of ISB
corrections by new, more precise measurements of charge
radii in triplets of the isobaric analog states, e.g.,
38Ca-38mK-38Ar [20].

TABLE II. Summary of the rms charge radius Rc, the radial
overlap correction δC2 and the F t value of 26mAl, the weighted
average of the 15 superallowed β emitters F t and the result of the
CKM unitarity test.

Quantity Previous value This Letter

Rc 3.040(20) fm [27] 3.130(15) fm
δC2 0.280(15)% [10] 0.310(14)%
F tð26mAlÞ 3072.4(1.1) s [10] 3071.4(1.0) s
F t 3072.24(1.85) s [10] 3071.96(1.85) s
ΔCKM 152ð70Þ × 10−5 [7] 144ð70Þ × 10−5

(a) (b)

FIG. 2. (a) F t values of the 15 superallowed β emitters used to
determine Vud. The values in black, taken from [10], include
experimental as well as “statistical” theoretical errors. The
previously determined F t value for 26mAl [10] (blue) is compared
to the one (orange) when considering the experimental nuclear
charge radius of the present work. The weighted averages for the
15 superallowed β emitters are shown as horizontal bars in the
inset (without considering additional, systematic theoretical
uncertainties). (b) Evolution of the F t value with statistical
uncertainties in previous reviews [10,56–61] (black) compared to
this Letter (orange). The vertical line to guide the eye corresponds
to the value from 2020 [10].

PHYSICAL REVIEW LETTERS 131, 222502 (2023)

222502-5

Previously	guessed	by	Hardy	and	Towner

Plattner et al, arXiv: 2310.15291

Recent	measurement	at	ISOLDE

Measured isotope shift

δν (26mAl, 27Al)ΔE2P−1S (μ27Al)

δR2 (26mAl, 27Al)

Muonic X-rays

R (27Al) R (26Mg)

ΔE2P−1S (μ26Mg)
Theory 
Many-Body QED

Theory  
QED  
Nuclear Polarization

R (26mAl)

ℱt = f t (1 + δ′ R) (1 − δC + δNS)

Theory 
Isospin symmetry

Theory 
Isospin breaking

 26mAl → 26Mg
QEC, T1/2 , Branching Ratio

Beta decay

|Vud |2 = 2984.431(3) s
ℱt(1 + ΔV

R)

Theory 
QED

Theory 
Nuclear Structure

Theory 
SM RC

MG et al, arXiv: 2502.17070Re-examined	~ALL	ingredients	

Careful	reevaluaLon	of	f-value	(QED)	
isotope	shi_	factors	F,	M	(Many-body	QED	for	e-atoms)	
charge	radii	of	Al-27,	Mg-26	(Nuclear	theory	for	µ-atoms)

Al-26m—>	Mg-26	is	the	most	precisely	measured	transiLon	—>	impacts	the	Vud	determinaLon!

ℱt[26mAl → 26Mg] = 3072.4(1.1)stat s → 3070.0(1.2)stat s

Major	impact	on	Ft	value	uncovered

Rc(26mAl) = 3.040(20) fm



Semileptonic Kaon decay

Hardy & Towner
0+ → 0+ average
 

This Work
26mAl → 26Mg

|𝑉
௨௦
|

|𝑉௨ௗ|

Cabibbo anomaly disappears? — 2.5  to 1.3σ σ
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	—>|Vud |2 + |Vus |2 = 0.9985(7) |Vud |2 + |Vus |2 = 0.9991(7)

But:	only	f	was	revisited;	need	to	check	 	and	δNS δC

One radius makes a difference in BSM search!

MG et al, arXiv: 2502.17070
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FIG. 1. Isospin-symmetry breaking correction δC obtained from
different models: shell model with WS radial wave functions (SM-
WS) [2,4,5], shell model with HF wave functions (SM-HF) [6,7],
J (T )-projected HF theory with two different Skyrme functionals (SV-
DFT and SHZ2-DFT) [9], relativistic RPA (RHF-RPA and RH-RPA)
[10], isovector monopole resonance theory (IVMR) [11], and the
Damgaard model [12].

added to a relativistic Hartree or Hartree-Fock (HF) calculation
was used by Liang et al. [10]. In addition, Auerbach [11] uses a
model where the main isospin-symmetry-breaking effects are
attributed to the isovector monopole resonance. The last two
results are again systematically lower than the shell-model or
J (T )-projected HF values. For completeness, we show also an
earlier estimation of the correction using perturbation theory
on the basis of individual harmonic-oscillator wave functions
by Damgaard [12]. It is clear that all these calculations have a
significant spread in the obtained values of δC , thus raising the
question of credibility of the results.

The values for δC tabulated by Towner and Hardy in Ref. [1]
excellently support both the CVC hypothesis over the full range
of Z values and the top-row unitarity of the CKM matrix.
However, this agreement is not sufficient to reject the other
calculations, since these aspects of the standard model have
to be confirmed experimentally. The validity of CVC does not
constrain the absolute F t value. The disagreement between
model predictions and the importance of the issue motivated
us to reexamine this correction in a consistent approach based
on the nuclear shell model.

Within the shell model, the eigenproblem is solved by con-
struction and diagonalization of the Hamiltonian matrix using
a Slater determinant spherical harmonic-oscillator basis. The
eigenstates are thus given in terms of linear combinations of
many-body basis states. In order to describe isospin-symmetry
breaking effects, the many-body Hamiltonian should contain
Coulomb and charge-dependent terms of nuclear origin. If
the eigenproblem is solved in a sufficiently large A-body
basis of many harmonic-oscillator shells, the eigenvectors
can be used to compute a realistic Fermi matrix elements,
as, for example, has been done for 10C in the no-core shell
model with 3N forces included [13]. However, for heavier
nuclei, calculations are feasible only in restricted model spaces,
containing one or two harmonic-oscillator shells beyond a
closed-shell core. Effective isospin-nonconserving interaction
introduces the isospin-symmetry breaking in the mixing of

various harmonic-oscillator configurations within the model
space. In addition, calculation of transition matrix elements
involves radial integrals which should be computed using real-
istic spherically symmetric proton and neutron wave functions,
obtained from a finite-range potential with a Coulomb term.
The protons in a parent nucleus are less bound than the neutrons
in a daughter nucleus because of the Coulomb repulsion. Since
the model space is restricted to a single oscillator shell, in
practice the only way to deal with the problem is to replace the
harmonic-oscillator radial wave functions by single-particle
wave functions obtained from a realistic spherically symmetric
mean-field potential. This accounts for the isospin-symmetry
breaking effects beyond the valence space. Thus, there are
two sources of the deviation of the Fermi matrix element
from its model-independent value: one is from the effective
charge-dependent Hamiltonian and the other is from the radial
mismatch of proton and neutron single-particle wave functions.
It will be shown below that, within the first-order perturbation
theory, the correction δC can be expressed as a sum of two
terms corresponding to the two sources of isospin-symmetry
breaking mentioned above.

The present study focuses on the radial mismatch between
proton and neutron single-particle wave functions, which
represents the main contribution to the nuclear structure
correction to the Fermi matrix element. Currently, two types
of a mean-field potential are considered in this respect. The
first one is the phenomenological WS potential including a
central, a spin-orbit, and an electrostatic repulsion term. A
series of calculations using this potential has been carried
out by Towner and Hardy [2,4]. These authors adjusted case-
by-case the depth of the volume term or added an additional
surface-peak term to reproduce experimental proton and neu-
tron separation energies. In addition, they adjusted the length
parameter of the central term to fix the charge radii of the
parent nuclei. The second type of a mean-field potential is
that obtained from self-consistent HF calculations using a
zero-range Skyrme force, as was first proposed by Ormand
and Brown in 1985 [14] and refined in the subsequent papers
[6,7].

The results obtained from both types of mean-field potential
are equivalently in good agreement with the CVC hypothesis;
however, the δC values from Skyrme-HF calculations are con-
sistently smaller than those obtained from the WS calculations.
This discrepancy was thought to be due to the insufficiency of
the Slater approximation for treating the Coulomb exchange
term. Towner and Hardy highlighted that the asymptotic
limit of the Coulomb potential in the Slater approximation is
overestimated by one unit of Z. To retain this property, they
proposed a modified HF protocol [5], namely they performed
a single calculation for the nucleus with (A − 1) nucleons
and (Z − 1) protons and then used the proton and the neutron
eigenfunctions from the same calculation to compute the radial
overlap integrals. Their result leads to a significant increase of
the corresponding correction to the Fermi matrix element and
provides a better agreement with the values obtained with WS
radial wave functions. However, we warn that such a method
is rooted in Koopman’s theorem, which is not fully respected
by the HF calculations, in particular with a density-dependent
effective interaction.

024324-2

	 	plagued	by	large	model	dependence!δC

Xayavong,	Smirnova,	1708.00616

HT:	 	as	criterion	to	prefer	SM-WS;		
—>	Vud	and	BSM	intertwined	with	nuclear	models!
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to the significance of the δ′
R uncertainty for each transition.

In each case, we take the height of that bar to correspond to
one-third the size of the Z2α3 term in the expression for δ′

R

(see Sec. III A 1).
From Fig. 3, it can be seen that for seven of the nine

transitions plotted there—all but those from 10C and 14O—the
contributions from their three experimental uncertainties are
substantially smaller than the corresponding contributions
from the theoretical uncertainty due to the combined nuclear-
structure-dependent corrections, (δC − δNS). The same can be
said for the transitions from 62Ga and 74Rb, which appear
among the TZ = 0 cases illustrated in Fig. 4, although for these
two cases the theoretical uncertainties are 3–10 times larger
than they are for the lighter nuclei because of nuclear-model
ambiguities.

There is good reason for these nine cases to have particu-
larly small experimental uncertainties. They are all transitions
from TZ = 0 parent nuclei, which populate even-even daugh-
ters in which there are no, or very few, 1+ states at low enough
energy to be available for competing Gamow-Teller decays.
Thus, the branching ratios for the superallowed transitions
are all >99% and have very small associated uncertainties,
the largest being for the decays of 54Co and 74Rb, which
both have a 3 × 10−4 fractional uncertainty. In both cases,
this is because they are predicted to have Gamow-Teller
branches that are too weak to have been observed but numerous
enough that their total strength is not negligible. To account
for such competition, one must first make a sensitive search
for weak branches and then resort to an estimate of the
strength of the branches that could have been missed at the
level of experimental sensitivity achieved. Such estimates are
currently based on shell-model calculations, as first suggested
in Ref. [93], and obviously they introduce some additional
uncertainty.

The presence of numerous weak Gamow-Teller branches
becomes an increasingly significant issue for the heavier-mass
nuclei, which have increasingly large QEC values. For cases
with A ! 62, they present a major experimental challenge
if they are to be fully characterized. To date this has been
accomplished for the decays of 62Ga [36,66] and 74Rb [55] but
at considerable effort. It remains to be seen if the same level of
precision will ultimately be achievable for 66As and 70Br, the
two other cases in the bottom panel of Fig. 4, or for the even
heavier TZ = 0 parents that extend beyond 74Rb up to 98In.

The decays of 10C, 14O, and all the transitions depicted
in the top panel of Fig. 4 originate from TZ = −1 parent
nuclei and populate odd-odd daughters in which there are low-
lying 1+ states strongly fed by Gamow-Teller decay. These
branches are of comparable intensity to the superallowed
one so they—or the superallowed branch itself—must be
measured directly with high relative precision, a very difficult
proposition. The outcome is branching-ratio uncertainties that
exceed all the other contributions to theF t-value uncertainties,
experimental or theoretical, for these cases. (Measurements of
weak competing branches in the TZ = 0 cases discussed in
the previous paragraph require high sensitivity but not high
relative precision because the total Gamow-Teller branching
is more than a factor of 100 weaker than the superallowed
branch for all of them.) Advances in experimental techniques

for measuring branching ratios have improved the situation in
recent years [94,141] and will improve it even more within the
next few years. Nevertheless, it is unlikely that these cases will
ever equal the overall level of precision already achieved for
the TZ = 0 parent decays. Their value lies instead in testing the
calculated corrections for isospin-symmetry breaking [141], as
described in Sec. IV C.

IV. ISOSPIN-SYMMETRY BREAKING

Our own isospin-symmetry-breaking calculations, which
take a semiphenomenological approach based on the shell-
model together with Woods-Saxon radial functions (denoted
SM-WS), have been discussed in Sec. III A 2. The results
obtained there for δC are listed in the last column of Table X
and are repeated for comparison purposes in the second column
of Table XI. Those are not the only calculations of δC . There
are a number of others that have appeared in the literature, of
which we outline some more recent entries here.

A. Other δC calculations

SM-HF. Ormand and Brown [199] were the first to suggest
that the calculation of the radial overlap—i.e., the δC2 com-
ponent of δC—might be better served if a mean-field Hartree-
Fock potential were used rather than the phenomenological
Woods-Saxon potential. The most recent calculation of this
type is by Hardy and Towner [6] and their results are listed

TABLE XI. Recent δC calculations (in percent units) based
on models labeled SM-WS (shell-model, Woods-Saxon), SM-HF
(shell-model, Hartree-Fock), RPA (random phase approximation),
IVMR (isovector monopole resonance), and DFT (density functional
theory). Also given is the χ 2/ν, χ 2 per degree of freedom, from the
confidence test discussed in the text.

RPA

SM-WS SM-HF PKO1 DD-ME2 PC-F1 IVMRa DFT

Tz = −1
10C 0.175 0.225 0.082 0.150 0.109 0.147 0.650
14O 0.330 0.310 0.114 0.197 0.150 0.303
22Mg 0.380 0.260 0.301
34Ar 0.695 0.540 0.268 0.376 0.379
38Ca 0.765 0.620 0.313 0.441 0.347
Tz = 0
26mAl 0.310 0.440 0.139 0.198 0.159 0.370
34Cl 0.650 0.695 0.234 0.307 0.316
38mK 0.670 0.745 0.278 0.371 0.294 0.434
42Sc 0.665 0.640 0.333 0.448 0.345 0.770
46V 0.620 0.600 0.580
50Mn 0.645 0.610 0.550
54Co 0.770 0.685 0.319 0.393 0.339 0.638
62Ga 1.475 1.205 0.882
74Rb 1.615 1.405 1.088 1.258 0.668 1.770
χ 2/ν 1.4 6.4 4.9 3.7 6.1 4.3b

aRodin [205] also computes δC = 0.992% for both 66As and 70Br.
bThe result for 62Ga has not been included in the least-squares fit from
which this value for χ 2/ν has been obtained.

025501-14

Isospin-breaking correction  in nuclear modelsδC

Hardy,	Towner,	Phys.Rev.	C	91	(2014),	025501

Nuclear	theory	community	embarked	on	ab-iniLo	 	calculaLons		
Complement	with	independent	test:	data-driven	approach	to	benchmark	model	calculaLons

δC

32

ISB	correcLon	 	changes	by	factor	~10	from	light	to	heavy	
Crucial	for	Ft-alignment!

δC Nadezhda’s	talk



ISB-sensiLve	combinaLons	of	nuclear	radii		
across	isotriplet

C.-Y. Seng and M. Gorchtein Physics Letters B 838 (2023) 137654

In this Letter we explore the connection between δC and a set 
of experimentally accessible quantities that are sensitive to the 
same ISB nuclear matrix elements. These observables encompass 
recoil effects in the superallowed decay process, nuclear charge 
radii across the isotriplet, and the neutron skin of the stable 
daughter nucleus. The relevant combinations are constructed such 
that non-ISB contributions cancel out, and a clean probe of the 
isospin mixing effects is obtained.

2. Basic notation

We adopt the “nuclear physics convention” for the isospin pro-
jection, (T z)p = −1/2. We consider β+ transitions i → f across
the isotriplet with T z,i = 0 and T z, f = +1 (which we will explain 
later). The Fermi matrix element is defined as M F = ⟨ f |τ̂+|i⟩, with 
τ̂+ the isospin-raising operator, and the states |i⟩, | f ⟩ normalized 
to 1.

The nuclear states are eigenstates of the full Hamiltonian H
which we split as H = H0 + V , with H0 the part that conserves 
isospin and V the ISB perturbation term. We label the eigenstates 
of H0 as |a; T , T z⟩ where a denotes all quantum numbers un-
related to isospin (we use a = g for the ground state isotriplet 
that undergoes superallowed beta decay). The corresponding en-
ergy eigenvalues are labeled as Ea,T , which may depend on a and 
T but not T z . In the absence of V , the bare Fermi matrix element 
reads M0

F = ⟨g; 1, T z, f |τ̂+|g; 1, T z,i⟩ =
√

2.
A key ingredient in our analysis is the isovector monopole op-

erator,

M⃗(1) =
A∑

i=1

r2
i
⃗̂T (i) (3)

where ⃗̂T (i) is the isospin operator of the nucleon i, and r⃗i its po-
sition. The irreducible tensors of rank 1 in the isospin space with 
its components are: M(1)

0 = M(1)
z , M(1)

±1 = ∓(M(1)
x ± iM(1)

y )/
√

2.

3. Key experimental observables

The charged weak form factors in superallowed decays of spin-
less nuclei are:

⟨ f (p f )| Jλ†
W (0)|i(pi)⟩ = f+(t)(pi + p f )

λ + f−(t)(pi − p f )
λ, (4)

where Jλ†
W (x) = d̄(x)γ λ(1 − γ5)u(x) is the charged weak current, 

and t = (pi − p f )
2. The contribution of f−(t) to the differential 

decay rate is suppressed simultaneously by kinematics and by ISB, 
so we can only probe f+(t). In the Breit frame (p0

i = p0
f ), f+(0) =

M F and we define f+(t) = M F f̄+(t) with f̄+(0) = 1. For small t
we have,

f̄+(t) = 1 + t
6

R2
CW + O(t2), (5)

where

R2
CW ≡ −

√
2⟨ f |M(1)

+1|i⟩
M F

(6)

defines a “charged weak radius” associated to the charged weak 
form factor, and one may safely set M F →

√
2 above given our 

precision goal. This radius may in principle be measured through 
recoil effects in beta decays or neutrino-nucleus scattering. We dis-
cuss the feasibility of such measurements in later paragraphs.

Further, we define the root mean square (RMS) radii of the 
proton and neutron distribution in a nucleus φ (with the proton 
number Zφ and the neutron number Nφ ) as

R p/n,φ =

√√√√ 1
X

⟨φ|
A∑

i=1

r2
i

(
1
2

∓ T̂ z(i)
)

|φ⟩, (7)

with − for the proton and + for the neutron and X = Zφ or Nφ , 
respectively. These radii naturally connect to the z-component of 
the isovector monopole operator,

⟨φ|M(1)
0 |φ⟩ = Nφ

2
R2

n,φ − Zφ

2
R2

p,φ . (8)

In absence of ISB, the Wigner-Eckart theorem requires the equality 
⟨g; 1, 1|M(1)

+1|g; 1, 0⟩ = −⟨g; 1, 1|M(1)
0 |g; 1, 1⟩. Hence, the following 

combined experimental observable

'M(1)
A ≡ ⟨ f |M(1)

+1|i⟩ + ⟨ f |M(1)
0 | f ⟩ (9)

offers a very clean probe of ISB effect. Furthermore, we define an-
other experimentally accessible quantity,

'M(1)
B ≡ 1

2

(
Z1 R2

p,1 + Z−1 R2
p,−1

)
− Z0 R2

p,0 (10)

which combines the R p across the isotriplet (−1, 0, 1 denote T z of 
the nucleus). Again, 'M(1)

B vanishes in the isospin limit, providing 
another clean probe of isospin mixing effects. 'M(1)

A,B are the two 
key experimental observables that we focus on in this Letter.

While the RMS radii R p,n are generally not observable, they 
are directly related to nuclear charge and neutral weak radii 
RCh,φ, RNW,φ . The former are measurable for both stable and un-
stable nuclear isotopes, mainly from the atomic spectroscopy [28]. 
The nuclear RMS charge radii are largely given by R p , as the cor-
rections due to the charge radii of the proton and the neutron 
can easily be included, along with the spin-orbit interaction ef-
fects [29–32]. New results for charge radii of unstable isotopes are 
anticipated, e.g., from the BECOLA facility at FRIB [33].

Nuclear weak radii are accessible with parity-violating electron 
scattering (PVES) on nuclear targets. The object of interest is the 
neutron skin Rn − R p ∝ RNW − RCh which is the subject of a vibrant 
experimental program at electron scattering facilities [34–38] with 
the scope of obtaining insights into the properties of the neutron-
rich matter with relevance for astrophysics [39]. Since fixed-target 
PVES is only viable with a stable target nucleus, we concentrate 
on (observationally) stable superallowed daughter nuclei, most of 
which are T z, f = +1 members of the isotriplet, which motivates 
the definition of Eq. (9). In addition, RMS charge radii of stable 
nuclei are known to 0.1 − 0.01% precision [28], which opens the 
possibility to extract the respective weak RMS radii with a sub-
percent precision [40].

The difference in the proton and neutron distributions within a 
nucleus can generically come from two sources: the neutron excess 
and ISB effects. In asymmetric nuclei with N > Z the skin is mainly 
generated by the symmetry energy [41], although even there the 
ISB effects may be non-negligible [42]. For nearly symmetric nu-
clei with N ≈ Z , such as those participating in the superallowed 
decays, the ISB effects become comparable. Discussions about the 
relation between ISB effects and the neutron skin exist in the liter-
ature [43], but to the best of our knowledge, this is the first time 
the neutron skin of the members of a superallowed isotriplet is 
directly related to δC in that isotriplet.

4. The connection between !M (1)
A,B and δC

To investigate the underlying physics of 'M(1)
A,B , we resort to 

the perturbation theory formalism outlined in Refs. [16,17] The 
only simplifying assumption is that the ISB operator V predomi-
nantly transforms as an isovector (T = 1, T z = 0) [44]. The neglect 

2

Seng,	MG	2208.03037;	2304.03800;	2212.02681 	used	for	f-value	in	isospin	limitΔM(1)
B = 0
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Fig. 6: Testing for isospin symmetry breaking by comparing measured (exp) and semi-empirical (SE) radii. See Eq. 10 and Table 7.

Recently, the role of nuclear charge radii in calculating f has been put to the spotlight [36], pointing that their role,

and the e↵ect in their uncertainty is much larger than previously considered. Moreover, it has been recognized that radii

may constrain the isospin symmetry breaking correction �C as well [37]. Work on a fully data-driven analysis of the

ft-values of superallwoed decays has pointed the need to complete the determinations of charge radii of all members of

each isotriplet [36].

Here, the empirical mirror relation, already gives rise to reliable radii estimation of all nuclei with Tz = �1 which

are involved in the determination of Vud (see table 5). However, some Tz = 0 nuclei play a key role as well [35], with

only a handful of their radii measured. To estimate the radii of these nuclei, we first denote the radii of triplet nuclei by

rTz with Tz = �1, 0,+1. The mirror then fit directly gives

r2�1 � r2+1 = �I(2r+1 +�I) (8)

with �I given in Eq. 6. This form is suitable for combining with equation 16 from [38], to obtain a semiempirical

isotriplet interpolation formula for the radius of Tz = 0 nuclei

r20,SE = r2+1 +
Z�1

2Z0
�I(2r+1 +�I). (9)

Using Eq. 9, can determine the radii of Tz = 0 nuclei directly, they are given in Tab. 7. Their uncertainty spans

0.1� 1.5% and is dominated by that of r+1. The least well-known triplet is that with A = 10, motivating an improved

determination of the radius of 10Be.

If all else is under control, and spin-orbit corrections within a triplet are neglected, then the di↵erence between

experimental and semi-empirical radii can help to search for, or constrain, isospin-symmetry-breaking (ISB) within the

isotriplets. Plugging Eq. 9 to Eq. 10 from Ref. [37] we obtain the compact expression

�M (1)
B = Z0(r

2
0,SE � r20,exp), (10)

which vanishes in the isospin-symmetric limit. The results are given in Table 7, and plotted in Fig. 6. The most

stringent constraint on ISB is with the A = 38 triplet, for which |�M (1)
B (38)|  1.5 fm2, comparing well with theoretical

9

No	ISB
Ohayon,	2409.08193Many	radii	not	known:	use	phenomenological		

informaLon	from	known	mirror	radii	
5	isotriplets	to	test	the	IS	assumpLon	
No	ISB	for	A=38,	42,	50,	74	
Large	ISB	for	A=26!	
Precision	needs	to	be	improved	to	test

Data-driven  from nuclear radiiδC

ΔM(1)
A ≡ − ⟨r2

CW⟩ + ( N1
2 ⟨r2

n,1⟩ − Z1
2 ⟨r2

p,1⟩)
Another	ISB-sensiLve	combinaLon	involves	radii	of	neutron	and	proton	distribuLons

Neutron	radius	accessible	with	PV	e-scaYering		
PV	asymmetry	~	 	-	neutron	skin	
Studies	in	neutron	rich	nuclei	<—>	neutron	stars

⟨r2
n,1⟩ − ⟨r2

p,1⟩

Little model dependence 
in correlation between FF 
difference and neutron 
skin thickness

Neutron radius and skin

Note: increased model dependence 

48Ca has a bigger 
surface to volume ratio 48Ca208Pb

August 2022 CIPANP 16

48Ca neutron skin, Rn - Rp

0.121 ± 0.026 (exp) ± 0.024 (model) fm

𝐴௠௘௔௦ ⇒ 𝐴௖௢௥௥ ⇒ 𝐴௉௏ ⇒ 𝐹ௐ ⇒ 𝐹ௐ,௦௞௜௡ ⇒ 𝑟௦௞௜௡

Upcoming	exp.	program	at	Mainz	(MREX):		
neutron	skins	of	stable	daughters	(e.g.	Mg-26,	Ca-42,	Fe-54)		
Sub-%	measurement	of	 	feasible	(case	study	C-12)Rn

N.	Cargioli	et	al,	2407.09743
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https://arxiv.org/abs/2407.09743
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New endeavor: updated tables of nuclear radii

Work	on	update	of	Angeli-Marinova	tables		
iniLated	under	umbrella	of	IAEA

IniLaLve	group	working	on	the	White	Paper	with	recommendaLons	for	update		
—>	will	be	proposed	to	the	community	for	endorsement	

RADIANT	(Radii	Analysis	and	Data	for	InterAcLve	Nuclear	Table)	
project	within	HORIZON	EUROPE	(European	network	applicaLon)	-	awaiLng	approval

https://nds.iaea.org/publications/indc/indc-nds-0918/
Summary	report	online:
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Upcoming workshops in 2026
“Precise	nuclear	radii	and	beyond”	MPIK	Heidelberg,	January	26-30	
h"ps://plan.events.mpg.de/event/544/overview

NREC-2026	(Nuclear	Radius	ExtracLon	CollaboraLon),	Stony	Brook	U.,	April	13-17	
h"ps://indico.cfnssbu.physics.sunysb.edu/event/515/overview

ECT*	workshop	“From	Nuclear	Structure	to	New	Physics”,		
Trento,	August	3-7	
h"ps://www.ectstar.eu/workshops/from-nuclear-structure-to-new-physics/

MITP	program	“Tensions	in	the	CKM	Paradigm:	From	B	Decays	to	the	Cabibbo	Anomaly"		
Capri,	May	18-29	
h"ps://indico.mitp.uni-mainz.de/event/440/overview

Apply!

https://plan.events.mpg.de/event/544/overview
https://indico.cfnssbu.physics.sunysb.edu/event/515/overview
https://www.ectstar.eu/workshops/from-nuclear-structure-to-new-physics/
https://indico.mitp.uni-mainz.de/event/440/
https://indico.mitp.uni-mainz.de/event/440/overview


InternaLonal	workshop	on	Electroweak	Precision	InterseCLons	EPIC	2024	
September	22-27	2024,	Cala	Serena	Beach	Resort	(Geremeas)

Brought	together	different	communiLes:	

ParLcle,	Nuclear,	Atomic,	Neutrino,	Astro,	GW	

Study	exisLng	synergies	&	elaborate	new	ones!	

Pre-workshop	school	for	PhD	students,	poster	and	pitch-talk	prizes	

Excellent	infrastructure	to	bring	along	your	family

EPIC 2024
22-27 Sept 2024 CalaSerena, Geremeas IT

EPIC WEBSITE REGISTER HERE LOCATION

SCIENTIFIC PROGRAM 
COMMITTEE
Sonia Bacca (JGU Mainz)
Matteo Cadeddu (INFN Cagliari)
Nicola Cargioli (INFN Cagliari) 
Francesca Dordei (INFN Cagliari)
Mikhail Gorshteyn (JGU Mainz)

ORGANIZED BY

EPIC 2024 is the first
workshop dedicated to
precision electroweak
physics, with focus on:

Ø Precision tests of the
Standard Model and
beyond with atomic
nuclei

Ø Lepton- and neutrino-
nucleus interactions

Ø Nuclear matter 
across energy scales 
and multi-messenger 
astronomy

Electroweak Physics Intersections

PRE-WORKSHOP SCHOOL
Ø One-day lectures on precision physics 

with atoms, neutrino physics, and 
nuclear EoS in the multimessenger era. 

Ø Dedicated poster session for students 
at the workshop with teaser-talk event.

2nd	EPIC	workshop	planned	in	fall	2027

STA
Y 

TUNED!

~last	week	of	September	—	Exact	dates	to	be	confirmed

heps://indico.cern.ch/event/1400714/



Conclusions & Outlook

• Tests	of	Cabibbo	unitarity	at	0.01%	require	hadronic	correcLons	to	10%	

• Interplay	of	experiment,	LQCD,	EFT,	ab	iniLo	nuclear	theory	and	data-driven	methods	
-	EFTs:	overarching	language	from	IR	to	UV	(control	ALL	large	logs)	
-	LQCD:	non-perturbaLve	input	away	from	extremes	(finite	spacing&volume)	
-	Dispersion	theory:	unitarity	and	analyLcity	to	connect	scales,	LQCD	and	EFT	
-	Nuclear	theory	community	embarked	on	re-evaluaLon	of	nuclear	structure	correcLons	with	
		modern	ab	iniLo	methods	
-	New	connecLons	with	atomic	physics	(nuclear	radii)	and	PVES	(neutron	skins)	IDed	&	explored	

• Experimental	programs:	new	results	to	be	expected	in	near	future	
-	Improved	neutron	lifeLme	(boYle:	UCN ,	 SPECT,	PENeLOPE,	HOPE;	beam:	NIST,	JPARC)		
-	Improved	 	(Nab,	pNAB,	PERC)	in	near	future	
-	CompeLLve	 	from	pion	beta	decay	(PIONEER)	in	~10	years	
-	Improved	superallowed	(IGISOL,	TRIUMF,	UW,	…)	
-	Improved	charge	radii	(ISOLDE,	TRIUMF,	FRIB)	and	neutron	skins	(MESA)

τ τ
λ

Vud
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