Neutrons and nuclei as a precision laboratory for Vud and CKM unitarity

Misha Gorshteyn

Johannes Gutenberg-Universität Mainz

Collaborators:
Chien-Yeah Seng
Michael Ramsey-Musolf
Hiren Patel
Xu Feng
Lu-Chang Jin
Peng-Xian Ma
Ulf Meißner
Daniel Galviz
Saori Pastore
Petr Navratil
Michael Gennari

INT workshop "New physics searches at the precision frontier", May 8, 2023

Outline

The role of β-decays in constructing the Standard Model
Radiative corrections to β-decays: overall setup
EW boxes from dispersion theory and status of Δ_{R}^{V}
Dispersion theory of nuclear-structure RC $\delta_{N S}$
Status of isospin-symmetry breaking correction δ_{C}
Status of $V_{u s}$
BSM solutions to Cabibbo-unitarity puzzle
Open problems and outlook

β-decays as precision tool for testing the Standard Model

Understanding β Decays: A Cornerstone of the Standard Model

Existence of neutrinos to explain the continuous β spectrum (Pauli, 1930)
Contact theory of β decay (Fermi, 1933)
Parity violation in β decay (Lee, Yang 1956 \& Wu 1957)
V - A theory (Sudarshan \& Marshak and Gell-Mann \& Feynman, 1957)
Radiative corrections to 4-Fermi theory: important step to the Standard Model
RC to muon decay UV finite for V-A $\longrightarrow G_{F}=G_{\mu}=1.1663788(7) \times 10^{-5} \mathrm{GeV}^{-2}$
But RC to neutron decay - log UV divergent!
UV behavior of β decay rate at 1-loop (Sirlin, 1967) $\frac{\alpha}{2 \pi} P^{0} d^{3} p 3[1+2 \bar{Q}] \ln (\Lambda / M)$
\bar{Q} : average charge of fields involved: $1+2 \bar{Q}_{\mu, \nu_{\mu}}=0$ but $1+2 \bar{Q}_{n, p}=2$
Standard Model with massive W,Z-bosons (Glashow-Salam-Weinberg, 1967)

Precision, Universality and CKM unitarity

In SM the same coupling of W-boson to leptons and hadrons, $G_{V}=G_{\mu}$
Before RC were included: $G_{V} \sim 0.98 G_{\mu}$
Large $\log \left(M_{\mathrm{Z}} / M_{p}\right)$ in RC for neutron $\longrightarrow G_{V} \sim 0.95 G_{\mu}$
Kaon and hyperon decays? $(\Delta S=1)$ - even lower rates!
Cabibbo: strength shared between 2 generations

$$
\begin{aligned}
& \left|G_{V}^{\Delta S=0}\right|=\cos \theta_{C} G_{\mu} \\
& \left|G_{V}^{\Delta S=1}\right|=\sin \theta_{C} G_{\mu}
\end{aligned}
$$

Cabibbo unitarity: $\cos ^{2} \theta_{C}+\sin ^{2} \theta_{C}=1$
Kobayashi \& Maskawa: 3 flavors + CP violation - CKM matrix V
$\left(\begin{array}{l}d^{\prime} \\ s^{\prime} \\ b^{\prime}\end{array}\right)=\left(\begin{array}{lll}\left(\begin{array}{lll}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right)\left(\begin{array}{l}d \\ d \\ b\end{array}\right) \quad \begin{array}{c}\text { CKM unitarity - completeness of the SM: } V V^{\dagger}=\mathbf{1} \\ \text { Top row unitarity constraint: }\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1\end{array}{ }^{2}=1\end{array}\right.$

Detailed understanding of β decays largely shaped the Standard Model

Status of top-row CKM unitarity

$$
\begin{aligned}
&\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+|V / u b|^{2}=0.9985(6)_{V_{u d}}(4)_{V_{u s}} \\
& \sim 0.95 \sim 0.05 \sim 10^{-5}
\end{aligned}
$$

Inconsistencies between measurements of $V_{u d}$ and $V_{u s}$ and SM predictions Main reason for Cabibbo angle anomaly: significant shift in $V_{u d}$

Status of V_{ud}

0+-0+ nuclear decays: long-standing champion

$$
\left|V_{u d}\right|^{2}=\frac{2984.43 s}{\mathscr{F} t\left(1+\Delta_{R}^{V}\right)} \quad\left|V_{u d}^{0^{+}-0^{+}}\right|=0.97370(1)_{\text {exp }, n u c l}(3)_{N S}(1)_{R C}[3]_{\text {total }}
$$

Neutron decay: discrepancies in lifetime τ_{n} and axial charge g_{A}; competitive!

$$
\left|V_{u d}\right|^{2}=\frac{5024.7 \mathrm{~s}}{\tau_{n}\left(1+3 g_{A}{ }^{2}\right)\left(1+\Delta_{R}\right)}
$$

Single best measurements only

$$
\begin{aligned}
& \left|V_{u d}^{\text {free } \mathrm{n}}\right|=0.9733(2)_{\tau_{n}}(3)_{g_{A}}(1)_{R C}[4]_{\text {total }} \\
& \text { PDG average } \\
& \left|V_{u d}^{\text {free } \mathrm{n}}\right|=0.9733(3)_{\tau_{n}}(8)_{g_{A}}(1)_{R C}[9]_{\text {total }}
\end{aligned}
$$

RC not a limiting factor: more precise experiments a-coming

Pion decay $\pi^{+} \rightarrow \pi^{0} e^{+} \nu_{e}$: theoretically cleanest, experimentally tough

$$
\left|V_{u d}\right|^{2}=\frac{0.9799}{(1+\delta)} \frac{\Gamma_{\pi \epsilon 3}}{0.3988(23) \mathrm{s}^{-1}}
$$

$$
\left|V_{u d}^{\pi \ell 3}\right|=0.9739(27)_{\exp }(1)_{R C}
$$

Future exp: 1 o.o.m. (PIONEER)

Status of $V_{u d}$

Major reduction of uncertainties in the past few years

Theory

Universal correction Δ_{R}^{V} to free and bound neutron decay
Identified 40 years ago as the bottleneck for precision improvement Novel approach dispersion relations + experimental data + lattice QCD

$$
\Delta_{R}^{V}=0.02467(22)
$$

Factor 2 improvement

C-Y Seng et al., Phys.Rev.Lett. 121 (2018) 24, 241804;
C-Y Seng, MG, M.J. Ramsey-Musolf, Phys.Rev. D 100 (2019) 1, 013001;
MG, Phys.Rev.Lett. 123 (2019) 4, 042503;
C-Y Seng, X. Feng, MG, L-C Jin, Phys.Rev. D 101 (2020) 11, 111301;
A. Czarnecki, B. Marciano, A. Sirlin, Phys.Rev. D 100 (2019) 7, 073008
$R C$ to semileptonic pion decay

$$
\delta=0.0332(3)
$$

Factor 3 improvement

X. Feng, MG, L-C Jin, P-X Ma, C-Y Seng, Phys.Rev.Lett. 124 (2020) 19, 192002

Experiment

$$
g_{A}=-1.27641(56)
$$

Factor 4 improvement

$$
\begin{aligned}
& g_{A}=-1.2677(28) \\
& \tau_{n}=877.75(28)_{-12}^{+16}
\end{aligned}
$$

Factor 2-3 improvement

PERKEO-III B. Märkisch et al, Phys.Rev.Lett. 122 (2019) 24, 242501
aSPECT M. Beck et al, Phys. Rev. C101 (2020) 5, 055506

UCN τ F. M. Gonzalez et al. Phys. Rev. Lett. 127 (2021) 162501

RC to nuclear beta decay: overall setup

RC to nuclear beta decay: overall setup

Radiative corrections to tree-level amplitude $\quad \sim \alpha / 2 \pi \approx 10^{-3}$
Precision goal for $\mathrm{V}_{\text {ud }}$ extraction
1×10^{-4}

Electron carries away energy $\mathrm{E}<$ Q-value of a decay
Weak boson scale $M_{Z}, M_{W} \sim 90 \mathrm{GeV}$ E-dep RC: $\quad \frac{\alpha}{2 \pi}\left(\frac{E}{\Lambda}, \ln \frac{E}{\Lambda}, \ldots\right)$

Energy scales Λ

Decay Q-value (endpoint energy) $Q_{i f}=M_{i}-M_{f}=1-10 \mathrm{MeV}$

Electron mass $m_{e} \approx 0.5 \mathrm{MeV}$

Nuclear structure dependent (QCD)

Nucleus-specific

Nuclear structure independent (QED)

RC to beta decay: overall setup

Generically: only IR and UV extremes feature large logarithms!
Works by Sirlin (1930-2022) and collaborators: all large logs under control

IR: Fermi function + Sirlin function

Fermi function: resummation of $(Z \alpha)^{n} \longrightarrow$ Dirac - Coulomb problem
Sirlin function (outer correction):

All IR-div. pieces beyond Coulomb distortion

UV: large EW logs + pQCD corrections

Inner RC:
energy- and model-independent

W,Z - loops
UV structure of SM

γW-box: sensitive to all scales
New method for computing EW boxes: dispersion theory Combine exp. data with pQCD, lattice, EFT, ab-initio nuclear

Dispersion Formalism for γW-box

γW-box from dispersion relations

Model-dependent part or RC: γW-box

Generalized Compton tensor time-ordered product - complicated!

$$
\int d x e^{i q x}\left\langle H_{f}(p)\right| T\left\{J_{e m}^{\mu}(x) J_{W}^{\nu, \pm}(0)\right\}\left|H_{i}(p)\right\rangle
$$

Generalized (non-diagonal) Compton amplitudes

Commutator (Im part) - only on-shell hadronic states - related to data

$$
\int d x e^{i q x}\left\langle H_{f}(p)\right|\left[J_{e m}^{\mu}(x), J_{W}^{\nu, \pm}(0)\right]\left|H_{i}(p)\right\rangle
$$

Interference structure functions

Physics of taming model dependence with dispersion relations:
virtual photon polarizes the nucleon/nucleus;
Long- and intermediate-range part of the box sensitive to hadronic polarizabilities Polarizabilities related to the excitation spectrum via dispersion relation
(Cf. Kramers-Kronig)

Universal RC from dispersion relations

Interference γW structure functions

$$
\operatorname{Im} T_{\gamma W}^{\mu \nu}=\ldots+\frac{i \varepsilon^{\mu \nu \alpha \beta} p_{\alpha} q_{\beta}}{2(p q)} F_{3}^{\gamma W}\left(x, Q^{2}\right)
$$

After some algebra (isospin decomposition, loop integration)

$$
\begin{aligned}
& \square_{\gamma W}^{b, \mathrm{e}}\left(E_{e}\right)=\frac{\alpha}{\pi} \int_{0}^{\infty} d Q^{2} \frac{M_{W}^{2}}{M_{W}^{2}+Q^{2}} \int_{\nu_{\mathrm{thr}}}^{\infty} \frac{d \nu^{\prime}}{\nu^{\prime}} \frac{\nu^{\prime}+2 \sqrt{\nu^{\prime 2}+Q^{2}}}{\left(\nu^{\prime}+\sqrt{\nu^{\prime 2}+Q^{2}}\right)^{2}} \frac{F_{3,-}\left(\nu^{\prime}, Q^{2}\right)}{M f_{+}(0)}+\mathcal{O}\left(E_{e}^{2}\right) \\
& \square_{\gamma W}^{b, \mathrm{o}}\left(E_{e}\right)=\frac{2 \alpha E_{e}}{3 \pi} \int_{0}^{\infty} d Q^{2} \int_{\nu_{\mathrm{thr}}}^{\infty} \frac{d \nu^{\prime}}{\nu^{\prime}} \frac{\nu^{\prime}+3 \sqrt{\nu^{\prime 2}+Q^{2}}}{\left(\nu^{\prime}+\sqrt{\nu^{\prime 2}+Q^{2}}\right)^{3}} \frac{F_{3,+}\left(\nu^{\prime}, Q^{2}\right)}{M f_{+}(0)}+\mathcal{O}\left(E_{e}^{3}\right)
\end{aligned}
$$

Advantage to previous approach (Marciano \& Sirlin):

- Explicit 2-fold integral, isospin decomposition and energy dependence

Nachtmann moments play a role in DIS

$$
M_{3}\left(n, Q^{2}\right)=\frac{n+1}{n+2} \int_{0}^{1} \frac{d x \xi^{n}}{x^{2}} \frac{2 x(n+1)-n \xi}{n+1} F_{3}\left(x, Q^{2}\right), \quad \xi=\frac{2 x}{1+\sqrt{1+4 M^{2} x^{2} / Q^{2}}}
$$

Hiding the nu-integration in the Nachtmann moments:

$$
\square_{\gamma W}^{b}\left(E_{e}\right)=\frac{3 \alpha}{2 \pi} \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}} \frac{M_{W}^{2}}{M_{W}^{2}+Q^{2}}\left[M_{3,-}\left(1, Q^{2}\right)+\frac{8 E_{e} M}{9 Q^{2}} M_{3,+}\left(2, Q^{2}\right)\right]+\mathcal{O}\left(E_{e}^{2}\right)
$$

Input into dispersion integral

Dispersion in energy: $W^{2}=M^{2}+2 M \nu-Q^{2}$ scanning hadronic intermediate states

Dispersion in Q2:
scanning dominant physics pictures

Boundaries between regions - approximate
Input in DR related (directly or indirectly) to experimentally accessible data

Input into dispersion integral $-\nu / \bar{\nu}$ data

Mixed CC-NC γW SF (no data) $<>$ Purely CC WW SF (inclusive neutrino data) Isospin symmetry: vector-isoscalar current related to vector-isovector current Only useful if we know the physical mechanism (Born, DIS, Regge, Resonance, ...) Were able to identify the missing part with Regge (multiparticle continuum)

Neutrino scattering data

Marciano, Sirlin 2006: $\Delta_{R}^{V}=0.02361(38) \longrightarrow\left|V_{u d}\right|=0.97420(10)_{F t}(18)_{R C}$
DR (Seng et al. 2018): $\Delta_{R}^{V}=0.02467(22) \longrightarrow\left|V_{u d}\right|=0.97370(10)_{F t}(10)_{R C}$

γW-box from DR + Lattice QCD input

Currently available neutrino data at low Q^{2} - low quality;
Look for alternative input - compute Compton amplitude on the lattice

$$
\begin{aligned}
\mathcal{H}_{\mu \nu}^{V A}(x) & =\left\langle\pi^{0}(p)\right| T\left[J_{\mu}^{\mathrm{em}}(x) J_{\nu}^{W, A}(0)\right]\left|\pi^{-}(p)\right\rangle \\
M_{\pi}\left(Q^{2}\right) & =-\frac{1}{6 \sqrt{2}} \frac{\sqrt{Q^{2}}}{m_{\pi}} \int d^{4} x \omega(Q, x) \epsilon_{\mu \nu \alpha 0} x_{\alpha} \mathcal{H}_{\mu \nu}^{V A}(x)
\end{aligned}
$$

Direct LQCD computation for $\pi^{-} \rightarrow \pi^{0} e^{-} \nu_{e}$
5 LQCD gauge ensembles at physical pion mass Generated by RBC and UKQCD collaborations w. 2+1 flavor domain wall fermion

Ensemble	$m_{\pi}[\mathrm{MeV}]$	L	T	$a^{-1}[\mathrm{GeV}]$	$N_{\text {conf }}$	N_{r}	$\Delta t / a$
24D	$141.2(4)$	24	64	1.015	46	1024	8
32D	$141.4(3)$	32	64	1.015	32	2048	8
32D-fine	$143.0(3)$	32	64	1.378	71	1024	10
48I	$135.5(4)$	48	96	1.730	28	1024	12
64I	$135.3(2)$	64	128	2.359	62	1024	18

(A)

(C)

(B)

(D)

Quark contraction diagrams

First lattice QCD calculation of γW-box

Estimate of major systematic effects:

(before cont. extrapolation) (after cont. extrapolation)

- Lattice discretization effect: Estimated using the discrepancy between DSDR and Iwasaki
- pQCD calculation: Estimated from the difference between 3-loop and 4-loop results
- Higher-twist effects at large Q^{2} : Estimated from lattice calculation of type (A) diagrams

Direct impact for pion decay $\pi^{+} \rightarrow \pi^{0} e^{+} \nu_{e}$

$$
\left|V_{u d}\right|^{2}=\frac{0.9799}{(1+\delta)} \frac{\Gamma_{\pi \ell 3}}{0.3988(23) \mathrm{s}^{-1}}
$$

Previous calculation of δ - in ChPT
Cirigliano, Knecht, Neufeld and Pichl, EPJC 2003

Significant reduction of the uncertainty!

$$
\delta: \quad 0.0334(10)_{\mathrm{LEC}}(3)_{\mathrm{HO}} \rightarrow 0.0332(1)_{\gamma W}(3)_{\mathrm{HO}}
$$

Implications for the free nucleon γW-box

Seng, MG, Feng, Jin, 2003.11264
Indirectly constrains the free neutron γW-box

Independent confirmation of the empirical DR result AND uncertainty

$$
\Delta_{R}^{V}=0.02467(22)_{\mathrm{DR}} \rightarrow 0.02477(24)_{\mathrm{LQCD}+\mathrm{DR}}
$$

Free-n RC in agreement by several groups \& methods

Method	Δ_{R}^{V}
DR with neutrino data (1)	$0.02467(22)$
DR with neutrino data (2)	$0.02471(18)$
DR with indirect lattice data	$0.02477(24)$
Non-DR (1)	$0.02426(32)$
Non-DR (2)	$0.02473(27)$

C-Y Seng et al., Phys.Rev.Lett. 121 (2018) 24, 241804;
C-Y Seng, MG, M.J. Ramsey-Musolf, Phys.Rev. D 100 (2019)
Shiells, Blunden, Melnitchouk, Phys.Rev.D 104 (2021) 3, 033003
Seng, MG, Feng, Jin, 2003.11264
Czarnecki, Marciano, Sirlin, Phys.Rev. D 100 (2019) 7, 073008
Hayen, Phys.Rev.D 103 (2021) 11, 113001

Status of δ_{NS}

Splitting the γW-box into Universal and Nuclear Parts

Vud from superallowed nuclear decays

$$
\left|V_{u d}\right|^{2}=\frac{2984.43 s}{\mathscr{F} t\left(1+\Delta_{R}^{V}\right)}
$$

Experiment: half-life; branching ratio; Q-value \longrightarrow decay-specific ft-value
To obtain Vud \longrightarrow absorb all decay-specific corrections into universal Ft

NS correction reflects extraction of the free box

$$
\delta_{\mathrm{NS}}=2\left[\square_{\gamma W}^{\mathrm{VA}, \text { nucl }}-\square_{\gamma W}^{\mathrm{VA}, \text { free } \mathrm{n}}\right]
$$

Splitting the $\gamma \mathrm{W}$-box into Universal and Nuclear Parts

$R C$ on a free neutron

$$
\begin{aligned}
& \Delta_{R}^{V} \propto F_{3}^{\text {free } \mathrm{n}} \propto \int d x e^{i q x} \sum_{X}\langle p| J_{e m}^{\mu,(0)}(x)|X\rangle\langle X| J_{W}^{\nu,+}(0)|n\rangle \\
& \Delta_{R}^{V}+\delta_{N S} \propto F_{3}^{\text {Nucl. }} \propto \int d x e^{i q x} \sum_{X^{\prime}}\left\langle A^{\prime}\right| J_{e m}^{\mu,(0)}(x)\left|X^{\prime}\right\rangle\left\langle X^{\prime}\right| J_{W}^{\nu,+}(0)|A\rangle
\end{aligned}
$$

Nuclear modification in the lower part of the spectrum

Input in the DR for the universal RC

$\delta_{N S}$ from DR with energy dependence averaged over the spectrum

$$
\delta_{N S}=\frac{2 \alpha}{\pi M} \int_{0}^{\mathrm{few} \mathrm{GeV}^{2}} d Q^{2} \int_{\nu_{\text {thr }}}^{\nu_{\pi}} \frac{d \nu}{\nu}\left[\frac{\nu+2 q}{(\nu+q)^{2}}\left(F_{3}^{(0) N u c l .}-F_{3}^{(0), B}\right)+\frac{2\langle E\rangle}{3} \frac{\nu+3 q}{(\nu+q)^{3}} F_{3}^{(-) N u c l .}\right]
$$

Splitting the $\gamma \mathrm{W}$-box into Universal and Nuclear Parts

Need to know the full nuclear Green's function indices k, I count the nucleon d.o.f. in a nucleus

$$
T_{\mu \nu}^{\gamma W \text { nuc }} \sim \sum_{k, \ell}\langle f| J_{\mu}^{W}(k) G_{\text {nuc }} J_{\nu}^{\mathrm{EM}}(\ell)|i\rangle
$$

(A) same active nucleon
$\delta_{\mathrm{NS}}=$
(B) two nucleons correlated by G

Modified Born

Case (A): non-interacting (=on-shell) neutron propagating between interaction vertices Case (B): all two-nucleon contributions (QE 2p2h and nuclear excitations)

Insert on-shell intermediate states:

$$
T_{\mu \nu}^{A} \rightarrow \sum_{k}\langle f| J_{\mu}^{W}(k)\left[S_{F}^{N} \otimes G_{n u c}^{A^{\prime \prime}}\right] J_{\nu}^{E M}(k)|i\rangle
$$

The elastic nucleon box is replaced by a single N QE knockout

Universal vs. Nuclear Corrections

Towner 1994 and ever since: quenching $\quad \square_{\gamma W}^{\text {quenched Born }}-\square_{\gamma W}^{\mathrm{Born}}=\left[q_{S}^{(0)} q_{A}-1\right] \square_{\gamma W}^{\text {Born }}$
Numerical impact on Ft values $\mathscr{F} t=3072.1(7) s$

$$
[\delta \mathscr{F} t]^{\text {quenched Born }} \approx-1.8(4) \mathrm{s}
$$

From DR perspective: misidentified!
Excited nuclear state, not modified box on free nucleon!
Correct estimate: QE 1-nucleon knockout

QE contribution from $\mathrm{DR}: \delta_{\mathrm{NS}}^{\mathrm{QE}}=\delta_{\mathrm{NS}}^{\mathrm{QE}, 0}+\langle E\rangle \delta_{\mathrm{NS}}^{\mathrm{QE}, 1}$

$$
\delta_{N S}=\frac{2 \alpha}{\pi N M} \int_{0}^{\mathrm{few} \mathrm{GeV}^{2}} d Q^{2} \int_{\nu_{\text {thr }}}^{\nu_{\pi}} \frac{d \nu}{\nu}\left[\frac{\nu+2 q}{(\nu+q)^{2}}\left(F_{3}^{(0) Q E}-F_{3}^{(0), B}\right)+\frac{2\langle E\rangle}{3} \frac{\nu+3 q}{(\nu+q)^{3}} F_{3}^{(-) Q E}\right]
$$

HT value 2018:
$\mathscr{F} t=3072.1(7) s$

Old estimate: $\delta \mathscr{F} t=-(1.8 \pm 0.4) s+(0 \pm 0) s$
New estimate: $\quad \delta \mathscr{F} t=-(3.5 \pm 1.0) s+(1.6 \pm 0.5) s$

Nuclear structure uncertainty tripled! $\mathscr{F} t=(3072 \pm 2) s$

Ab-Initio $\delta_{\text {NS }}$

Only a naive warm-up calculation - ab-initio $\delta_{\text {NS }}$ necessary!

Dispersion theory of δ_{NS} : isospin structure + multipole expansion
Seng, MG 2211.10214
Interesting effects detected:
Mixed isospin structure due to 2B currents (absent for $n, \pi e 3$)
Residue contribution if O^{+}state is not g.s.: anomalous threshold Normal threshold: nuclear excitation spectrum separated from external state by finite energy gap - only virtual; if there are states below - can go on-shell even without external energy ${ }^{\mathrm{m}} \boldsymbol{\nu}$

Residue contribution: contains parts singular at $E_{e}=0$ \longrightarrow should contribute to outer correction δ_{R}^{\prime}

Currently, effort on light systems C-10, O-14
Accessible to NCSM, GFMC, CC, ... Important cross checks should become possible soon (?)

Michael Gennari, Petr Navratil, Garrett King

Ab-Initio δ_{NS} : what to expect?

At present only preliminary results for C-10;
residue due to B -10 levels numerically large (1\%) needs confirmation!

Michael Gennari

Prize is high: if confirmed - nonzero Fierz!
But there are many more questions to raise!
$\delta_{\text {NS }}$ from H \& T: negative for light nuclei

Parent	$\delta_{\mathrm{NS}}(\%)$	
nucleus	Quenched \quad Adopted	

$T_{z}=-1:$			Hardy, Towner 2002 review
${ }^{10} \mathrm{C}$	-0.357	$-0.360(35)$	
${ }^{14} \mathrm{O}$	-0.295	$-0.250(50)$	
${ }^{18} \mathrm{Ne}$	-0.325	$-0.290(35)$	

$$
\square_{\gamma W}^{N u c l} \propto F_{3, \gamma W} \propto F_{3, W W} \propto \frac{d \sigma^{\nu A}}{d x d y}-\frac{d \sigma^{\overline{\nu A} A}}{d x d y}
$$

DR + isospin symmetry:
Common knowledge: ν cross sections always higher than $\bar{\nu}$! Can this pattern be tested experimentally? Is $\delta_{\text {NS }}$ positive/negative definite?

Status of δ_{C}

Isospin symmetry breaking in superallowed β-decay

Tree-level Fermi matrix element

$$
M_{F}=\langle f| \tau^{+}|i\rangle
$$

τ^{+}- Isospin operator
$|i\rangle,|f\rangle$ - members of $\mathrm{I}=1$ isotriplet
If isospin symmetry were exact, $M_{F} \rightarrow M_{0}=\sqrt{2}$
Isospin symmetry is broken in nuclear states (e.g. Coulomb, nucleon mass difference, ...)

In presence of isospin symmetry breaking (ISB):
$\left|M_{F}\right|^{2}=\left|M_{0}\right|^{2}\left(1-\delta_{C}\right)$
ISB correction is crucial for $V_{u d}$ extraction

TABLE X. Corrections $\delta_{R}^{\prime}, \delta_{\mathrm{NS}}$, and δ_{C} that are applied to experimental $f t$ values to obtain $\mathcal{F} t$ values.

Parent nucleus	$\begin{array}{r} \delta_{R}^{\prime} \\ (\%) \end{array}$	δ_{NS} (\%)	$\begin{aligned} & \delta_{C 1} \\ & (\%) \end{aligned}$	$\begin{aligned} & \delta_{C 2} \\ & (\%) \end{aligned}$	$\begin{array}{r} \delta_{C} \\ (\%) \end{array}$
$T_{z}=-1$					
${ }^{10} \mathrm{C}$	1.679	-0.345(35)	0.010(10)	0.165(15)	0.175(18)
${ }^{14} \mathrm{O}$	1.543	-0.245(50)	0.055(20)	0.275(15)	0.330(25)
${ }^{18} \mathrm{Ne}$	1.506	-0.290(35)	0.155(30)	0.405(25)	0.560(39)
${ }^{22} \mathrm{Mg}$	1.466	-0.225(20)	0.010(10)	0.370(20)	0.380(22)
${ }^{26} \mathrm{Si}$	1.439	-0.215(20)	0.030(10)	0.405(25)	0.435(27)
${ }^{30} \mathrm{~S}$	1.423	-0.185(15)	0.155(20)	0.700(20)	0.855(28)
${ }^{34} \mathrm{Ar}$	1.412	-0.180(15)	0.030(10)	0.665(55)	0.695(56)
${ }^{38} \mathrm{Ca}$	1.414	-0.175(15)	0.020(10)	0.745(70)	0.765(71)
${ }^{42} \mathrm{Ti}$	1.427	-0.235(20)	0.105(20)	0.835(75)	0.940(78)
$T_{z}=0$					
${ }^{26 m} \mathrm{Al}$	1.478	0.005(20)	0.030(10)	0.280(15)	0.310(18)
${ }^{34} \mathrm{Cl}$	1.443	-0.085(15)	0.100(10)	0.550(45)	0.650(46)
${ }^{38 m} \mathrm{~K}$	1.440	-0.100(15)	0.105(20)	0.565(50)	0.670(54)
${ }^{42} \mathrm{Sc}$	1.453	0.035(20)	0.020(10)	0.645(55)	0.665(56)
${ }^{46} \mathrm{~V}$	1.445	-0.035(10)	0.075(30)	0.545(55)	0.620(63)
${ }^{50} \mathrm{Mn}$	1.444	-0.040(10)	0.035(20)	0.610(50)	0.645(54)
${ }^{54} \mathrm{Co}$	1.443	-0.035(10)	0.050(30)	0.720(60)	0.770(67)
${ }^{62} \mathrm{Ga}$	1.459	-0.045(20)	0.275(55)	1.20(20)	1.48(21)
${ }^{66} \mathrm{As}$	1.468	-0.060(20)	0.195(45)	$1.35(40)$	1.55(40)
${ }^{70} \mathrm{Br}$	1.486	-0.085(25)	0.445(40)	1.25(25)	1.70(25)
${ }^{74} \mathrm{Rb}$	1.499	-0.075(30)	0.115(60)	1.50 (26)	1.62(27)

J. Hardy, I. Towner, Phys.Rev. C 91 (2014), 025501

HT : calculate $\delta_{C 1, C 2}$ in shell model with phenomenological Woods-Saxon potential locally adjusted:

- Masses of the isobaric multiplet T=1, 0^{+}
- Neutron and proton separation energies
- Known proton radii of stable isotopes

ISB in superallowed β-decay BSM scalar interactions

Conserved vector current \rightarrow Ft constant

Fit to 14 transitions:

If Ft were not constant:
Presence of scalar currents - BSM
Fierz interference term $\sim b_{F} m_{e} / E_{e}$

Ft constant within 2×10^{-4} and $b_{F}=-0.0028(26)$
However: to achieve this precision the model was adjusted locally in each iso-multiplet

- Is this formalism the right tool to assess consistency amongst all the measurements?
- Red squares: even within one iso-multiplet $\left({ }^{34} \mathrm{Ar}-{ }^{34} \mathrm{Cl}-{ }^{34} \mathrm{~S},{ }^{38} \mathrm{Ca}-{ }^{38 m} \mathrm{~K}-{ }^{38} \mathrm{Ar}\right)$ discrepancies between central values may be larger than the total uncertainty
- Shell model does not cover all the model space (e.g. continuum)
- HT method criticized for using incorrect isospin formalism (G. Miller, A. Schwenk)
- Ab initio methods do not warrant such high precision

ISB in superallowed β-decay: nuclear model comparison

TABLE XI. Recent δ_{C} calculations (in percent units) based on models labeled SM-WS (shell-model, Woods-Saxon), SM-HF (shell-model, Hartree-Fock), RPA (random phase approximation), IVMR (isovector monopole resonance), and DFT (density functional theory). Also given is the $\chi^{2} / v, \chi^{2}$ per degree of freedom, from the confidence test discussed in the text. J. Hardy, I. Towner, Phys.Rev. C 91 (2014), 025501

	SM-WS	SM-HF	RPA			IVMR ${ }^{\text {a }}$	DFT
			PKO1	DD-ME2	PC-F1		
$T_{z}=-1$							
${ }^{10} \mathrm{C}$	0.175	0.225	0.082	0.150	0.109	0.147	0.650
${ }^{14} \mathrm{O}$	0.330	0.310	0.114	0.197	0.150		0.303
${ }^{22} \mathrm{Mg}$	0.380	0.260					0.301
${ }^{34} \mathrm{Ar}$	0.695	0.540	0.268	0.376	0.379		
${ }^{38} \mathrm{Ca}$	0.765	0.620	0.313	0.441	0.347		
$T_{z}=0$							
${ }^{26 m} \mathrm{Al}$	0.310	0.440	0.139	0.198	0.159		0.370
${ }^{34} \mathrm{Cl}$	0.650	0.695	0.234	0.307	0.316		
${ }^{38 m} \mathrm{~K}$	0.670	0.745	0.278	0.371	0.294	0.434	
${ }^{42} \mathrm{Sc}$	0.665	0.640	0.333	0.448	0.345		0.770
${ }^{46} \mathrm{~V}$	0.620	0.600					0.580
${ }^{50} \mathrm{Mn}$	0.645	0.610					0.550
${ }^{54} \mathrm{Co}$	0.770	0.685	0.319	0.393	0.339		0.638
${ }^{62} \mathrm{Ga}$	1.475	1.205					0.882
${ }^{74} \mathrm{Rb}$	1.615	1.405	1.088	1.258	0.668		1.770
χ^{2} / ν	1.4	6.4	4.9	3.7	6.1		$4.3{ }^{\text {b }}$

$\mathrm{HT}: \chi^{2}$ as criterion to prefer SM-WS;
$\mathrm{V}_{\text {ud }}$ and limits on BSM strongly depend on nuclear model
Nuclear community embarked on ab-initio δ_{C} calculations Especially interesting for light nuclei accessible to different techniques!

Electroweak radii constrain ISB in superallowed β-decay

δ_{C} generally expected to be dominated by Coulomb repulsion between protons (hence C) In this picture we can connect δ_{C} to measurable quantities: charge and weak nuclear radii!

Seng, MG 2208.03037; 2304.03800
Seng 2212.02681
Nuclear Hamiltonian with ISB potential: $H=H_{0}+V_{\text {ISB }} \approx H_{0}+V_{C}$
Coulomb potential for uniformly charged sphere $\quad V_{C} \approx-\frac{Z e^{2}}{4 \pi R_{C}^{3}} \sum_{i=1}^{A}\left(\frac{1}{2} r_{i}^{2}-\frac{3}{2} R_{C}^{2}\right)\left(\frac{1}{2}-\hat{T}_{z}(i)\right)$
ISB due to IV monopole, $V_{\text {ISB }} \approx \frac{Z e^{2}}{8 \pi R^{3}} \sum_{i} r_{i}^{2} \hat{T}_{z}(i)=\frac{Z e^{2}}{8 \pi R^{3}} \hat{M}_{0}^{(1)}$
Same op generates nuclear radii, $\quad R_{p / n, \phi}=\sqrt{\frac{1}{X}\langle\phi| \sum_{i=1}^{A} r_{i}^{2}\left(\frac{1}{2} \mp \hat{T}_{z}(i)\right)|\phi\rangle}$
Construct ISB-sensitive combinations of radii: directly related to electroweak form factors!

$$
\Delta M_{A}^{(1)} \equiv\langle f| M_{+1}^{(1)}|i\rangle+\langle f| M_{0}^{(1)}|f\rangle \quad \Delta M_{B}^{(1)} \equiv \frac{1}{2}\left(Z_{1} R_{p, 1}^{2}+Z_{-1} R_{p,-1}^{2}\right)-Z_{0} R_{p, 0}^{2}
$$

Electroweak radii constrain ISB in superallowed β-decay

Employ the correct isospin formalism by Schwenk, Miller 0805.0603; 0910.2790
δ_{C} expressed via the same set of matrix elements!

$$
\begin{aligned}
& \delta_{\mathrm{C}}= \frac{1}{3} \sum_{a} \frac{|\langle a ; 0\|V\| g ; 1\rangle|^{2}}{\left(E_{a, 0}-E_{g, 1}\right)^{2}}+\frac{1}{2} \sum_{a \neq g} \frac{|\langle a ; 1|| V| | g ; 1\rangle\left.\right|^{2}}{\left(E_{a, 1}-E_{g, 1}\right)^{2}}-\frac{5}{6} \sum_{a} \frac{|\langle a ; 2|| V| | g ; 1\rangle\left.\right|^{2}}{\left(E_{a, 2}-E_{g, 1}\right)^{2}}+\mathcal{O}\left(V^{3}\right) \\
& \Delta M_{A}^{(1)}=\frac{1}{3} \Gamma_{0}+\frac{1}{2} \Gamma_{1}+\frac{7}{6} \Gamma_{2}+\mathcal{O}\left(V^{2}\right) \quad \Gamma_{T}=-\sum_{a} \frac{|\langle a ; T|| V| | g ; 1\rangle\left.\right|^{2}}{E_{a, T}-E_{g, 1}} \\
& \Delta M_{B}^{(1)}=\frac{2}{3} \Gamma_{0}-\Gamma_{1}+\frac{1}{3} \Gamma_{2}+\mathcal{O}\left(V^{2}\right),
\end{aligned}
$$

Different scaling with ISB: $\delta_{C} \sim \mathrm{ISB}^{2}, \Delta M_{A}^{(1)} \sim \mathrm{ISB}^{1}, \Delta M_{B}^{(1)} \sim \mathrm{ISB}^{3}$

Transitions	$\delta_{\text {C }}(\%)$					$\Delta M_{A}^{(1)}\left(\mathrm{fm}^{2}\right)$					$\Delta M_{B}^{(1)}\left(\mathrm{fm}^{2}\right)$				
	WS	DFT	HF	RPA	Micro	WS	DFT	HF	RPA	Micro	WS	DFT	HF	RPA	Micro
${ }^{26 m} \mathrm{Al} \rightarrow{ }^{26} \mathrm{Mg}$	0.310	0.329	0.30	0.139	0.08	-2.2	-2.3	-2.1	-1.0	-0.6	-0.12	-0.12	-0.11	-0.05	-0.03
${ }^{34} \mathrm{Cl} \rightarrow{ }^{34} \mathrm{~S}$	0.613	0.75	0.57	0.234	0.13	-5.0	-6.1	-4.6	-1.9	-1.0	-0.17	-0.21	-0.16	-0.06	-0.04
${ }^{38 m} \mathrm{~K} \rightarrow{ }^{38} \mathrm{Ar}$	0.628	1.7	0.59	0.278	0.15	-5.4	-14.6	-5.1	-2.4	-1.3	-0.15	-0.42	-0.15	-0.07	-0.04
${ }^{42} \mathrm{Sc} \rightarrow{ }^{42} \mathrm{Ca}$	0.690	0.77	0.42	0.333	0.18	-6.2	-6.9	-3.8	-3.0	-1.6	-0.15	-0.17	-0.09	-0.07	-0.04
${ }^{46} \mathrm{~V} \rightarrow{ }^{46} \mathrm{Ti}$	0.620	0.563	0.38	1	0.21	-5.8	-5.3	-3.6	1	-2.0	-0.12	-0.11	-0.08	1	-0.04
${ }^{50} \mathrm{Mn} \rightarrow{ }^{50} \mathrm{Cr}$	0.660	0.476	0.35	1	0.24	-6.4	-4.6	-3.4	1	-2.4	-0.12	-0.09	-0.06	1	-0.04
${ }^{54} \mathrm{Co} \rightarrow{ }^{54} \mathrm{Fe}$	0.770	0.586	0.44	0.319	0.28	-7.8	-5.9	-4.4	-3.2	-2.8	-0.13	-0.10	-0.07	-0.05	-0.05

Can discriminate model predictions for ΔM_{A} from measured radii $\longrightarrow>$ test models for δ_{C}

Electroweak radii constrain ISB in superallowed β-decay

Conversely: predict transition weak radius $R_{C W}^{2}$ from known charge radii across isotriplet Daughter charge radius used for recoil corrections to ft - but from isospin symmetry

$$
R_{\mathrm{CW}}^{2}=R_{\mathrm{Ch}, 1}^{2}+Z_{0}\left(R_{\mathrm{Ch}, 0}^{2}-R_{\mathrm{Ch}, 1}^{2}\right)=R_{\mathrm{C}, 1}^{2}+\frac{Z_{-1}}{2}\left(R_{\mathrm{Ch},-1}^{2}-R_{\mathrm{Ch}, 1}^{2}\right)
$$

Seng 2212.02681

A	$R_{\text {Ch,-1 }}(\mathrm{fm})$	$R_{\text {Ch, } 0}(\mathrm{fm})$	$R_{\text {Ch, } 1}(\mathrm{fm})$	$R_{\text {Ch, } 1}^{2}\left(\mathrm{fm}^{2}\right)$	$R_{\text {CW }}^{2}\left(\mathrm{fm}^{2}\right)$
10	${ }_{6}^{10} \mathrm{C}$	${ }_{5}^{10} \mathrm{~B}(\mathrm{ex})$	${ }_{4}^{10} \mathrm{Be}: 2.3550(170)^{\text {a }}$	5.546(80)	N/A
14	${ }_{8}^{14} \mathrm{O}$	${ }_{7}^{14} \mathrm{~N}(\mathrm{ex})$	${ }_{6}^{14} \mathrm{C}: 2.5025(87)^{\text {a }}$	$6.263(44)$	N/A
18	${ }_{10}^{18} \mathrm{Ne}: 2.9714(76)^{\text {a }}$	${ }_{9}^{18} \mathrm{~F}(\mathrm{ex})$	${ }_{8}^{18} \mathrm{O}: 2.7726(56)^{\text {a }}$	$7.687(31)$	13.40(53)
22	${ }_{12}^{22} \mathrm{Mg}: 3.0691(89)^{\text {b }}$	${ }_{11}^{22} \mathrm{Na}(\mathrm{ex})$	${ }_{10}^{22} \mathrm{Ne}: 2.9525(40)^{\mathrm{a}}$	$8.717(24)$	12.93(71)
26	${ }_{14}^{26} \mathrm{Si}$	${ }_{13}^{26 m} \mathrm{Al}$	${ }_{12}^{26} \mathrm{Mg}: 3.0337(18)^{\text {a }}$	$9.203(11)$	N/A
30	${ }_{16}^{30} \mathrm{~S}$	${ }_{15}^{30} \mathrm{P}(\mathrm{ex})$	${ }_{14}^{30}$ Si: $3.1336(40)^{\text {a }}$	9.819(25)	N/A
34	${ }_{18}^{34}$ Ar: $3.3654(40)^{\text {a }}$	${ }_{17}^{34} \mathrm{Cl}$	${ }_{16}^{34} \mathrm{~S}: 3.2847(21)^{\text {a }}$	10.789(14)	15.62(54)
38	${ }_{20}^{38} \mathrm{Ca:} 3.467(1)^{\text {c }}$	${ }_{19}^{38 m} \mathrm{~K}: 3.437(4)^{\text {d }}$	${ }_{18}^{38} \mathrm{Ar}: 3.4028(19)^{\text {a }}$	11.579(13)	15.99(28)
42	${ }_{22}^{42} \mathrm{Ti}$	${ }_{21}^{42}$ Sc: $3.5702(238){ }^{\text {a }}$	${ }_{20}^{42} \mathrm{Ca}: 3.5081(21)^{\text {a }}$	12.307(15)	21.5(3.6)
46	${ }_{24}^{46} \mathrm{Cr}$	${ }_{23}^{46} \mathrm{~V}$	${ }_{22}^{46}$ Ti: $3.6070(22)^{\text {a }}$	13.010(16)	N/A
50	${ }_{26}^{50} \mathrm{Fe}$	${ }_{25}^{50} \mathrm{Mn}: 3.7120(196){ }^{\text {a }}$	${ }_{24}^{50} \mathrm{Cr}: 3.6588(65)^{\text {a }}$	13.387(48)	23.2(3.8)
54	${ }_{28}^{54} \mathrm{Ni}: 3.738(4)^{\text {e }}$	${ }_{27}^{54} \mathrm{Co}$	${ }_{26}^{54} \mathrm{Fe}: 3.6933(19)^{\text {a }}$	13.640(14)	18.29(92)
62	${ }_{32}^{62} \mathrm{Ge}$	${ }_{31}^{62} \mathrm{Ga}$	${ }_{30}^{62} \mathrm{Zn}: 3.9031(69)^{\text {b }}$	15.234(54)	N/A
66	${ }_{34}^{66} \mathrm{Se}$	${ }_{33}^{66} \mathrm{As}$	${ }_{32}^{66} \mathrm{Ge}$	N/A	N/A
70	${ }_{36}^{70} \mathrm{Kr}$	${ }_{35}^{70} \mathrm{Br}$	${ }_{34}^{70} \mathrm{Se}$	N/A	N/A
74	${ }_{38}^{74} \mathrm{Sr}$	${ }_{37}^{74} \mathrm{Rb}: 4.1935(172)^{\text {b }}$	${ }_{36}^{74} \mathrm{Kr}: 4.1870(41)^{\text {a }}$	17.531(34)	19.5(5.5)

Potential systematic shift by ~ 0.001 to most $f t$ values $\rightarrow>$ would alleviate unitarity deficit
Theory strategy: compute all radii AND δ_{C} - check pattern, compare to available data, motivate exp.

Outlook for $V_{u d}$

Axial charge g_{A} outlook

$$
\begin{gathered}
g_{A}=-1.2723(23) \\
\text { pre-2018 }
\end{gathered} \begin{gathered}
g_{A}=-1.2764(6) \\
\text { PERKEO-III (big A) }
\end{gathered} \quad \text { But } \quad \begin{gathered}
g_{A}=-1.2677(28) \\
\text { aSPECT (little a) }
\end{gathered}
$$

$$
\text { PERKEO-III } \quad \delta g_{A} / g_{A} \approx 0.04 \%
$$

g_{A} on the lattice

$$
\begin{array}{cl}
g_{A}^{\text {FLAG } 2019}=-1.251(33) & \\
g_{A}^{\text {CalLat18 }}=-1.271(12) & \text { Chang et al., 1805.12130, Nature } \\
g_{A}^{\text {CalLat22 }}=-1.264(9) & \text { Andre Walker-Loud }- \text { preliminary }
\end{array}
$$

g_{V} not renormalized by strong interaction: tests of EW SM
 g_{A} is renormalized - precision tests of QCD

RC to g_{A} to compare lattice to experiment:
No surprises from γW-box
Unexpectedly large vertex correction $\sim 1 \%$!!! Isospin breaking from $\pi^{ \pm}-\pi^{0}$ mass difference However: unknown counterterm

Hayen, PRD 103 (2021) 11, 113001
MG, C-Y Seng, JHEP 10 (2021) 153

Neutron lifetime τ_{n} outlook

Bottle (ultra-cold neutrons)
$\mathrm{UCN} \tau 3 \quad \tau_{n}=877.75(28)_{-12}^{+16}$
Plans (2023 on) $\delta \tau_{n}=0.1 \mathrm{~s}$

Current limitation:
Beam-bottle discrepancy

Beam (cold neutrons)
BL1 (NIST) $\quad \tau_{n}=887.7(2.3) \quad$ Yue et al, PRL 111 (2013) 222501
BL2 (2023 on) $\rightarrow \delta \tau_{n}<2 \mathrm{~s}$
BL3 (2026 on) $\rightarrow \delta \tau_{n}<0.3 \mathrm{~s}$

Superallowed (nuclear and pion) Outlook

Superallowed nuclear:

Experiment - not critical (FRIB, ISOLDE...) $\quad\left|V_{u d}^{0^{+}-0^{+}}\right|=0.97370(1)_{\text {exp,nucl }}(3)_{N S}(1)_{R C}$
NS uncertainty currently largest - work necessary and ongoing
Dispersion formalism applicable to nuclear calculations
Seng, $M G$, 2211.10214
Collaboration started for light nuclei (C-10, O-14)
Pastore \& Co [Green-Function Monte Carlo]
Navratil \& Co [No-Core Shell Model]
ISB uncertainty may be underestimated - work ongoing
Related to charge and weak radii of the superallowed isotriplet
Seng, MG, 2208.03037
Direct ab-initio calculations (e.g. coupled clusters) - for medium nuclei
Semileptonic pion (superallowed meson):
Theory in great shape!

$$
\left|V_{u d}\right|_{\pi e 3}=0.9740(28)_{B R}(1)_{t h}
$$

Experiment — future PIONEER @ PSI: o.o.m. improvement!
Phase I 2029 on
Phase II: improve $\mathrm{BR}(\pi e 3)$ by factor 3
Phase III: improve $\mathrm{BR}(\pi e 3)$ by factor 10

Status of $V_{u s}$

Vus Status and Outlook

$$
\begin{aligned}
& \Gamma\left(K_{\ell 3(\gamma)}\right)=\frac{C_{K}^{2} G_{F}^{2} m_{K}^{5}}{192 \pi^{3}} S_{\mathrm{EW}}\left|V_{u s}\right|^{2}\left|f_{+}^{K^{0} \pi^{-}}(0)\right|^{2} I_{K \ell}\left(\lambda_{K \ell}\right)\left(1+2 \Delta_{K}^{S U(2)}+2 \Delta_{K \ell}^{\mathrm{EM}}\right) \\
& \text { with } K \in\left\{K^{+}, K^{v}\right\} ; \ell \in\{e, \mu\} \text {, and: } \\
& C_{K^{2}} \quad 1 / 2 \text { for } K^{+}, 1 \text { for } K^{0} \\
& S_{\mathrm{EW}} \quad \text { Universal SD EW correction (1.0232) }
\end{aligned}
$$

Inputs from experiment:

$\Gamma\left(K_{\ell 3(\gamma)}\right) \quad$ Rates with well-determined treatment of radiative decays:

- Branching ratios
- Kaon lifetimes
$I_{K t}\left(\{\lambda\}_{K \ell}\right) \quad$ Integral of form factor over phase space: λ s parameterize evolution in t

Inputs from theory:

$f_{+}^{K^{0} \pi^{-}}(0) \quad$ Hadronic matrix element (form factor) at zero momentum transfer ($t=0$)
$\Delta_{K} S U(2) \quad$ Form-factor correction for $S U(2)$ breaking

Form-factor correction for long-distance EM effects

$V_{\text {us }}$ from Kl3 decays

$\left|V_{u s}\right| f_{+}(0)$ from world data: 2022 update

Evaluations of $f_{+}(0)$

FLAG '21 averages:

$$
N_{f}=2+1+1 \quad f_{+}(0)=0.9698(17)
$$

Uncorrelated average of:
FNAL/MILC 18: HISQ, $5 \mathrm{sp}, m_{\pi} \rightarrow 135 \mathrm{MeV}$, new ensembles added to FNAL/MILC 13E ETM 16: TwMW, $3 \mathrm{sp}, m_{\pi} \rightarrow 210 \mathrm{MeV}$, full q^{2} dependence of f_{+}, f_{0}

$$
N_{f}=2+1 \quad f_{+}(0)=0.9677(27)
$$

Uncorrelated average of:
FNAL/MILC 12I: HISQ, $m_{\pi} \sim 300 \mathrm{MeV}$
RBC/UKQCD 15A: DWF, $m_{\pi} \rightarrow 139 \mathrm{MeV}$
JLQCD 17 not included because only single lattice spacing used

ChPT $\quad f_{+}(0)=0.970(8)$

Ecker 15, Chiral Dynamics 15:
Calculation from Bijnens 03,
with new LECs from Bijnens, Ecker 14

$$
\begin{array}{ll}
\boldsymbol{K}_{\mu \mathbf{3}} & V_{u s}=0.22330(35)_{\exp }(39)_{\mathrm{lat}}(8)_{\mathrm{IB}} \\
\begin{array}{l}
f(0)=0.9698(17) \\
N_{f}=2+1+1
\end{array} & \Delta^{(1)} \mathbf{C K M}=-0.00176(16)_{\exp +\mathrm{IB}}(17)_{\mathrm{lat}}(51)_{u d} \quad=-3.1 \sigma
\end{array}
$$

$V_{\text {us }} / V_{\text {ud }}$ from Kl2 decays

$$
\frac{\left|V_{u s}\right|}{\left|V_{u d}\right|} \frac{f_{K}}{f_{\pi}}=\left(\frac{\Gamma_{K_{\mathrm{H} 2(\gamma)}} m_{\pi^{ \pm}}}{\Gamma_{\pi_{\mu 2(\gamma)}} m_{K^{ \pm}}}\right)^{1 / 2} \frac{1-m_{\mu}^{2} / m_{\pi^{ \pm}}^{2}}{1-m_{\mu}^{2} / m_{K^{ \pm}}^{2}}\left(1-\frac{1}{2} \delta_{\mathrm{EM}}-\frac{1}{2} \delta_{S U(2)}\right)
$$

Inputs from experiment: Inputs from theory:

From $K^{ \pm} \mathrm{BR}$ fit:
$B R\left(K^{ \pm}{ }_{\mu 2(\gamma)}\right)=0.6358(11)$
$\tau_{K \pm}=12.384(15) \mathrm{ns}$
From PDG:
$\mathrm{BR}\left(\pi^{ \pm}{ }_{\mu 2(\gamma)}\right)=0.9999$
$\tau_{\pi \pm}=26.033(5) \mathrm{ns}$
$\delta_{\text {EM }}$ Long-distance EM corrections
$\delta_{S U(2)}$ Strong isospin breaking $f_{K} / f_{\pi} \rightarrow f_{K \pm} / f_{\pi \pm}$
f_{K} / f_{π} Ratio of decay constants Cancellation of lattice-scale uncertainties from ratio NB: Most lattice results already corrected for $S U(2)$-breaking: $f_{K \pm} / f_{\pi \pm}$

Vus / Vud from Kl2 decays

Giusti et al.
 PRL 120 (2018)

First lattice calculation of EM corrections to \boldsymbol{P}_{12} decays

- Ensembles from ETM
- $N_{f}=2+1+1$ Twisted-mass Wilson fermions
$\delta_{S U(2)}+\delta_{\text {EM }}=-0.0122(16)$
- Uncertainty from quenched QED included (0.0006)

Compare to ChPT result from Cirigliano, Neufeld '11:

$$
\delta_{S U(2)}+\delta_{\mathrm{EM}}=-0.0112(21)
$$

Di Carlo et al.

PRD 100 (2019)

Update, extended description, and systematics of Giusti et al.
$\delta_{S U(2)}+\delta_{\mathrm{EM}}=-0.0126(14)$

$$
\left|V_{u S} / V_{u d}\right| \times f_{K} f f_{\pi}=0.27679(28)_{\mathrm{BR}}(20)_{c o r r}
$$

Lattice results for f_{K} / f_{π}

$$
N_{f}=2+1+1
$$

ETM 21 New!
1.1995(44)(7)

TM quarks, 3sp, $m_{\pi} \rightarrow$ physical
Not yet in FLAG '21 average! Replaces ETM 14E in our average

Miller 20	$1.1964(44)$
FNAL/MILC17	$1.1980(+13-19)$
HPQCD13A	$1.1948(15)(18)$

$N_{f}=2+1$
QCDSF/UKQCD17 1.192(10)(13)
BMW16 1.182(10)(26)
RBC/UKQCD14B 1.1945(45)
BMW10 1.192(7)(6)
HPQCD/UKQCDO7
$f_{K} / f_{\pi}=1.1978(22) \quad S=1.1$
Average is problematic with correlations assumed by FLAG, dominated by FNAL/MILC17 (symmetrized)

Share ensembles

Partially correlated uncertainties using FLAG prescription
$f_{K} / f_{\pi}=1.1946(34)^{*}$

* MILC10 omitted from average
because unpublished

$$
\begin{array}{ll}
K_{\mu 2} & V_{u s} V_{u d}=0.23108(23)_{\exp }(42)_{\mathrm{lat}}(16)_{\mathrm{IB}} \\
f_{K} / f_{\pi}=1.1978(22) & V_{u s}=0.22504(28)_{\exp }(41)_{\mathrm{lat}}(06)_{u d} \\
N_{f}=2+1+1 & \Delta^{(2)} \mathrm{CKM}=-0.00098(13)_{\exp }(19)_{\mathrm{lat}}(53)_{u d} \quad=-1.8 \sigma
\end{array}
$$

$$
\Delta V_{u s}\left(K_{\mu 3}-K_{\mu 2}\right)=-0.0174(73)-2.4 \sigma
$$

Existing data from BNL865, KTeV, ISTRA+, KLOE, NA48, NA48/2 Upcoming data from KLOE-2 and NA62

Cabibbo Angle Anomaly as a BSM Signal

Cabibbo Angle Anomaly as a BSM Signal

$$
\begin{aligned}
& \text { Leptonic interactions } \\
& \mathcal{L}_{C C}^{(\mu)}=-\frac{G_{F}^{(0)}}{\sqrt{2}}\left(1+\epsilon_{L}^{(\mu)}\right) \bar{e} \gamma^{\rho}\left(1-\gamma_{5}\right) \nu_{e} \cdot \bar{\nu}_{\mu} \gamma_{\rho}\left(1-\gamma_{5}\right) \mu+\ldots \\
& \frac{G_{F}^{(\mu)} V_{u d}}{\sqrt{2}}\left(1-\epsilon_{L}^{(\mu)}\right) \\
& \mathcal{L}_{\mathrm{CC}}=-\frac{G_{F}^{(0)} V_{u d}}{\sqrt{2}} \times\left[\left(\delta^{a b}+\epsilon_{L}^{a b}\right) \quad \bar{e}_{a} \gamma_{\mu}\left(1-\gamma_{5}\right) \nu_{b} \cdot \bar{u} \gamma^{\mu}\left(1-\gamma_{5}\right) d\right. \\
& +\epsilon_{R}^{a b} \quad \bar{e}_{a} \gamma_{\mu}\left(1-\gamma_{5}\right) \nu_{b} \cdot \bar{u} \gamma^{\mu}\left(1+\gamma_{5}\right) d \\
& +\epsilon_{S}^{a b} \bar{e}_{a}\left(1-\gamma_{5}\right) \nu_{b} \cdot \bar{u} d \\
& -\epsilon_{P}^{a b} \bar{e}_{a}\left(1-\gamma_{5}\right) \nu_{b} \cdot \bar{u} \gamma_{5} d \\
& \left.+\epsilon_{T}^{a b} \quad \bar{e}_{a} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) \nu_{b} \cdot \bar{u} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) d\right]+ \text { h.c. } \\
& \varepsilon_{i} \sim(\mathrm{v} / \Lambda)^{2} \\
& \text { For global analysis of } \\
& \text { beta decays in this } \\
& \text { framework see: } \\
& \text { Falkowski, Gonzalez- } \\
& \text { Alonso, Naviliat-Cuncic, }
\end{aligned}
$$

Cabibbo Angle Anomaly as a BSM Signal

Connect beta decays to UV physics via EFT: Wilson coeffs. of 4-fermion operators

$$
\begin{aligned}
\left|\bar{V}_{u d}\right|_{0^{+} \rightarrow 0^{+}}^{2} & =\left|V_{u d}\right|^{2}\left(1+2\left(\epsilon_{L}^{e e}+\epsilon_{R}-\epsilon_{L}^{(\mu)}\right)+c_{0^{+}}^{S}(Z) \epsilon_{S}^{e e}\right) \\
\left|\bar{V}_{u d}\right|_{n \rightarrow p e \bar{\nu}}^{2} & =\left|V_{u d}\right|^{2}\left(1+2\left(\epsilon_{L}^{e e}+\epsilon_{R}-\epsilon_{L}^{(\mu)}\right)+c_{n}^{S} \epsilon_{S}^{e e}+c_{n}^{T} \epsilon_{T}^{e e}\right) \\
\left|\bar{V}_{u s}\right|_{K e 3}^{2} & =\left|V_{u s}\right|^{2}\left(1+2\left(\epsilon_{L}^{e e(s)}+\epsilon_{R}^{(s)}-\epsilon_{L}^{(\mu)}\right)\right) \\
\left|\bar{V}_{u d}\right|_{\pi_{e 3}}^{2} & =\left|V_{u d}\right|^{2}\left(1+2\left(\epsilon_{L}^{e e}+\epsilon_{R}-\epsilon_{L}^{(\mu)}\right)\right) \\
\left|\bar{V}_{u s}\right|_{K_{\mu 2}}^{2} & =\left|V_{u s}\right|^{2}\left(1+2\left(\epsilon_{L}^{\mu \mu(s)}-\epsilon_{R}^{(s)}-\epsilon_{L}^{(\mu)}\right)-2 \frac{B_{0}}{m_{\ell}} \epsilon_{P}^{\mu \mu(s)}\right) \\
\left|\bar{V}_{u d}\right|_{\pi_{\mu 2}}^{2} & =\left|V_{u d}\right|^{2}\left(1+2\left(\epsilon_{L}^{\mu \mu}-\epsilon_{R}-\epsilon_{L}^{(\mu)}\right)-2 \frac{B_{0}}{m_{\ell}} \epsilon_{P}^{\mu \mu}\right)
\end{aligned}
$$

Three distinct Cabibbo unitarity deficits may be defined

$$
\begin{array}{ll}
\Delta_{\mathrm{CKM}}^{(1)}=\left|V_{u d}^{\beta}\right|^{2}+\left|V_{u s}^{K_{\ell 3}}\right|^{2}-1 & V_{u s} \text { from } K_{\ell 3}+V_{u d} \text { from } \beta \text { decays } \\
\Delta_{\mathrm{CKM}}^{(2)}=\left|V_{u d}^{\beta}\right|^{2}+\left|V_{u s}^{K_{t 2} / \pi_{\ell 2}, \beta}\right|^{2}-1 & V_{u s} / V_{u d} \text { from } K_{\mu 2}+V_{u d} \text { from } \beta \text { decays } \\
\Delta_{\mathrm{CKM}}^{(3)}=\left|V_{u d}^{K_{\ell 2} / \pi_{\ell 2}, K_{\ell 3}}\right|^{2}+\left|V_{u s}^{K_{\ell 3}}\right|^{2}-1 & V_{u s} \text { from } K_{\ell 3}+V_{u s} / V_{u d} \text { from } K_{\mu 2}
\end{array}
$$

Cabibbo Angle Anomaly as a BSM Signal

RH currents in ud- and us-sectors
$V_{u d}, V_{\text {us, }} V_{u d} / V_{\text {us }}$ overconstrained, can solve all tensions

Cirigliano et al, 2208.11707

$$
\begin{aligned}
& \Delta_{\mathrm{CKM}}^{(1)}=2 \epsilon_{R}+2 \Delta \epsilon_{R} V_{u s}^{2}, \\
& \Delta_{\mathrm{CKM}}^{(2)}=2 \epsilon_{R}-2 \Delta \epsilon_{R} V_{u s}^{2}, \\
& \Delta_{\mathrm{CKM}}^{(3)}=2 \epsilon_{R}+2 \Delta \epsilon_{R}\left(2-V_{u s}^{2}\right) \\
& \\
& \epsilon_{R}=-0.69(27) \times 10^{-3} \\
& \Delta \epsilon_{R}=-3.9(1.6) \times 10^{-3} \\
& \Lambda_{\mathrm{R}} \sim 5-10 \mathrm{TeV} \quad 2.5 \sigma \text { effect }
\end{aligned}
$$

$$
\begin{aligned}
\left|\bar{V}_{u d}\right|_{0^{+} \rightarrow 0^{+}}^{2} & =\left|V_{u d}\right|^{2}\left(1+2 \epsilon_{R}\right) \\
\left|\bar{V}_{u d}\right|_{n \rightarrow p e \bar{\nu}}^{2} & =\left|V_{u d}\right|^{2}\left(1+2 \epsilon_{R}\right) \\
\left|\bar{V}_{u s}\right|_{K e 3}^{2} & =\left|V_{u s}\right|^{2}\left(1+2 \epsilon_{R}^{(s)}\right) \\
\left|\bar{V}_{u d}\right|_{\pi_{e 3}}^{2} & =\left|V_{u d}\right|^{2}\left(1+2 \epsilon_{R}\right) \\
\left|\bar{V}_{u s}\right|_{K_{\mu 2}}^{2} & =\left|V_{u s}\right|^{2}\left(1-2 \epsilon_{R}^{(s)}\right) \\
\left|\bar{V}_{u d}\right|_{\pi_{\mu 2}}^{2} & =\left|V_{u d}\right|^{2}\left(1-2 \epsilon_{R}\right)
\end{aligned}
$$

Beta decay vs. LHC on S,T Complementarity now and in the future!

Gonzalez-Alonso et al 1803.08732

Summary: Status of V_{ud} and top-row CKM unitarity

3-sigma CKM unitarity deficit established
Significant shift in $V_{\text {ud }}$ due to shift in Δ_{R}^{V}
EW boxes: DR + Exp. + Lattice QCD + ChPT +...
Calculation for Δ_{R}^{V} confirmed by several groups
Formalism applied to $K \ell 3$ decays;
Puzzles: $K \ell 2$ - $K \ell 3$, Beam-Bottle n-lifetime
Unified universal RC Δ_{R}^{V} and nuclear correction $\delta_{\text {NS }}$
Both SM $\left(\mathrm{V}_{\mathrm{ud}}\right)$ and $\mathrm{BSM}\left(\mathrm{b}_{\mathrm{F}}\right)$ tests depend on δ_{C} and δ_{NS}

Direct lattice QCD evaluation of the γW-box
Modern ab initio theory of δ_{C} and δ_{NS} underway!
BSM: RH currents across light and strange quarks may resolve all puzzles

