Simultaneous SM & BSM calculations for allowed & forbidden β-decays

Ayala Glick-Magid

UNIVERSITY of WASHINGTON

INT 2023

Why are we here?

- The Standard Model is incomplete (Dark matter, neutrino's mass)
- Experiments are searching for BSM signatures
- ► LHC \rightarrow TeV energy frontier
- Nuclear phenomena are the precision frontier:
 - > New experiments will have $\sim 0.1\%$ level precision
 - Sensitive to new physics at the TeV scale
- The theoretical goal: BSM predictions vs. SM corrections

Introduction: Weak interaction & β -decay BSM Searches

Summary: We Can Do It (and more)

BSM Searches

Weak interaction

Low energy reaction of leptons with nucleons

$$\begin{aligned} \hat{\mathcal{H}}_{W} \sim C \hat{j}(\vec{x}) & \downarrow \\ \downarrow & \downarrow \\ A \text{-priori:} & \begin{cases} \text{Scalar} (C_{S}) \\ \text{PseudoScalar} (C_{P}) \\ \text{Vector} (C_{V}) \\ \text{Axial vector} (C_{A}) \\ \text{Tensor} (C_{T}) \end{cases} \end{aligned}$$

Theory: C.N. Yang and T.D. Lee

BSM Searches

Weak interaction

Low energy reaction of leptons with nucleons

 $\begin{aligned} \widehat{\mathcal{H}}_{W} \sim C \, \widehat{j}(\vec{x}) & \downarrow \\ \downarrow & \downarrow \\ A-priori: & \mathsf{Scalar} \, (C_{S}) \\ \mathsf{PseudoScalar} \, (C_{P}) \\ \mathsf{Vector} \, (C_{V}) \\ \mathsf{Axial vector} \, (C_{A}) \\ \mathsf{Tensor} \, (C_{T}) \end{aligned}$

Theory: C.N. Yang and T.D. Lee

Experiment: C.S. Wu

BSM Searches

Weak interaction

Low energy reaction of leptons with nucleons

A-priori:
$$\langle Vector (C_V) \rangle$$

Axial vector (
$$C_A$$

Tensor (C_T)

Theory: C.N. Yang and T.D. Lee

Experiment: C.S. Wu

The SM is incomplete

>> Ongoing searches for C_S, C_P, C_T in precision *nuclear* β -decay experiments

Nuclear β -decay

Low momentum transfer: $q \sim 0 - 10 \text{ MeV/c}$

Beta decay, Khan Academy, cdn.kastatic.org/ka-perseusimages/8d978444f15f9bbc3bcadb0549816bc7e264b977.svg

BSM Searches

Nuclear β -decay

Low momentum transfer: $q \sim 0 - 10 \text{ MeV/c}$

"Allowed"
$$0^+$$
: Fermi(when $q \rightarrow 0$) 1^+ : Gamow-Teller

"Forbidden" (vanish for $q \rightarrow 0$)

• All the rest
$$(J^{\Delta \pi})$$

Beta decay, Khan Academy, cdn.kastatic.org/ka-perseus-

BSM Searches

Nuclear β -decay formalism

Hayen et al., RMP 2018

q - momentum transfer

- $\vec{\beta} \equiv \frac{\vec{k}}{\epsilon}$ electron's normalized momentum
- $\hat{v} \equiv \frac{\vec{v}}{v}$ neutrino's normalized momentum

 $\vec{\beta} \equiv \frac{\vec{k}}{\epsilon}$ - electron's normalized momentum

 $\hat{v} \equiv \frac{\overline{v}}{n}$ - neutrino's normalized momentum

Hayen et al., RMP 2018

q - momentum transfer $\vec{\beta} \equiv \frac{\vec{k}}{\epsilon}$ - electron's normalized momentum $\hat{v} \equiv \frac{\vec{v}}{v}$ - neutrino's normalized momentum Nuclear β -decay formalism **Nuclear** structure β -decay rate: $d\omega \propto kE(E_0 - E)^2 F_0 C_{\text{corr}} \Theta(q, \bar{\beta} \cdot \hat{\nu})$ allowed $\Theta(q,\vec{\beta}\cdot\hat{\nu}) \propto |\langle\psi_f \| \hat{H}_W \| \psi_i \rangle|^2 \quad \stackrel{q \to 0}{\propto} \quad 1 + a_{\beta\nu}\vec{\beta}\cdot\hat{\nu} + b_F \frac{m_e}{E}$ Observables Beta decay, Khan Academy, cdn.kastatic.org/ka-perseusimages/8d978444f15f9bbc3bcadb0549816b 77.sv: anti neutrino electron neutron I'm a changed man! protor

nucleus

Nuclear
$$\beta$$
-decay formalism
 β -decay rate: $d\omega \propto kE(E_0 - E)^2 F_0 C_{corr} O(q, \vec{\beta} \cdot \hat{v})$
 $\Theta(q, \vec{\beta} \cdot \hat{v}) \propto |\langle \psi_f || \hat{H}_W || \psi_i \rangle|^2 \stackrel{allowed}{q \to 0} 1 + a_{\beta\nu}\vec{\beta} \cdot \hat{v} + b_F \frac{m_e}{E}$
Observables
Angular correlation: $a_{\beta\nu} = -\frac{1}{3} \left(1 - \frac{|c_T|^2 + |c_T'|^2}{2|c_A|^2} \right)$
 \bullet Quadratic in C_T , C_T'
 $C_a = 1.27$ Axial vector coupling constant (SM)
 $C_T, C_T' \lesssim 10^{-3}$ Tensor coupling constant (SM), unknown

Standard Model: controlled accuracy

Identifying small parameters

 \triangleright Kinematic parameters - β -decays have low momentum transfer:

* For an endpoint of $\sim 2 MeV$

- $\epsilon_{qr} \sim qR \approx 0.01A^{1/3} *$ $\epsilon_{recoil} \sim \frac{q}{m_N} \approx 0.002 *$
- The nuclear model:
 - $\epsilon_{\rm NR} \sim \frac{P_{\rm fermi}}{m_N} \approx 0.2$
 - $ightarrow \epsilon_{\rm EFT} \sim 0.1 0.3$
- The Coulomb force:
 - $\bullet \epsilon_c \sim \alpha Z \approx 0.007 Z$
- Numeric calculation:

 $\blacktriangleright \epsilon_{solver}$

AGM & Gazit, J.Phys.G 2022

q - momentum transfer R - nucleus's radius m_N - nucleon's mass $P_{\rm fermi}$ - Fermi momentum α - fine structure constant Z - final nucleus's charge

Nuclear β -decay

For a general
$$\beta$$
-decay transition $J_i^{\pi_i} \rightarrow J_f^{\pi_f}$:
 $\vartheta(q, \vec{\beta} \cdot \hat{v}) = \sum_{J=|J_i-J_f|}^{J_i+J_f} \vartheta^{J^{\Delta \pi}}(q, \vec{\beta} \cdot \hat{v})$
 $J_j^{(i)} = J_f = J_j = J_f + J_f$
 $\vartheta_{\pi} = \pi_i \cdot \pi_f$
* Allowed"
(when $q \rightarrow 0$)
* 0⁺: Fermi
• 1⁺: Gamow-Teller
* Forbidden"
(vanish for $q \rightarrow 0$)
* All the rest $(J^{\Delta \pi})$
* All the rest $(J^{\Delta \pi})$

SM corrections

AGM & Gazit, J.Phys.G 2022

Nuclear β -decay

angular parityFor a general
$$\beta$$
-decay transition $J_i^{\pi_i} \to J_f^{\pi_f}$: $\vartheta(q, \vec{\beta} \cdot \hat{v}) = \sum_{J=|J_i-J_f|}^{J_i+J_f} \vartheta^{J\alpha\pi}(q, \vec{\beta} \cdot \hat{v})$ $J_i^{\pi_i} \to J_f^{\pi_f} |J_i - J_f| \le J \le J_i + J_f$ $\Delta \pi = \pi_i \cdot \pi_f$ $\Delta \pi$ Transition $\Delta \pi = \pi_i \cdot \pi_f$ $-$ 1st forbidden $\hat{L}_0^A \sim \epsilon_{NR} \sim q$ $(-)^J$ J^{th} forbidden $\hat{C}_1^V \sim \epsilon_{ar}^J \sim q^J$

LO:

 $\widehat{M}_{J}^{A} \sim \epsilon_{qr}^{J} \sim q^{J}$

 $\hat{L}_{J}^{A} \sim \epsilon_{qr}^{J-1} \sim q^{J-1}$

NLO: \hat{C}_{J}^{A} , $\hat{M}_{J}^{V} \sim \epsilon_{\text{recoil}} \epsilon_{qr}^{J-1}$, $\epsilon_{NR} \epsilon_{qr}^{J} \sim q^{J+1}$

SM corrections

AGM & Gazit, J.Phys.G 2022

 $(-)^{J-1}$

Gamow Teller (J = 1)

unique (J-1)th forbidden

J = 0

J > 0

SM corrections

 $\epsilon_{\rm NR} \sim \frac{P_{\rm fermi}}{m_N} \approx 2 \cdot 10^{-1}$ $\frac{\epsilon_{\rm EFT}}{\epsilon_{qr}} \sim 1 \cdot 10^{-1}$ $\frac{\epsilon_{qr}}{\epsilon_{qr}} \sim qR \approx 5 \cdot 10^{-2}$ $\epsilon_c \sim \alpha Z_f \approx 2 \cdot 10^{-2}$ $\epsilon_{\rm recoil} \sim \frac{q}{m_{\rm N}} \approx 4 \cdot 10^{-3}$ **Multipole Expansion** General Theory for any nucleus & transition

SM corrections

Controlled accuracy!

AGM & Gazit, J.Phys.G 2022

SM: measurements

SM: measurements

 $^{23}Ne \rightarrow ^{23}Na$

Reanalyzing measurements of Carlson *et al.*, PhysRev132.2239 (1963)

Constraining $a_{\beta\nu} \& b_F$ **simultaneously**

SM: measurements

statistics experiment theory $a_{\beta\nu} = -0.3331 \pm 0.0028 \pm 0.0004 \pm 0.0002$ $b_F = 0.0007 \pm 0.0049 \pm 0.0003 \pm 0.0001$

 $^{23}Ne \rightarrow ^{23}Na$

Reanalyzing measurements of Carlson et al., PhysRev132.2239 (1963)

Constraining $a_{\beta\nu} \& b_F$ **simultaneously**

SM: measurements

 $^{23}Ne \rightarrow ^{23}Na$

Reanalyzing measurements of Carlson *et al.*, PhysRev132.2239 (1963)

New constraints on the existence of exotic Tensor interactions

SM: measurements

$$\frac{C_T^+}{C_A} = 0.0007 \pm 0.0049 \qquad \frac{C_T^-}{C_A} = 0.0001 \pm 0.0823$$

SM: measurements

Falkowski et al., J.High Energ.Phys.2021

 C_S^+/C_V

SM: measurements

Falkowski et al., J.High Energ.Phys.2021

 C_S^+/C_V

BSM missing theory: forbidden decays (tensor+)

AGM & Gazit, PRD 2023

 $\widehat{\mathcal{H}}_W \sim \pmb{C}_{\rm T} \ \hat{\jmath}^{\mu\nu}(\vec{x}) \ \hat{\mathcal{J}}_{\mu\nu}(\vec{x})$

Tensor interactions

Symmetric:

A space-time-metric and the stress-energy tensor

Antisymmetric

Fermionic probes

 $\widehat{\mathcal{H}}_W \sim C_{\mathrm{T}} \ \hat{j}^{\mu\nu}(\vec{x}) \ \hat{\mathcal{J}}_{\mu\nu}(\vec{x})$

Tensor interactions

Symmetric:

A space-time-metric and the stress-energy tensor

Antisymmetric

Fermionic probes

 $\implies l_{00} = 0$

$$l_{\mu\nu} = \begin{pmatrix} l_{00} & \left(\leftarrow \vec{l}_{0.} \rightarrow \right) \\ \left(\uparrow \\ \vec{l}_{.0} \\ \downarrow \end{pmatrix} & \left(\begin{matrix} \mu \\ l_{ij} \end{pmatrix} \\ \left(\begin{matrix} \mu \\ \mu \\ \mu \end{pmatrix} \right) \end{pmatrix}$$

AGM & Gazit, PRD 2023

$$\widehat{\mathcal{H}}_W \sim C_{\mathrm{T}} \ \hat{j}^{\mu\nu}(\vec{x}) \ \hat{\mathcal{J}}_{\mu\nu}(\vec{x})$$

Tensor interactions

Symmetric:

- A space-time-metric and the stress-energy tensor
- Antisymmetric
 - Fermionic probes

$$\implies l_{00} = 0$$
$$\implies l_{0} = -l_{0}.$$

$$l_{\mu\nu} = \begin{pmatrix} l_{00} & \left(\leftarrow \vec{l}_{0.} \rightarrow \right) \\ \begin{pmatrix} \uparrow \\ \hline -\vec{l}_{0.} \end{pmatrix} & \left(& l_{ij} \\ \downarrow \end{pmatrix} \end{pmatrix}$$

AGM & Gazit, PRD 2023

Tensor "vector-like" multipole operators with an <u>identified parity</u>

BSM missing theory

. .

. .

AGM & Gazit, PRD 2023

Tensor "vector-like" multipole operators with an <u>identified parity</u>

►
$$\Delta \pi = (-)^{J-1}$$
: "Axial (vector)-like" tensor operators:
 $\hat{L}_{J}^{T} = -\frac{i}{\sqrt{2}} \frac{g_{T}}{g_{A}} \hat{L}_{A}^{A} + O\left(\epsilon_{NR}^{2} \sim \frac{P_{fermi}^{2}}{m_{N}^{2}} \sim 0.04\right)$
BSM
operator
 $\Delta \pi = (-)^{J}$: "Vector" like tensor operators:
 $\hat{L}_{J}^{T'} \propto \epsilon_{qr} \sim \frac{q}{m_{N}} = 0.002$ (for an end point of ~2 MeV) relations for $\hat{E}_{J}^{T}, \hat{M}_{J}^{T}$
No Coulomb multipole \hat{C}_{J}^{T} (associated with the charge $l_{00} = 0$)
 $\hat{C}_{J}^{S} = -\frac{i}{\sqrt{2}} \frac{g_{S}}{g_{V}} \hat{C}_{J}^{V} + O\left(\epsilon_{NR}^{2} \sim \frac{P_{fermi}^{2}}{m_{N}^{2}} \sim 0.04\right)$
AGM & Gazit, PRD 2023

BSM missing theory

1. ...

Tensor "vector-like" multipole operators with an identified parity

Tensor "vector-like" multipole operators with an identified parity

Nuclear β -decay

For a general
$$\beta$$
-decay transition $J_i^{\pi_i} \to J_f^{\pi_f}$:
 $\Theta(q, \vec{\beta} \cdot \hat{v}) = \sum_{J=|J_i-J_f|}^{J_i+J_f} \Theta^{J^{\Delta \pi}}(q, \vec{\beta} \cdot \hat{v})$

$$\frac{\Delta \pi \quad \text{transition} \qquad \text{multipoles} \qquad BSM$$

$$+ \qquad \text{Fermi} \qquad \hat{\mathcal{L}}_0^V \sim 1 \qquad \hat{\mathcal{L}}_0^S \approx \frac{g_S}{2} \hat{\mathcal{L}}_0^V$$

BSM Searches

	J = 0	+	Fermi	$\hat{C}_0^V \sim 1$	$\hat{C}_0^S \approx \frac{g_S}{g_V} \hat{C}_0^V$
		-	1 st forbidden	$ \hat{L}_{0}^{A} \sim \epsilon_{qr} \sim q \hat{C}_{0}^{A} \sim \epsilon_{NR} \sim q $	$ \hat{L}_0^T \approx -\frac{i g_T}{\sqrt{2g_A}} \hat{L}_0^A \\ \hat{C}_0^P \approx \frac{q g_P}{2m_N g_A} \hat{L}_0^A $
	<i>J</i> > 0	(–) ^{<i>J</i>}	J th forbidden	$ \hat{C}_{J}^{V} \sim \epsilon_{qr}^{J} \sim q^{J} $ $ \hat{M}_{J}^{A} \sim \epsilon_{qr}^{J} \sim q^{J} $	$ \hat{C}_{J}^{S} \approx \frac{g_{S}}{g_{V}} \hat{C}_{J}^{V} \hat{M}_{J}^{T} \approx -\frac{i g_{T}}{\sqrt{2g_{A}}} \hat{M}_{J}^{A} $
А	GM & Ga	$(-)^{J-1}$ zit, PRD 2	Gamow Teller $(J = 1)$ unique $(J - 1)$ th forbidden	LO: $\hat{L}_{J}^{A} \sim \epsilon_{qr}^{J-1} \sim q^{J-1}$ NLO: $\hat{C}_{J}^{A}, \widehat{M}_{J}^{V} \sim \epsilon_{\text{recoil}} \epsilon_{qr}^{J-1}, \epsilon_{NR} \epsilon_{qr}^{J} \sim q^{J+1}$	

BSM missing theory

AGM & Gazit, PRD 2023

Experimental status over the world

Energy spectrum - b_F

TABLE III. List of nuclear β -decay spectral measurements in search for non-SM physics ^a

Measurement	Transition Type	Nucleus	Institution/Collaboration	Goal
β spectrum	GT	114 In	MiniBETA-Krakow-Leuven	0.1~%
β spectrum	GT	$^{6}\mathrm{He}$	LPC-Caen	0.1~%
β spectrum	GT	${}^{6}\text{He}, {}^{20}\text{F}$	NSCL-MSU	0.1~%
β spectrum	GT, F, Mixed	${}^{6}\text{He}$ ${}^{14}\text{O}$, ${}^{19}\text{Ne}$	He6-CRES	0.1~%

Angular correlation - $a_{\beta\nu}$

TABLE I. List of nuclear β -decay correlation experiments in search for non-SM physics ^a

Measurement	Transition Type	Nucleus	Institution/Collaboration	Goal
$\beta - \nu$	F	³² Ar	Isolde-CERN	0.1~%
$\beta - \nu$	F	³⁸ K	TRINAT-TRIUMF	0.1~%
$\beta - \nu$	GT, Mixed	6 He 23 Ne	SARAF	0.1~%
$\beta - \nu$	GT	⁸ B, ⁸ Li	ANL	0.1~%
$\beta - \nu$	F	²⁰ Mg, ²⁴ Si, ²⁸ S, ³² Ar,	TAMUTRAP-Texas A&M	0.1~%
$\beta - \nu$	Mixed	¹¹ C, ¹³ N, ¹⁵ O, ¹⁷ F	Notre Dame	0.5~%
β & recoil	Mixed	³⁷ K	TRINAT-TRIUMF	0.1~%
asymmetry				

⁶He \rightarrow ⁶Li β -energy spectrum

 \blacktriangleright Experiments are aiming a 10^{-3} accuracy The spectrum is used to find Fierz term: SM SM correction **BSM** $\blacktriangleright b_{\rm F} = 0 + \delta_b + \frac{C_T^+}{C_A}$ BSM • Looking for $\frac{C_T^+}{C_A} \sim 10^{-3}$ Naïve SM $\delta_b = -1.52(18) \cdot 10^{-3}$ • Uncertainty < $2 \cdot 10^{-4}$ corrections

AGM, Forssén, Gazda, Gazit, Gysbers & Navrátil, PLB 2022

Doron Gazit's talk

⁶Li

BSM missing theory

BSM predictions: unique 1st-forbidden decay

 $d\omega \propto 1 + a_{\beta\nu} \left[1 - \left(\hat{\beta} \cdot \hat{\nu} \right)^2 \right] + b_F \frac{m_e}{\epsilon}$

Predictions & Observables for forbidden decays for the first time

AGM et al, PLB 2017

BSM predictions: unique 1st-forbidden decay $d\omega \propto 1 + a_{\beta\nu} \left[1 - \left(\hat{\beta} \cdot \hat{\nu}\right)^2 \right] + b_F \frac{m_e}{\epsilon}$

The β -energy spectrum is sensitive to both $a_{\beta\nu} \& b_F$

- Allows simultaneous extraction of C_T and C'_T
- Increases the accuracy level

Formalism is nice, but applications are nicer...

BSM missing theory

Predictions & Observables

for forbidden decays

for the first time

AGM et al, PLB 2017

Unique 1st-forbidden experiments

BSM missing theory

Unique 1st-forbidden experiments

PHYSICAL REVIEW C 105, 054312 (2022)

BSM missing theory

Charlie Rasco's talk

Determination of β-decay feeding patterns of ⁸⁸Rb and ⁸⁸Kr using the Modular Total Absorption Spectrometer at ORNL HRIBF

P. Shuai⁽¹⁾, ^{1,2,3,4} B. C. Rasco, ^{1,2,3,*} K. P. Rykaczewski, ² A. Fijałkowska, ^{5,3} M. Karny, ^{5,2,1} M. Wolińska-Cichocka, ^{6,2,1}
R. K. Grzywacz, ^{3,2,1} C. J. Gross, ² D. W. Stracener, ² E. F. Zganjar, ⁷ J. C. Batchelder, ^{8,1} J. C. Blackmon, ⁷ N. T. Brewer, ^{1,2,3}
S. Go, ³ M. Cooper, ³ K. C. Goetz, ^{9,3} J. W. Johnson, ² C. U. Jost, ² T. T. King, ² J. T. Matta, ² J. H. Hamilton, ¹⁰ A. Laminack, ² K. Miernik, ⁵ M. Madurga, ³ D. Miller, ^{3,11} C. D. Nesaraja, ² S. Padgett, ³ S. V. Paulauskas, ³ M. M. Rajabali, ¹² T. Ruland, ⁷ M. Stepaniuk, ⁵ E. H. Wang, ¹⁰ and J. A. Winger¹³

^{**}Rb decay spectra suggests that MTAS can distinguish an allowed β spectral shape from a first forbidden unique β spectral shape.

unique 1st Petr Navrátil's talk forbidden Doron Gazit's talk $2^{-7.13 \text{ s}}$ 0.0 1.1 % 4.3 > 2^{-(T=0)} 8.872 GT (Fermi) 64.00(20) h $Q_{B^{-}} = 10.419 \text{ MeV}$ Q(gs)=2280.1 keV $1.4x10^{-6}(3)^{2^+}$ 2186.3 0.0115(14) 0+ 1760.7 61.3 (25) $\xrightarrow{26\%} 9.1 \rightarrow 0^{+} \xrightarrow{16} 0.0 \text{ orbidden}$ $^{16}_{7}N_{9}$ ⁹⁰Sr: forbidden only ¹⁶N: Large energy separation between the forbidden and allowed branches Ohayon, Chocron, Hirsh, AGM, et al., Hyp.Int.2018 Fig.: Morozov et al. J.Rad.Nuc.Chem.2010

Summary

 $\blacktriangleright \beta \text{-decay rate:} \quad d\omega \propto kE(E_0 - E)^2 F_0 C_{\text{corr}} \Theta(q, \vec{\beta} \cdot \hat{\nu})$

$$\Theta(q, \vec{\beta} \cdot \hat{v}) = \sum_{J=|J_i-J_f|}^{J_i+J_f} \Theta^{J^{\Delta \pi}}(q, \vec{\beta} \cdot \hat{v})$$

SM: controlled accuracy

- Identifying small parameters
- Corrections to observables
- Theory with controlled level of accuracy
 - 6He: corrections with 10^{-4} uncertainty
 - ²³Ne: new bounds on BSM Tensor interactions

BSM: new opportunities

- Tensor forbidden's observables for the first time
- Uses the already-known SM matrix elements
 - No need for new matrix elements calculations
- Forbidden decays BSM sensitivity
 - Experiments @SARAF, @ORNL

Gives significant constraints even for the naivest nuclear calculations

Can be done for any nucleus & decay (allowed/forbidden) Paving the way for new, even higher precision experiments and discoveries Required: BSM predictions vs. SM corrections

SM corrections

 $\begin{aligned} J_i^{\pi_i} &\to J_f^{\pi_f} \\ \left| J_i - J_f \right| &\leq J \leq J_i + J_f \end{aligned}$

 $\Delta \pi = \pi_i \cdot \pi_f$

Thanks!

Hebrew University Doron Gazit Guy Ron Hitesh Rahangdale Vishal Srivastava

TRIUMF Petr Navrátil Peter Gysbers Lotta Jokiniemi

Chalmers University Christian Forssén

ÚJF rez Daniel Gazda

University of Barcelona Javier Menéndez

NCSU Leendert Hayen LLNL Nicholas Scielzo Yonatan Mishnayot Jason Harke Aaron Gallant Richard Hughes

SARAF (SOREQ) Sergey Vaintraub Tsviki Hirsh Leonid Waisman Arik Kreisel Boaz Kaizer Hodaya Dafna Maayan Buzaglo

ETH Zurich Ben Ohayon

Weizamnn Institute Michael Hass

Ministry of Science and Technology, Israel Israeli Science Foundation (ISF) European Research Council (ERC)

Some Details

Estimating the multipoles' EFT error

Pastore *et al.*, PRC87 035503 (2013) Friman-Gayer *et al.*, PRL126 102501 (2021)

(2b currents)

 $^{6}\text{He} \rightarrow {}^{6}\text{Li}$

62

AGM, Forssén, Gazda, Gazit, Gysbers & Navrátil, PLB 2022

AGM, Forssén, Gazda, Gazit, Gysbers & Navrátil, PLB 2022

65

β -Nuclear-Recoil Correlation from ⁶He Decay in a Laser Trap

P. Müller[®],¹ Y. Bagdasarova,² R. Hong[®],² A. Leredde,¹ K. G. Bailey,¹ X. Fléchard,³ A. García[®],²
B. Graner,² A. Knecht[®],^{2,4} O. Naviliat-Cuncic[®],^{3,5} T. P. O'Connor,¹ M. G. Sternberg[®],² D. W. Storm,² H. E. Swanson[®],² F. Wauters[®],^{2,6} and D. W. Zumwalt²

$$\hat{a} = -0.3268(46)_{\text{stat}}(41)_{\text{syst}}.$$
 (4)

Assuming tensor contributions with right-handed neutrinos (b = 0 or $\tilde{C}_T = -\tilde{C}'_T$) the result above implies $|\tilde{C}_T|^2 \leq 0.022$ (90% C.L.) On the other hand, assuming purely left-handed neutrinos ($\tilde{C}_T = +\tilde{C}'_T$) yields

 $0.007 < \tilde{C}_T < 0.111 \ (90\% \text{ C.L.}).$ (5)

- momentum transfer $\vec{\beta} \equiv \frac{\vec{k}}{\epsilon}$ - electron's normalized momentum $\hat{v} \equiv \frac{\vec{v}}{r}$ - neutrino's normalized momentum Nuclear β -decay formalism Searches for deviations from the SM "V-A" structure allowed $\Theta(q,\vec{\beta}\cdot\hat{\nu}) \propto \left| \langle \psi_f \| \widehat{H}_W \| \psi_i \rangle \right|^2 \qquad \propto \qquad 1 + a_{\beta\nu} \vec{\beta}\cdot\hat{\nu} + b_F \frac{m_e}{E}$ BSM Observables SM Angular correlation: $a_{\beta\nu} = -\frac{1}{3} \left(1 - \frac{|c_T|^2 + |c_T'|^2}{2|c_A|^2} \right)$ • Quadratic in C_T , C_T' β Energy spectrum: Fierz term $b_F^{\beta^{\mp}} = \pm \frac{c_T + c_T'}{2}$ > Vanishes for right-handed neutrinos ($C_T = -C_T'$) Required: BSM predictions $C_A = 1.27$ Axial vector coupling constant (SM) $C_T, C_T' \leq 10^{-3}$ Tensor coupling constants (BSM), unknown

 $\vec{\beta} \equiv \frac{\vec{k}}{\epsilon}$ - electron's normalized momentum $\hat{v} \equiv \frac{\vec{v}}{r}$ - neutrino's normalized momentum Nuclear β -decay formalism Searches for deviations from the SM "V-A" structure allowed $\Theta(q,\vec{\beta}\cdot\hat{\nu}) \propto |\langle\psi_f||\hat{H}_W||\psi_i\rangle|^2 \propto 1 + a_{\beta\nu}\vec{\beta}\cdot\hat{\nu} + b_F\frac{m_e}{E}$ BSM Naïve SM Angular correlation: $a_{\beta\nu} = -\frac{1}{3} \left(1 - \frac{|c_T|^2 + |c_T'|^2}{2|c_A|^2} \right)$ • Quadratic in C_T , C_T' β Energy spectrum: Fierz term $b_F^{\beta^{\mp}} = \pm \frac{c_T + c_T'}{2}$ > Vanishes for right-handed neutrinos ($C_T = -C_T'$) Required: BSM predictions $C_A = 1.27$ Axial vector coupling constant (SM) $C_T, C_T' \leq 10^{-3}$ Tensor coupling constants (BSM), unknown

- momentum transfer

 $\vec{\beta} \equiv \frac{\vec{k}}{\epsilon}$ - electron's normalized momentum $\hat{v} \equiv \frac{\vec{v}}{r}$ - neutrino's normalized momentum Nuclear β -decay formalism Searches for deviations from the SM "V-A" structure allowed $\Theta(q,\vec{\beta}\cdot\hat{\nu}) \propto \left| \langle \psi_f \| \widehat{H}_W \| \psi_i \rangle \right|^2 \propto 1 + a_{\beta\nu} \vec{\beta} \cdot \hat{\nu} + b_F \frac{m_e}{E}$ Naïve e sul SM Angular correlation: $a_{\beta\nu} = -\frac{1}{3} \left(1 - \frac{|c_T|^2 + |c_T'|^2}{2|c_A|^2} \right)$ • Ouadratic in C_T , C_T' β Energy spectrum: Fierz term $b_F^{\beta^{\mp}} = \pm \frac{c_T + c_T'}{2}$ > Vanishes for right-handed neutrinos ($C_T = -C_T'$) Required: BSM predictions VS $C_A = 1.27$ Axial vector coupling constant (SM) SM corrections $C_T, C_T' \leq 10^{-3}$ Tensor coupling constants (BSM), unknown

- momentum transfer

χEFT

Required: SM high accuracy predictions

Calculations

70

χEFT

Required: SM high accuracy predictions

Calculations

71

Ab initio No-Core Shell Model

$$\widehat{H} = \frac{1}{A} \sum_{i < j=1}^{A} \frac{\left(\vec{p}_i - \vec{p}_j\right)^2}{2m_N} + \sum_{i < j=1}^{A} V_{ij}^{NN} + \sum_{i < j < k=1}^{A} V_{ijk}^{3N}$$

 $\widehat{H}|\alpha\rangle = E_{\lambda T_z}^{I^{\pi}T}|\alpha\rangle$

 $\chi EFT @ N^2LO$ interactions

Schrodinger equation:

single-particle harmonic-oscillator base states (depend on single-particle coordinates \vec{r})

Required: SM high accuracy predictions

Ab initio No-Core Shell Model

$$\widehat{H} = \frac{1}{A} \sum_{i < j = 1}^{A} \frac{\left(\vec{p}_i - \vec{p}_j\right)^2}{2m_N} + \sum_{i < j = 1}^{A} V_{ij}^{NN} + \sum_{i < j < k = 1}^{A} V_{ijk}^{3N}$$

χEFT @ N²LO interactions

Schrodinger equation:

 $\sup_{j=1}^{A} \widehat{O}_{J}(\vec{r}_{j}) \| \psi_{i} \rangle = \frac{-1}{\sqrt{2J+1}} \sum_{|\alpha|,|\beta|} \langle |\alpha| \| \widehat{O}_{J}(\vec{r}) \| |\beta| \rangle \langle \psi_{f} \| (a_{|\alpha|}^{+} \widetilde{a}_{|\beta|})_{J} \| \psi_{i} \rangle$

 $\widehat{H}|\alpha\rangle = E_{\lambda T_z}^{I^{\pi}T}|\alpha\rangle$

Required: SM high accuracy predictions

Translational-invariant 1-body density matrices

$$\widehat{H} = \frac{1}{A} \sum_{i < j=1}^{A} \frac{\left(\vec{p}_i - \vec{p}_j\right)^2}{2m_N} + \sum_{i < j=1}^{A} V_{ij}^{NN} + \sum_{i < j < k=1}^{A} V_{ijk}^{3N}$$

 $\widehat{H}|\alpha\rangle = E_{\lambda T_z}^{I^{\pi}T}|\alpha\rangle$

 $\chi EFT @ N^2LO$ interactions

Schrodinger equation:

single-particle harmonic-oscillator base states (depend on single-particle coordinates \vec{r})

$$\langle \psi_f \Big\| \sum_{j=1}^A \widehat{O}_J(\vec{r}_j) \Big\| \psi_i \rangle = \frac{-1}{\sqrt{2J+1}} \sum_{|\alpha|, |\beta|} \langle |\alpha| \Big\| \widehat{O}_J(\vec{r}) \Big\| |\beta| \rangle \langle \psi_f \Big\| (a_{|\alpha|}^+ \tilde{a}_{|\beta|})_J \Big\| \psi_i \rangle$$

transformation matrix $|a||b| \rightarrow |\alpha||\beta|$

$$\langle \psi_f \Big\| \sum_{j=1}^{A} \hat{O}_J(\vec{\xi}_j) \Big\| \psi_i \rangle = \frac{-1}{\sqrt{2J+1}} \sum_{\substack{|\alpha|, |\beta| \\ |\alpha|, |b|}} \langle |\alpha| \| \hat{O}_J(\vec{\xi}) \| |b| \rangle (M^J)_{|\alpha||b||\alpha||\beta|}^{-1} \langle \psi_f \| (a_{|\alpha|}^+ \tilde{a}_{|\beta|})_J \| \psi_i \rangle$$

depend on single-particle Jacobi coordinates $\vec{\xi} \propto \vec{r} - \vec{R}_{CM}$

Required: SM high accuracy predictions

Ĥ

Nuclear Hamiltonian $\chi EFT @ N^2LO_{opt (sat)}$ \downarrow $\langle \psi_f || || \psi_i \rangle$

Nuclear wave functions

 $\hat{J}(\vec{x})$

Nuclear currents LO (1-body currents) \downarrow \hat{O}_I

Multipole operators

 $\searrow \langle \psi_f \| \widehat{O}_J \| \psi_i \rangle$

Nuclear matrix elements Ab initio No-Core Shell Model (NCSM)

 $\delta_1, \delta_a, \delta_b$

Observables' corrections

Required: SM high accuracy predictions

Nuclear β -decay

Low momentum transfer: $q \sim 0 - 10 \text{ MeV/c}$

Total angular parity momentum Transitions (different ΔJ^{π}):

- ► Allowed:
 - Fermi (F, $\Delta J^{\pi} = 0^+$)
 - Gamow-Teller (GT, $\Delta J^{\pi} = 1^+$)
- Forbidden all the rest
 - Vanish for $q \rightarrow 0$
- Recent experiments: Deviations from the V-A structure (Scalar & Tensor)
 - Missing precise theory for forbidden Tensor interactions

What is next?

GT

Unique 1st

<u>1.1 % 4.3 > 2⁻ (T=0)</u> 8.872 GT (Fermi)

 $\xrightarrow{9.1}$ 0⁺ $\xrightarrow{16}_{8}$ 0.0 forbidden

26 %

$^{16}N \rightarrow ^{16}O$ experiment @ SARAF

- ► Unique 1st forbidden sensitivity to $Q_{B^{-}} = 10.419 \text{ MeV}$ **BSM** signatures
- Energy separation
 - Ideal case study
- ► BSM & SM predictions
- ► Ab initio NCSM & eigenvector continuation emulators with Christian Forssén (Chalmers)

 $^{16}_{7}$ N 9

 2^{-} 7.13 s 0.0

Theoretical & Experimental constrains on the measured observables

AGM, Mishnayot, et al., PLB767 285-288 (2017) Ohayon, Chocron, Hirsh, AGM, et al., Hyp.Int.239,57 (2018) Djärv, Ekström, Forssén, Johansson, arXiv:2108.13313 (2021)

Coulomb corrections

- Usually considered by approximations treating the nucleus with simple models
 - Only for specific transitions

78

What is next?
Calculating 2b currents

Significant improvement in accuracy:

Pastore *et al.*, PRC87 035503 (2013) Friman-Gayer *et al.*, PRL126 102501 (2021)

What is next? $\hat{\mathcal{J}}(\vec{x})$ Nuclear currents **Multipole operators** $\langle \psi_f \| \widehat{O}_I \| \psi_i \rangle$ Nuclear matrix elements $\delta_1, \delta_a, \delta_b$ **Observables' corrections**

79

Recoil ion spectrum

FIG. 5. The solid red ellipse shows the 1σ region obtained from a fit of simulated recoil momentum spectra with 10^7 events, for the ⁶He decay, where both *a* and *b* were left as free parameters. The blue shaded band shows the 1σ bound on the combination $\hat{a} = a + 0.127b$, whereas the black dotted lines represent the 1σ bound obtained using the \tilde{a} prescription. $\blacktriangleright \beta \text{ spectrum: } a_{\beta\nu} = \frac{a_{\beta\nu}^{\text{measured}}}{1 + \langle \frac{m_e}{\epsilon} \rangle b_F}$

Recoil ion spectrum: $a_{\beta\nu}$ has a non-trivial dependence on b_F

What is next?

Case study: ²³Na ion measurements @ SARAF

Coupled-Cluster calculations with Sonia Bacca (Mainz)

SM corrections

E.g., GT & unique $(J - 1)^{\text{th}}$ forbidden

$$\begin{split} \Theta^{j^{(-)^{J-1}}} & \left(q, \vec{\beta} \cdot \hat{v}\right) = \frac{2J+1}{J} \left(1 + \delta_{1}^{j^{(-)^{J-1}}}\right) \left\{1 + a_{\beta \nu} \vec{\beta} \cdot \hat{v} + b_{\mathrm{F}} \frac{m_{e}}{\epsilon} + c_{\mathrm{squared}} \left[\vec{\beta}^{2} - \left(\vec{\beta} \cdot \hat{v}\right)^{2}\right]\right\} \left|\langle \psi_{f} \| \hat{L}_{J} \| \psi_{i} \rangle\right|^{2} \\ & a_{\beta \nu} = -\frac{1}{2J+1} \left(1 + \tilde{\delta}_{a}^{j^{(-)^{J-1}}}\right) \\ & b_{\mathrm{F}} = \delta_{b}^{j^{(-)^{J-1}}} \\ & \mathbf{b}_{\mathrm{F}} = \delta_{b}^{j^{(-)^{J-1}}} \\ & \mathbf{c}_{\mathrm{squared}} = \frac{1}{2J+1} \frac{\epsilon(\epsilon_{0} - \epsilon)}{q^{2}} \left(1 - \delta_{1}^{j^{(-)^{J-1}}}\right) \\ & \delta_{1} = \frac{2}{2J+1} \Re e \left[-J\epsilon_{0} \frac{\langle \| \hat{c}_{f}^{A} / q \| \rangle}{\langle \| \hat{L}_{f}^{H} \| \rangle} \pm \sqrt{J(J+1)} (\epsilon_{0} - 2\epsilon) \frac{\langle \| \hat{M}_{1}^{V} / q \| \rangle}{\langle \| \hat{L}_{f}^{H} \| \rangle} \right] + \mathcal{O}\left(\frac{\epsilon_{q}^{2}r}{15}, \epsilon_{c}^{2}\right) \\ & \tilde{\delta}_{a} = \frac{4}{2J+1} \Re e \left[(J+1)\epsilon_{0} \frac{\langle \| \hat{c}_{f}^{A} / q \| \rangle}{\langle \| \hat{L}_{f}^{H} \| \rangle} \pm \sqrt{J(J+1)} (\epsilon_{0} - 2\epsilon) \frac{\langle \| \hat{M}_{1}^{V} / q \| \rangle}{\langle \| \hat{L}_{f}^{H} \| \rangle} \right] + \mathcal{O}\left(\frac{\epsilon_{q}^{2}r}{15}, \epsilon_{c}^{2}\right) \\ & \delta_{b} = \frac{2}{2J+1} m_{e} \Re e \left[J \frac{\langle \| \hat{c}_{f}^{A} / q \| \rangle}{\langle \| \hat{L}_{f}^{H} \| \rangle} \pm \sqrt{J(J+1)} \frac{\langle \| \hat{M}_{1}^{V} / q \| \rangle}{\langle \| \hat{L}_{f}^{H} \| \rangle} \right] + \mathcal{O}\left(\frac{\epsilon_{q}^{2}r}{m_{e}}, \frac{\epsilon_{c}^{2}}{2}\right) \end{aligned}$$

AGM & DG, <u>arXiv:2107.10588</u>(2021)

81

Nuclear Currents

Vector: $\langle p(p_p) | \bar{u}\gamma_{\mu}d | n(p_n) \rangle = \bar{u}_p(p_p) \left[g_V(q^2) \gamma_{\mu} + \frac{\tilde{g}_{T(V)}(q^2)}{2m_N} \sigma_{\mu\nu}q^{\nu} + \frac{\tilde{g}_S(q^2)}{2m_N}q_{\mu} \right] u_n(p_n)$ Axial: $\langle p(p_p) | \bar{u}\gamma_{\mu}\gamma_5 d | n(p_n) \rangle = \bar{u}_p(p_p) \left[g_A(q^2) \gamma_{\mu} + \frac{\tilde{g}_{T(A)}(q^2)}{2m_N} \sigma_{\mu\nu}q^{\nu} + \frac{\tilde{g}_P(q^2)}{2m_N}q_{\mu} \right] \gamma_5 u_n(p_n)$

$$\langle p(p_p) | \bar{u}d | n(p_n) \rangle = g_S(0) \bar{u}_p(p_p) u_n(p_n) + \mathcal{O}\left(q^2/m_N^2\right)$$

$$\langle p(p_p) | \bar{u}\gamma_5 d | n(p_n) \rangle = g_P(0) \bar{u}_p(p_p) \gamma_5 u_n(p_n) + \mathcal{O}\left(q^2/m_N^2\right)$$

$$\langle p(p_p) | \bar{u}\sigma_{\mu\nu} d | n(p_n) \rangle = g_T(0) \bar{u}_p(p_p) \sigma_{\mu\nu} u_n(p_n) + \mathcal{O}\left(q/m_N\right)$$

$$\hat{C}_{JM} = \int d^3x \, j_J(qx) Y_{JM}(\hat{x}) \hat{J}_0(\vec{x})$$
$$\hat{L}_{JM} = \frac{i}{q} \int d^3x \{ \overline{\nabla} [j_J(qx) Y_{JM}(\hat{x})] \} \cdot \hat{J}(\vec{x})$$
$$\hat{E}_{JM} = \frac{i}{q} \int d^3x \{ \overline{\nabla} \times [j_J(qx) \ \overline{Y}_{JJ1}^M(\hat{x})] \} \cdot \hat{J}(\vec{x})$$
$$\hat{M}_{JM} = \frac{i}{q} \int d^3x [j_J(qx) \ \overline{Y}_{JJ1}^M(\hat{x})] \cdot \hat{J}(\vec{x})$$

$$\begin{split} \hat{C}_{J}^{A}(q) &= -\frac{iq}{m_{N}} \sum_{j=1}^{A} \tau_{j}^{\pm} \left[g_{A} \Omega_{J}(q\bar{r}_{j}) + \frac{1}{2} \left(g_{A} + \tilde{g}_{T(A)} - \frac{\omega}{2m_{N}} \tilde{g}_{I'} \right) \Sigma_{J}^{\prime}(q\bar{r}_{j}) \right] + O\left(\frac{r_{J}^{J}q^{J+3}}{m_{N}^{3}} \right) \\ \hat{L}_{J}^{A}(q) &= i \left(g_{A} - \frac{\omega}{2m_{N}} \tilde{g}_{I(A)} \right) \sum_{j=1}^{A} \tau_{j}^{\pm} \Sigma_{J}^{\prime}(q\bar{r}_{j}) + O\left(\frac{r^{J}-q^{J+2}}{m_{N}^{2}} \right) \\ \hat{E}_{J}^{A}(q) &= i \left(g_{A} - \frac{\omega}{2m_{N}} \tilde{g}_{I(A)} \right) \sum_{j=1}^{A} \tau_{j}^{\pm} \Sigma_{J}^{\prime}(q\bar{r}_{j}) + O\left(\frac{r^{J}q^{J+2}}{m_{N}^{2}} \right) \\ \hat{E}_{J}^{A}(q) &= \left(g_{A} - \frac{\omega}{2m_{N}} \tilde{g}_{I(A)} \right) \sum_{j=1}^{A} \tau_{j}^{\pm} \Sigma_{J}^{\prime}(q\bar{r}_{j}) + O\left(\frac{r^{J}q^{J+2}}{m_{N}^{2}} \right) \\ \hat{M}_{J}^{A}(q) &= \left(g_{A} - \frac{\omega}{2m_{N}} \tilde{g}_{I(A)} \right) \sum_{j=1}^{A} \tau_{j}^{\pm} \Sigma_{J}(q\bar{r}_{j}) + O\left(\frac{r^{J}q^{J+2}}{m_{N}^{2}} \right) \\ \hat{M}_{J}^{A}(q) &= \left(g_{A} - \frac{\omega}{2m_{N}} \tilde{g}_{I(A)} \right) \sum_{j=1}^{A} \tau_{j}^{\pm} \Sigma_{J}(q\bar{r}_{j}) + O\left(\frac{r^{J}q^{J+2}}{m_{N}^{2}} \right) \\ \hat{M}_{J}^{A}(q) &= \left(g_{A} - \frac{\omega}{2m_{N}} \tilde{g}_{I(A)} \right) \sum_{j=1}^{A} \tau_{j}^{\pm} \Sigma_{J}(q\bar{r}_{j}) + O\left(\frac{r^{J}q^{J+2}}{m_{N}^{2}} \right) \\ \hat{M}_{J}^{A}(q) &= \left(g_{A} - \frac{\omega}{2m_{N}} \tilde{g}_{I(A)} \right) \sum_{j=1}^{A} \tau_{j}^{\pm} \Sigma_{J}(q\bar{r}_{j}) + O\left(\frac{r^{J}q^{J+2}}{m_{N}^{2}} \right) \\ \hat{M}_{J}^{A}(q) &= \left(g_{A} - \frac{\omega}{2m_{N}} \tilde{g}_{I(A)} \right) \sum_{j=1}^{A} \tau_{j}^{\pm} \left(g_{V} + \frac{\omega}{2m_{N}} \tilde{g}_{S} \right) M_{J}(q\bar{r}_{j}) + O\left(\frac{r^{J}q^{J+2}}{m_{N}^{2}} \right) \\ \hat{M}_{J}^{A}(q) &= \left(g_{A} - \frac{\omega}{2m_{N}} \tilde{g}_{I(A)} \right) \sum_{j=1}^{A} \tau_{j}^{\pm} \left(g_{V} + \frac{\omega}{2m_{N}} \tilde{g}_{S} \right) M_{J}(q\bar{r}_{j}) + O\left(\frac{r^{J}q^{J+2}}{m_{N}^{2}} \right) \\ \hat{L}_{J}^{A}(q) &= \frac{1}{q} \left[g_{A} \nabla_{J}^{A}(q\bar{r}_{j}) + \frac{g_{V} + \tilde{g}_{I}(V)}{2m_{N}} \right] \left(g_{V} - \frac{q}{m_{N}} \frac{g_{V} + \tilde{g}_{I}(V)}{2m_{N}} \right) \sum_{J}^{A}(q\bar{r}_{j}) \right] + O\left(\frac{r^{J}q^{J+2}}{m_{N}^{2}} \right) \\ \hat{L}_{J}^{A}(q\bar{r}) = -i \left[\frac{1}{q} \nabla \times \tilde{M}_{J,I}(q\bar{r}) \right] \cdot \frac{1}{q} \nabla \\ \hat{L}_{J}^{A}(q\bar{r}) = -i \frac{q}{m_{N}} \sum_{J=1}^{A} \tau_{J}^{\pm} \left[g_{V} \Delta_{J}(q\bar{r}_{j}) - \frac{g_{V} + \tilde{g}_{I}(V)}{2} \sum_{J}^{A}(q\bar{r}_{j}) \right] + O\left(\frac{r^{J}q^{J+2}}{m_{N}^{2}} \right) \\ \hat{L}_{J}^{A}(q\bar{r}) = -i \left[\frac{1}{q} \nabla \times \tilde{M}_{J,I}(q\bar{r}) \right] \cdot \frac{1}{$$