Nuclear structure for high-energy nuclear physics

Giuliano Giacalone

Institut für Theoretische Physik (ITP) Universität Heidelberg

January 23, 2023

Intersection of nuclear structure and high-energy nuclear collisions: a new research direction.

Next Initial Stages conference (Copenhagen, 2023) will have a track related to nuclear structure.

Input to Nuclear Physics LRP in the US, both hot QCD (e.g. arXiv link) and nuclear theory.

Contributed input to NUPECC LRP 2024 [with Y. Zhou (NBI Copenhagen)]

Just started a Topical Issue on EPJA on the intersection of the two areas (~20 papers in 2023) [T. Duguet, G. Giacalone, V. Somà, Y. Zhou]

OUTLINE

1 – High-energy nuclear physics and collision geometry.

2 – Nuclear structure input.

- 3 Nuclear shapes in high-energy nuclear experiments.
- 4 Prospects: theory and experiment.

1 – High-energy nuclear physics and collision geometry.

HIGH ENERGY NUCLEAR PHYSICS

Long Island (NY)

Huge experimental program.

Emergent phenomena in strong-interaction matter.

Effective fluid description: $T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\nu} + \text{transport} (\eta/s, \zeta/s, ...)$ [Romatschke & Romatschke, arXiv:1712.05815]

Equation of state from lattice QCD. Large number of DOF (~40): QGP.

[HoTQCD collaboration, PRD 90 (2014) 094503]

Relevant temperature at top LHC energy: \approx 220 MeV (2.6 x 10¹² K).

[Gardim, Giacalone, Luzum, Ollitrault, Nature Phys. 16 (2020) 6, 615-619]

Main goals: understanding initial condition/transport properties/hadronization.

How do we reconstruct the initial condition of the QGP?

Low-momentum particles follow the hydrodynamic expansion.

$$\frac{d^2N}{dp_{\rm T}d\phi} = \frac{dN}{2\pi dp_{\rm T}} \left(1 + 2\sum_{n=1}^{\infty} v_n \cos n(\phi - \Phi_n) \right)$$
EXPLOSIVENESS
OF THE EXPANSION
EXPLOSIVENESS
ANISOTROPY OF
AZIMUTHAL DISTRIBUTION

Mapping initial-state geometry to final-state observables via pressure-gradient force.

 $F = -\nabla P$

[Ollitrault, PRD **46** (1992) 229-245] [Broniowski, Chojnacki, Obara, PRC **80** (2009) 051902] [Alver, Roland, PRC **81** (2010) 054905]

Shape and size of the QGP can be reconstructed from data!

2 – Nuclear structure input.

Formation of QGP starts with an input from nuclear structure.

High-energy model

Scattering occurs mainly within nucleons.

"quantum measurement" of the nucleon positions.

[from Sandra Brandstetter (Heidelberg), Collapsed wave function of a gas of 10 ⁶Li atoms] **Origin of nucleon positions:** for "spherical" systems like 208Pb, independent sampling in common potential (<u>mean field</u>) is appropriate.

More realistic: Potential generated by effective nucleon-nucleon interaction (Gogny force, Skyrme force, etc.), in "Energy Density Functional" theory.

Goodness of mean field description justifies the Glauber Monte Carlo approach.

Nucleus-nucleus interaction does not modify the shape of the interaction region on large scales.

Beyond ²⁰⁸Pb? Heavy-ion collisions require *a priori* knowledge of all spatial correlations.

 $\rho_k^{\text{JMNZ}}(\vec{r}_1, \vec{r}_2, \vec{r}_3, \vec{r}_4) \equiv \langle \Psi_k^{\text{JMNZ}} | c^{\dagger}(\vec{r}_1) c^{\dagger}(\vec{r}_2) c(\vec{r}_3) c(\vec{r}_4) | \Psi_k^{\text{JMNZ}} \rangle \quad \text{2-body correlation function}$

Help from low-energy nuclear physics:

Spatial correlations encapsulated in "intrinsic shapes". Instead of A-body correlation functions, use 1-body density with a deformed shape.

The bag of nucleons is now deformed and with a random orientation.

The collision selects one such orientation.

Generalize the Woods-Saxon profile to include intrinsic deformations:

$$\rho(r,\Theta,\Phi) \propto \frac{1}{1 + \exp\left(\left[r - R(\Theta,\Phi)\right]/a\right)} , R(\Theta,\Phi) = R_0 \left[1 + \frac{\beta_2}{2} \left(\cos\gamma Y_{20}(\Theta) + \sin\gamma Y_{22}(\Theta,\Phi)\right) + \frac{\beta_3}{\beta_3} Y_{30}(\Theta) + \frac{\beta_4}{\beta_4} Y_{40}(\Theta)\right]$$

Intrinsic shapes are non-observable for direct measurements, but they leave their fingerprint on virtually all nuclear observables and phenomena Michael Bender – RBRC Workshop Jan 2022

2 – Nuclear shapes in high-energy nuclear experiments.

Species that have been collided so far (excludes p-A, d-A, He-A):

New questions to address:

Testing high-energy model via crosscheck of nuclear deformation effects.

Are low-energy expectations compatible with high-energy observations?

HOW TO DO THAT? SHAPE-SIZE CORRELATION.

CENTRAL COLLISIONS OF (PROLATE) DEFORMED IONS

The ellipticity of the quark-gluon plasma is positively correlated with its area.

Signature of the prolate deformation of uranium-238.

Signature of the hexadecapole deformation of uranium-238.

Circumstantial evidence that hydro simulations do not capture v2 [U+U] / v2 [Au+Au]. [Giacalone, Jia, Zhang, PRL 127 (2021) 24, 242301] $v_2^2 = a_0 + a_1 \beta_2^2$

Woods-Saxon parametrization should include quadrupole-hexadecapole coupling.

$$\beta_{20} = \frac{R_d^2}{R_0^2} \left[\beta_{20}^{\text{WS}} + \frac{4}{7} \sqrt{\frac{5}{4\pi}} \left((\beta_{20}^{\text{WS}})^2 + \frac{6}{\sqrt{5}} \beta_{20}^{\text{WS}} \beta_{40}^{\text{WS}} \right) \right]$$

Signature of the triaxial deformation of xenon-129.

$$R(\Theta, \Phi) = R_0 \left[1 + \frac{\beta_2}{\beta_2} \left(\cos \gamma Y_{20}(\Theta) + \sin \gamma Y_{22}(\Theta, \Phi) \right) + \frac{\beta_3}{\beta_3} Y_{30}(\Theta) + \frac{\beta_4}{\beta_4} Y_{40}(\Theta) \right]$$

Shape-size correlation is sensitive to the triaxiality, $\gamma.$

[Bally et al., PRL 128 (2022) 8, 082301]

Leading order correction:

 $ho_{_2} \propto$ – $\cos(3\gamma)eta_2^3$ [Jia, PRC **105** (2022) 4, 044905]

Signature of the triaxial deformation of xenon-129.

Breakthrough of 2021: data from "isobar collisions" is released.

X and Y are isobars.

X+X collisions produce QGP with same properties as Y+Y collisions.

Ratios of observables (O) should be unity...

$$\frac{\mathcal{O}_{X+X}}{\mathcal{O}_{Y+Y}} \stackrel{?}{=} 1$$

[STAR collaboration, PRC **105** (2022) 1, 014901] [Giacalone, Jia, Somà, PRC **104** (2021) 4, L041903]

Departure from unity is mainly due to nuclear structure.

Extremely precise measurements.

Signature of the guadrupole deformation of ruthenium-96.

In full generality, for quadrupole-deformed nuclei, at fixed multiplicity one has:

[Giacalone, PRC 99 (2019) 2, 024910] [Giacalone, Jia, Somà, PRC 104 (2021) 4, L041903] [Giacalone, Jia, Zhang, PRL 127 (2021) 24, 242301] [Jia, PRC 105 (2022) 1, 014905]

Isobar ratio and expand around the fluctuations:

$$\frac{\langle v_2^2 \rangle_{\rm Ru+Ru}}{\langle v_2^2 \rangle_{\rm Zr+Zr}} = 1 + c \left(\beta_{2,\rm Ru}^2 - \beta_{2,\rm Zr}^2\right)$$
positive coeff

Low-energy nuclear physics tells us:

$$\beta_{2,\mathrm{Ru}}^2 \gg \beta_{2,\mathrm{Zr}}^2$$

Ratio should be above unity.

Signature of the octupole deformation of zirconium-96.

Same logic follows for octupole-deformed nuclei:

$$\frac{\langle v_3^2 \rangle_{\mathrm{Ru}+\mathrm{Ru}}}{\langle v_3^2 \rangle_{\mathrm{Zr}+\mathrm{Zr}}} = 1 + c \left(\beta_{3,\mathrm{Ru}}^2 - \beta_{3,\mathrm{Zr}}^2\right)$$

[Jia, Zhang, PRL 128 (2022) 2, 022301]

Significant octupole deformation from low-lying first 3⁻ state in ⁹⁶Zr.

No experimental information about ⁹⁶Ru.

Explanation from nuclear structure theory? Octupole deformation is a "beyond-mean-field" effect.

[Robledo, J.Phys.G 42 (2015) 5, 055109]

Preliminary work confirms large octupole deformation in zirconium. $\beta_{3,Zr}^2 \gg \beta_{3,Ru}^2$ Large energy gain from symmetry restoration.

Signature of skin differences between isobars.

Most immediate evidence: Size differences show up in probabilities of multiplicities.

[Shou *et al.*, PLB **749** (2015) 215-220] [Li *et al.*, PRC **98** (2018) 5, 054907] [Li *et al.*, PRL **125** (2020) 22, 222301] [Xu *et al.*, PLB **819** (2021) 136453] Radial profiles are different:

$$\rho(r) = \frac{\rho_0}{1 + \exp\left(\frac{r - R}{a}\right)}$$
 skin thickness

- 96Zr, more diffuse due to larger N.
- 96Ru, sharper surface.

Due to the smaller neutron skin, Ru+Ru systems are more compact. <pt> is enhanced.

Minor impact from deformations and viscous corrections during hydro.

30

Signature of skin thickness in (ratio of) fourth-order cumulant of v2.

Gaussian model of $V_2=(v_x,v_y)$ fluctuations. Reaction plane is along x:

$$p(v_{2x}, v_{2y}) = \frac{1}{\pi\delta^2} \exp\left[-\frac{(v_{2x} - v_2^{rp})^2 + v_{2y}^2}{\delta^2}\right]$$

Higher-order cumulants isolate elliptic flow in the reaction plane: [Voloshin *et al.*, PLB **659** (2008) 537-541]

$$v_2{4} = v_2{6} = \dots = v_2{\infty} = v_2^{rp}$$

Intrinsic ellipticity:
- sensitive to nuclear thickness
- insensitive to nuclear deformation

[Jia, Giacalone, Zhang, arXiv:2206.10449]

New technique by STAR collaboration to probe gluon densities in UPCs.

Fully consistent with state-of-the-art density functional results:

 $\Delta r_{np}[\text{MREDF}] = 0.17 \text{ fm}$

[Bally, Giacalone, Bender, arXiv:2301.02420]

Wrapping up:

Answers to the initial questions:

- Great confidence that high-energy model is appropriate.
- No clear indication of modifications of nuclear geometry from enhanced gluon fluctuations (Lorentz boost).

IN CONCLUSION – NEW METHOD TO IMAGE NUCLEI

The ultimate nuclear shape experiment? Exploration of rare earth nuclei.

- Precise determination of relative deformations.
- Observation of small triaxial deformations.
- Deformations beyond hexadecapole (β 4).
- Model-independent constraints for *ab-initio* theory.
- Complementary knowledge about nuclei.

4 – Prospects: theory and experiment.

Extract nuclear structure from Bayesian analyses of high-energy data. Check consistency with low-energy expectations

 $Pr(p\&D) = Pr(p) \times Pr(D|p) = Pr(D) \times Pr(p|D)$ prior × likelihood = evidence × posterior [see e.g. Matt Luzum, ESNT workshop]

Enabled by strong dependence of observables on structural properties.

Going beyond shapes: connection with ab initio approaches.

Exploiting ab initio predictions. Opportunity from ¹⁶O+¹⁶O collisions @ RHIC and LHC.

- 6000 configurations from Cluster Variational Monte Carlo simulations. Interaction: AV18+UIX. Repulsive core implemented. [Lonardoni *et al.*, PRC **96** (2017) 2, 024326] [Lim *et al.*, PRC **99** (2019) 4, 044904] [Rybczyński, Broniowski, PRC **100** (2019) 6, 064912]

- 15359 configurations from Nuclear Lattice Effective Field Theory simulations. Interaction: pionless EFT. Pin-hole algorithm to determine nucleon positions.

[Lu et al., PLB **797** (2019) 134863] [Summerfield *et al.*, PRC **104** (2021) 4, L041901]

Different N-body correlations.

Hamiltonian or many-body solution?

[Trajectum (G Nijs, W van der Schee) + Nuclear Lattice EFT (D. Lee, B-N. Lu) + G Giacalone, in progress]

Transparent evidence of the "geometric" origin of flow in a small system?

[Oxygen structure: VMC, Lonardoni *et al.*, PRC **96** (2017) 2, 024326] [Neon structure: *ab initio* PGCM, Frosini *et al.*, EPJA **58** (2022) 4, 63] Bands are systematical uncertainties (η /s, ζ /s, ...)

Large 20% effect on rms v₂. Systematical uncertainty on ratio at % level! ("isobar criterion")

Unambiguous "geometric" interpretation.

OUR POINT

Central A-A brings more robust information than: p+Au vs. d+Au central O+O vs. peripheral Pb+Pb

[Trajectum (G Nijs, W van der Schee) + *ab initio* PGCM (Bally, Duguet, Ebran, Frosini, Rodriguez, Somà) + G. Giacalone, in progress]

Role of small-x evolution?

1 – ²⁰Ne in SMOG system of LHCb. Collider + fixed-target at the same time. Collisions at sqrt(s)=7000 GeV and sqrt(s)=70 GeV.

2 – FOCAL upgrade of ALICE. "Dilute-dense" Ne+Ne, one small-x, one large-x.

Role of quarks and gluons (QCD) for nuclear structure?

QCD across energy scales. Long term goal?

Possibility of collisions of additional species @ LHC Run 5 and Run 6?

Maximizing impact for both low- and high-energy communities?

Collide them in pairs (isobar strategy)?

[from Alexander Kalweit (CERN), ESNT workshop]

[https://indico.cern.ch/event/1078695/]

Nucleon-nucleon luminosity: $\mathcal{L}_{NN} = A^2 \cdot \mathcal{L}_{AA}$	optimistic scenario	0-0	Ar-Ar	Ca-Ca	Kr-Kr	In-In	Xe-Xe	Pb-Pb
	(LAA) (CM ⁻² S ⁻¹)	9.5·10 ²⁹	2.0·10 ²⁹	1.9·10 ²⁹	5.0·10 ²⁸	2.3·10 ²⁸	1.6·10 ²⁸	3.3·10 ²⁷
	⟨Lnn⟩ (cm ⁻² s ⁻¹)	2.4·10 ³²	3.3·10 ³²	3.0·10 ³²	3.0·10 ³²	3.0·10 ³²	2.6·1032	1.4·10 ³²
	\mathcal{L}_{AA} (nb ⁻¹ / month)	1.6·10 ³	3.4·10 ²	3.1.10 ²	8.4·10 ¹	3.9·10 ¹	2.6·10 ¹	5.6·10 ⁰
	LNN (pb ⁻¹ / month)	409	550	500	510	512	434	242

Electron-Ion Collider – Effects of nuclear shapes should be assessed.

E.g.: Samarium isotopic chain. Same A (within 7%) but completely different shapes.

SUMMARY

- High-energy model for an excellent description of heavy-ion data.
- Collective spatial correlations (shapes) in nuclei show up clearly at high energy.
- Prospect theory: improved initial conditions from synergy with *ab-initio* nuclear theory.
- Prospect experiments: many opportunities to be discussed/investigated.

THANK YOU

AND

ENJOY THE PROGRAM!