Running of the Weak Mixing Angle

Chandan Ghosh

Jefferson Lab

Electroweak and Beyond the Standard Model Physics at the EIC INT, WU - Feb 12-16 2024

Outline

- Definition
- Running
- Past measurements
 - Z-pole measurements
 - Low-energy ($Q^2 < M_z^2$) measurements
- Potential future measurements
- Summary

Weak Mixing angle - fundamental quantity of EW theory

EM force

Infinite-range Massless mediator Conserve parity

EW force

Having massive and massless mediator

Weak force

Short range Massive mediator Violate Parity

 $sin^2 heta_w = 1 - (M_W/M_Z)^2 = (e/g)^2$

Quantum corrections

Universal quantum corrections can be absorbed into a scale dependent - "running" $\sin^2 \Theta_w(\mu)$

On-shell scheme

• promotes Tree-level definition to a renormalized $\sin^2 \Theta_w(\mu)$ to all orders in perturbation theory

$$sin^2 heta_W o s_W^2 \equiv 1 - M_W^2/M_Z^2 \ M_W = rac{A_0}{s_W (1 - \Delta r)^{1/2}}; M_Z = rac{M_W}{c_W} \ \Delta r pprox \Delta r_0 -
ho_t/tan^2 heta_w \ \Delta r_0 = 1 - lpha/ \hat{lpha}(M_z) \
ho_t = 3G_F m_t^2/8\sqrt{2}\pi^2$$

Simple conceptually - relatively large (~3%) correction from *ρ*_t causes large spurious contributions in higher orders.

Schemes of Definition

- Modified Minimal Subtraction
 - Scale dependent scaling choose $\mu = M_7$ for many EW processes
 - $\circ\;$ Less sensitive to mt and new physics.

.

$$sin^{2}\hat{ heta}_{W}(\mu)\equivrac{\hat{g'}^{2}(\mu)}{\hat{g}^{2}(\mu)+\hat{g'}^{2}(\mu)}$$

- Theoretically nice but unphysical
- Good for GUT running
- Effective
 - $\circ\,$ Extensively used at LEP defined by vector and axial vector couplings at the Z-pole $Zfar{f}$
 - Good at Z-pole
 - Required to calculate renormalized counterterms for non-Z-pole applications

$$sin^2 heta_f^{eff}\equiv\kappa_f(q^2,\mu)sin^2\hat{ heta}_W(\mu)\ sin^2\hat{ heta}_W(M_Z)-sin^2 heta_f^{eff}=0.00028$$

Existing Measurements

TITUTE for

UCLEAR THEORY

Future Measurements

 Clearly points out the precision of the future experiments: P2 and MOLLER - to the level of Z-pole measurements!

Running - fermionic and bosonic contributions

Z-pole measurements -CERN, SLAC, FermiLab

 $par{p}/ear{e} o Z o qar{q}/ll$

Used left-right, forward-backward asymmetry of quark/leptons, polarization state of τ lepton

The two most precision measurements differ by 3.2σ.

PRL 115 041801 (2015)

Sensitivity to new physics beyond the Standard Model

Look for tiny but measurable deviations from precisely calculable predictions from SM process

Observed PV: (SM+BSM) effect

Weak Neutral Current (WNC) Couplings

 $C_{1i}\equiv 2g^e_{\,\scriptscriptstyle A}g^i_{\scriptscriptstyle V}~~~C_{2i}\equiv 2g^e_{\scriptscriptstyle V}g^i_{\scriptscriptstyle A}$

Precision weak-mixing angle measurements: limits on the couplings

New Physics

fix if.

Jefferson Lab

 $C_{1d} = \frac{1}{2} - \frac{2}{3} \sin^2 \theta_W \approx 0.35$

 $C_{2u} = -\frac{1}{2} + 2 \sin^2 \theta_W \approx -0.04$

 $C_{2d} = \frac{1}{2} - 2 \sin^2 \theta_W \approx 0.04$

$$egin{aligned} C_{1q} \propto (g_{RR}^{eq})^2 + (g_{RL}^{eq})^2 - (g_{LR}^{eq})^2 & f_2 & f_2 \\ C_{2q} \propto (g_{RR}^{eq})^2 - (g_{RL}^{eq})^2 + (g_{LR}^{eq})^2 - (g_{LL}^{eq})^2 & L_{eff} = rac{(g_{ij}^{12})^2}{(1+\delta)\Lambda^2} \sum_{i,j=L,R} ar{f}_{1i} \gamma_u f_{1i} ar{f}_{2i} \gamma^\mu f_{2j} \\ C_{ee} \propto (g_{RR}^{ee})^2 - (g_{LL}^{ee})^2 & g \text{- strength of the interaction} \\ \Lambda \text{- Scale of the new dynamics} \end{aligned}$$

Weak Neutral Current (WNC) Couplings

$$C_{1q} \propto (g_{RR}^{eq})^2 + (g_{RL}^{eq})^2 - (g_{LR}^{eq})^2 - (g_{LL}^{eq})^2 \longrightarrow \stackrel{\text{Atomic parity violation,}}{\mathsf{PV} \text{ elastic e-N Scattering}}$$

$$C_{2q} \propto ~(g^{eq}_{RR})^2 - (g^{eq}_{RL})^2 + (g^{eq}_{LR})^2 - (g^{eq}_{LL})^2$$
 \implies PV deep inelastic scattering

 $C_{ee} \propto ~(g^{ee}_{RR})^2 - (g^{ee}_{LL})^2 \,$ ightarrow PV Moller scattering

Why low-energy ($Q^2 < < M_7^2$) measurements for the BSM search??

Existing Measurements: Atomic Parity Violation:¹³³Cs

Atomic Parity Violation at Q=2.4 MeV

 K_{PNC}
 Atomic Theory
 0.9065 (36) × 10⁻¹¹ ea₀ -1999
 0.8906 (26) × 10⁻¹¹ ea₀ -2010

0.8977 (40) x 10⁻¹¹ ea₀ - **2012**

Jefferson Lab

 $sin^2 {\hat heta}_W(M_Z) = 0.2283(20)
onumber \ {\delta(sin^2 {\hat heta}_W)\over sin^2 {\hat heta}_W} \sim 0.9\%$

BSM mass sensitivity 9.9 TeV

Atomic Parity Violation Q=2.4 MeV

New development

- TRIUMF Francium
- KVI Ra+
- PREX/CREX results
- Theory measurement on isotopic chain

 Induced an E1 Stark transitions - measure the modulation of E1-PV interference

$$Im(E1_{PNC})/\beta = 1.5935(56) mV/cm$$

LEAR TH

$$Q_{W}=(rac{E1_{PNC}/eta}{M_{hf}/eta})(rac{NM_{hf}}{k_{PNC}})$$

$$rac{\delta(sin^2{\hat heta}_W)}{sin^2{\hat heta}_W}\sim 0.9\%$$

NuTeV@ 4.47 GeV

- Decay of charged pi, K produces neutrinos, antineutrinos;
- Almost pure muon neutrinos;
- Only neutrinos penetrate shielding
- Dipoles select sign of charged meson:
- Determine nu/nubar type

PRL 88 091802 (2002)

Jefferson Lab

C_{ee}: The purely leptonic interaction

SLAC E158 2002-2003

SLAC E158 - Results @ Q = 161 MeV

UCLEAR THEORY

 $A_{PV} = (131 \pm 14 \pm 10) imes 10^{-9}$

Jefferson Lab

22

MOLLER at JLab

MOLLER at JLab - A Special purpose installation in HallA

• Multiple slow reversals: IHWP, Wien filter, spin precession

MOLLER measurement is the best among projected sensitivities for new measurements at low Q² or colliders over the next decade

Spectrometer Acceptance and Collimation

- Accept all Møller scattered electrons in range $\Theta_{CM} = 50^{\circ} 130^{\circ}$
- Exploit identical particle nature for 100% azimuthal acceptance; needs odd number of coils

80 100 120 140 160 18 COM Scattering Angle (degrees)

Energy (GeV)

Scattered Electron

MOLLER Detectors

Tracking (counting mode) detectors:

spectrometer calibration, electron scattering angle distribution, and background measurements

- Gas electron multipliers (GEM) detectors
- "Pion" acrylic Cherenkov detectors

Readout Electronics:

- Integration mode DAQ & trigger
 - Collect & analyaize100% of the helicity windows
- Counting mode DAQ & trigger
 - -input rates between 10~kHz and 300~kHz

MOLLER Status - Currently at construction phase

- ~50M\$ MIE by US DOE
- CD-1 granted on Dec-2020
- CD-2/3 review on Oct 2023.
- Construction:2024-2025
- Installation: 2026
- Commissioning: Summer 2026
- Physics run: thru 2028

Qweak: The axial-vector coupling

Qweak @ JLab - 4% measurement

Qweak @ JLab - 4% measurement

P2 at MESA: 3x better Proton weak charge measurement

P2 at MESA @ Q = 67 MeV

60 cm LH2 target

155 MeV, 150 μA 90% beam polarization

P2 at MESA

Sensitivity test of SM ~ 50 TeV - extendable to 60 TeV

Eur. Phys. J. A. 54 208 (2018)

C12 Weak charge measurement at MESA

MIT-Bates C12 Weak measurement ~ 25%

Sensitive to light dark Z-boson

EBeam = 150 MeV, Scatt. Angle =40 deg.

A Decade-Long Ring PVES Program at MESA!!

INSTITUTE for NUCLEAR THEORY

PVDIS: Measurements of the Vector-Axial couplings

First measurement: E122

PVDIS - Existing Data (e,D) from 6 GeV JLab era

$$egin{aligned} &A_{PV}(PVDIS) = rac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \ &= rac{G_F Q^2}{4\sqrt{2}\pilpha_{EM}} [a_1(x,Q^2)Y_1(x,y,Q^2) + a_3(x,Q^2)Y_3(x,y,Q^2)] \ &a_1 = rac{6}{5}(2C_{1u} - C_{1d}) \ &(2C_{2q} - C_{2d})ert_{Q^2=0} \end{aligned}$$

$$a_3 = rac{6}{5}(2C_{2u}-C_{2d})$$

At large y = (E-E')/E, the A_{PV} is sensitive to C_{2q}

selectively chosen DIS region $A_{PV} = -91.1(3.1(stat), 3.0(sys.)) \times 10^{-6} (4.3\%)$

PVDIS - Existing Data (e,D) from 6 GeV JLab era

$$egin{aligned} &A_{PV}(PVDIS) = rac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \ &= rac{G_F Q^2}{4\sqrt{2}\pilpha_{EM}} [a_1(x,Q^2)Y_1(x,y,Q^2) + a_3(x,Q^2)Y_3(x,y,Q^2)] \ &= rac{6}{4\sqrt{2}\pilpha_{EM}} [a_1(x,Q^2)Y_1(x,y,Q^2) + a_3(x,Q^2)Y_3(x,y,Q^2)] \end{aligned}$$

$$egin{aligned} a_1 &= rac{6}{5}(2C_{1u}-C_{1d}) \ a_3 &= rac{6}{5}(2C_{2u}-C_{2d}) \end{aligned}$$

At large y = (E-E')/E, the A_{PV} is sensitive to C_{2a}

selectively chosen DIS region $A_{PV} = -91.1(3.1(stat), 3.0(sys.)) \times 10^{-6} (4.3\%)$ $sin^2 {\hat heta}_w = 0.2299 \pm 0.0043(1.9\%)$

Mass scale of new physics ~ 10 TeV!

A([2C10 - C10]02-0) (TeV)

LEAR THEORY

Nature 506 67 (2014)

PVDIS *@* SoLID: Large Kinematic Coverage

PVDIS @ SoLID

INSTITUTE for NUCLEAR THEORY

Jefferson Lab

40

PVDIS @ SoLID - Installation will start just after MOLLER.

UCLEAR THEORY

Current limit <100 GeV

SoLID can improve sensitivity: 100-200 GeV range

Running of Weak-mixing angle at EIC - PVDIS

Polarized e on p

 DIS regime (not like P2)
 Required precise knowledge
 of PDFs

Polarized e on d

 Isoscalar target - Reduced
 need for precision PDF input

Zhao, Deshpande, Huang, Kumar, Riordan -Performed Simulations at EIC

Talk from Michael Nycz

Eur. Phys. J. A 53 55 (2017)

Other possibilities

- Moller scattering at an ILC
 - Fixed target Moller scattering Order of magnitude better than MOLLER.
 - Timeline????
- Weak mixing angle at DUNE:
 - $\circ\,$ High neutrino beam intensities
 - Relatively smaller uncertainty for neutrino-electron than neutrino-nucleus scattering

• Challenges:

- Neutrino-electron cross-section is three order smaller than neutrino-nucleus scattering - statistics
- $\circ\,$ Flux and energy distribution of neutrinos
 - PRISM (near detector) moves perpendicular to the beam on- and off- axis measurements

75 ton LAr TPC; 1.2MW proton beam with 7 yrs of data taking -2% measurement of $\sin^2 \Theta_w$

• FEC-ee, CEPC - timeline..

	INSTITUTE for	
×	NUCLEAR	THEOR

K K, Snowmass 96	E158	LC
Energy (GeV)	48	250-500
Intensity/pulse	4.5 × 1011	14×10^{11}
Pulse Rate (Hz)	120	120
Pe	85%	90%
Time (s)	5 × 10 ⁶	2 × 10 ⁷
A _{LR} (ppm)	0.15	1-2
δA _{LR} (ppm)	0.015	0.008
δsin ² (θ _w)	0.001	0.00006-8

Summary

A remarkably productive research program that will continue to flourish over the next decade

