发TRIUMF

Standard Model corrections to Fermi transitions in light nuclei

Michael Gennari

TRIUMF and University of Victoria

Collaborators: Mehdi Drissi, Mack Atkinson, ChienYeah Seng, Misha Gorchtein, Petr Navrátil

of Victoria

JG|u

л ohannes GUTENBERG
UNIVERSITÄT MAINZ

V_{ud} element of CKM matrix

	$\left\|V_{u d}\right\|$
superallowed	$0.97373(31)^{19}$
n	$0.97377(90)^{20}$
nuclear mirror	$0.9739(10)^{21}$
$\pi_{e 3}$	$0.9740(28)^{22}$

	$\left\|V_{u s}\right\|$		$\left\|V_{u s} / V_{u d}\right\|$
$K_{\ell 3}$	$0.22309(56)^{23}$		$\frac{\left\|u s / l_{\text {ud }}\right\|}{}$
¢3	$0.2221(13)^{24}$	$K_{\mu 2} / \pi_{\mu 2}$	$0.23131(51)^{23}$
Hyperon	$0.2250(27)^{25}$	$K_{\ell 3} / \pi_{e 3}$	$0.22908(87)^{23}$

$$
\left|0^{+}\right\rangle \rightarrow\left|0^{+}\right\rangle
$$

$$
\mathcal{L}_{C C}=-\frac{g}{\sqrt{2}}\left(\bar{u}_{L}, \bar{c}_{L}, \bar{t}_{L}\right) \gamma^{\mu} W_{\mu} \cup V_{C K M}\left(\begin{array}{l}
d_{L} \\
s_{L} \\
b_{L}
\end{array}\right)+\text { h.c. }
$$

- Precise $V_{u d}$ from superallowed Fermi transitions

$$
\left|V_{u d}\right|^{2}=\frac{\hbar^{7}}{G_{F}^{2} m_{e}^{5} c^{4}} \frac{\pi^{3} \ln (2)}{\mathcal{F} t\left(1+\Delta_{R}^{V}\right)}
$$

$G_{F} \equiv$ Fermi coupling constant determined from muon β decay

- hadronic matrix elements modified by nuclear environment
-Fermi matrix element renormalized by isospin non-conserving forces

$$
\mathcal{F} t=f t\left(1+\delta_{R}^{\prime}\right) \underline{\left(1-\delta_{C}+\delta_{N S}\right)} \quad \mathcal{F} t=\frac{K}{G_{V}^{2}\left|M_{F 0}\right|^{2}\left(1+\Delta_{R}^{V}\right)}
$$

Historical treatment

Last 30 years

- $\delta_{\text {NS }}$ from shell model and approximate single-nucleon currents
- δ_{C} from shell model with Woods-Saxon potential

Since 2018

- Data-driven dispersion integral approach for Δ_{R}^{V} [3-4]
- Reduced radiative correction uncertainty by factor of ~ 2
- Yields $V_{u d}$ with $(2-3) \sigma$ deviation from unitarity

Historical treatment

Last 30 years

- $\delta_{\text {NS }}$ from shell model and approximate single-nucleon currents
- δ_{C}

Evaluate corrections with ab initio NCSM

Sinc

- Da
- Re
- Yields $V_{u d}$ with $(2-3) \sigma$ deviation from unitarity

き TRIUMF

Electroweak radiative correction $\delta_{\text {NS }}$

- Tree level beta decay amplitude

$$
M_{\text {tree }}=-\frac{G_{F}}{\sqrt{2}} L_{\lambda} F^{\lambda}\left(p^{\prime}, p\right)
$$

- Hadronic correction in forward scattering limit

$$
\delta M=-i \sqrt{2} G_{F} e^{2} L_{\lambda} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{M_{W}^{2}}{M_{W}^{2}-q^{2}} \frac{\epsilon^{\mu \nu \alpha \lambda} q_{\alpha}}{\left[\left(p_{e}-q\right)^{2}-m_{e}^{2}\right] q^{2}} T_{\mu \nu}\left(p^{\prime}, p, q\right)
$$

$$
\delta M=\square_{\gamma W}\left(E_{e}\right) M_{\text {treee }}
$$

[6] Seng et al. (2023)

- Tree level beta decay amplitude

$$
M_{\text {tree }}=-\frac{G_{F}}{\sqrt{2}} L_{\lambda} F^{\lambda}\left(p^{\prime}, p\right)
$$

- Hadronic correction in forward scattering limit

$$
\delta M=\square_{\gamma W}\left(E_{e}\right) M_{\text {treee }}
$$

$$
\square_{\gamma W}^{b}\left(E_{e}\right)=\frac{e^{2}}{M} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{M_{W}^{2}}{M_{W}^{2}-q^{2}} \frac{1}{q^{2}+i \epsilon} \frac{1}{\left(p_{e}-q\right)^{2}+i \epsilon^{\prime}} \frac{M \nu\left(\frac{p_{e} \cdot q}{p \cdot p_{e}}\right)-q^{2}}{\nu} \frac{T_{3}(\nu,|\vec{q}|)}{f_{+}(0)}
$$

- Tree level beta decay amplitude

$$
M_{\text {tree }}=-\frac{G_{F}}{\sqrt{2}} L_{\lambda} F^{\lambda}\left(p^{\prime}, p\right)
$$

- Hadronic correction in forward scattering limit

$$
T^{\mu \nu}(p, q)=\frac{1}{2} \int d^{4} x e^{i q \cdot x}\left\langle\phi_{f}(p)\right| T\left[J_{\mathrm{em}}^{\mu}(x) J_{W}^{\nu}(0)^{\dagger}\right]\left|\phi_{i}(p)\right\rangle
$$

Nonrelativistic Compton amplitude

- Goal: Non-relativistic currents in momentum space [7]
- Rewrite currents with A-body propagators

$$
\begin{aligned}
& J^{\mu}(t, \vec{x})= e^{-i H t} J^{\mu}(0, \vec{x}) e^{i H t} \longrightarrow G(E)=\sum_{n} \frac{|n\rangle\langle n|}{E-E_{n}} \\
& T^{\mu \nu}(p, q)=-\frac{i}{2} \int d^{3} x e^{-i \vec{q} \cdot \vec{x}}\left\langle\phi_{f}(p)\right| J_{e m}^{\mu}(0, \vec{x}) \underline{G\left(M_{f}+\nu+i \epsilon\right)} J_{W}^{\dagger \nu}(0, \overrightarrow{0})\left|\phi_{i}(p)\right\rangle \\
&-\frac{i}{2} \int d^{3} x e^{-i \vec{q} \cdot \vec{x}}\left\langle\phi_{f}(p)\right| J_{W}^{\dagger \nu}(0, \overrightarrow{0}) \underline{G\left(M_{i}-\nu+i \epsilon\right)} J_{e m}^{\mu}(0, \vec{x})\left|\phi_{i}(p)\right\rangle
\end{aligned}
$$

Nonrelativistic Compton amplitude

- Goal: Non-relativistic currents in momentum space [7]
- Rewrite currents with A-body propagators
- Fourier transform currents into momentum space

$$
J(\vec{r})=\int \frac{d^{3} r}{(2 \pi)^{3}} e^{i \vec{q} \cdot \vec{r}} J(\vec{q}) \quad+\quad \begin{aligned}
& \text { Translation } \\
& \text { invariance }
\end{aligned}
$$

$$
\begin{aligned}
T^{\mu \nu}(p, q)= & \sqrt{M_{i} M_{f}}\left\langle\Phi_{f}\right| \underline{J_{e m}^{\mu}(\vec{q})} G\left(M_{f}+\nu+i \epsilon\right) \underline{J_{W}^{\dagger \nu}(-\vec{q}) \mid}\left|\Phi_{i}\right\rangle \\
& +i \sqrt{M_{i} M_{f}}\left\langle\Phi_{f}\right| \underline{J_{W}^{\dagger \nu}(-\vec{q})} G\left(M_{i}-\nu+i \epsilon\right) J_{e m}^{\mu}(\vec{q})\left|\Phi_{i}\right\rangle
\end{aligned}
$$

Nonrelativistic Compton amplitude

- Goal: Non-relativistic currents in momentum space [7]
- Rewrite currents with A-body propagators
- Fourier transform currents into momentum space
- General multipole expansion of currents

$$
\begin{array}{cc}
M_{J M}(q):=\int d^{3} r \mathcal{M}_{J M}(q, \vec{r}) \rho(\vec{r}) & T_{J M}^{\mathrm{el}}(q):=\int d^{3} r \frac{1}{q}\left(\vec{\nabla} \times \overrightarrow{\mathcal{M}}_{J J}^{M}(q, \vec{r})\right) \cdot \vec{J}(\vec{r}) \\
L_{J M}(q):=\int d^{3} r \frac{i}{q}\left(\vec{\nabla} \mathcal{M}_{J M}(q, \vec{r})\right) \cdot \vec{J}(\vec{r}) & T_{J M}^{\mathrm{mag}}(q):=\int d^{3} r \overrightarrow{\mathcal{M}}_{J J}^{M}(q, \vec{r}) \cdot \vec{J}(\vec{r})
\end{array}
$$

Nonrelativistic Compton amplitude

- Goal: Non-relativistic currents in momentum space [7]
- Rewrite currents with A-body propagators
- Fourier transform currents into momentum space
- General multipole expansion of currents

$$
\begin{aligned}
& T_{3}(\nu,|\vec{q}|)=4 \pi i \frac{\nu}{|\vec{q}|} \sqrt{M_{i} M_{f}} \sum_{J=1}^{\infty}(2 J+1)\left\langle\Psi_{f}\right|\left\{T_{J 0}^{\mathrm{mag}} G\left(\nu+M_{f}+i \epsilon\right) T_{J 0}^{5, \mathrm{el}}+T_{J 0}^{\mathrm{el}} G\left(\nu+M_{f}+i \epsilon\right) T_{J 0}^{5, \mathrm{mag}}\right. \\
&\left.+T_{J 0}^{5, \mathrm{mag}} G\left(-\nu+M_{i}+i \epsilon\right) T_{J 0}^{\mathrm{el}}+T_{J 0}^{5, \mathrm{el}} G\left(-\nu+M_{i}+i \epsilon\right) T_{J 0}^{\mathrm{mag}}\right\}(|\vec{q}|)\left|\Psi_{i}\right\rangle
\end{aligned}
$$

No-core shell model (NCSM)

- Ab initio approach to solving many-body Schrödinger equation [8]
- Sole input are nuclear interactions from chiral effective field theory
-NN @ NN-N4LO(500) [11]
- 3N @ 3N(Inl)-N²LO(650) [12]

$$
\sum H\left|\Psi_{A}^{J^{\pi} T}\right\rangle=E^{J^{\pi} T}\left|\Psi_{A}^{J^{\pi} T}\right\rangle
$$

Anti-symmetrized products of
many-body HO states

No-core shell model (NCSM)

- Ab initio approach to solving many-body Schrödinger equation [8]

Nonrelativistic Compton amplitude

- Goal: Non-relativistic currents in momentum space [7]
- Rewrite currents with A-body propagators
- Fourier transform currents into momentum space

Lanczos continued fraction method to compute nuclear Green's functions [13-14]

Lanczos continued fraction method

- Reformulate as inhomogeneous Schrödinger equation

$$
(H-E \mathbb{1})|\Phi\rangle=\hat{O}|\Psi\rangle
$$

$$
\begin{array}{|l|l|}
H \mathbf{v}_{1}=\alpha_{1} \mathbf{v}_{1}+\beta_{1} \mathbf{v}_{2} \\
H \mathbf{v}_{2}=\beta_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\beta_{2} \mathbf{v}_{3} \\
H \mathbf{v}_{3}= & \beta_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}+\beta_{3} \mathbf{v}_{4} \\
H \mathbf{v}_{4}= & \beta_{3} \mathbf{v}_{3}+\alpha_{4} \mathbf{v}_{4}+\beta_{4} \mathbf{v}_{5}
\end{array}
$$

Select pivot as source term

$$
\left|v_{1}\right\rangle=\frac{\hat{O}|\Psi\rangle}{\sqrt{\langle\Psi| O^{\dagger} \hat{O}|\Psi\rangle}}
$$

Lanczos continued fraction method

- Reformulate as inhomogeneous Schrödinger equation

$$
(H-E \mathbb{1})|\Phi\rangle=\hat{O}|\Psi\rangle
$$

$H \mathbf{v}_{1}=\alpha_{1} \mathbf{v}_{1}+\beta_{1} \mathbf{v}_{2}$
$H \mathbf{v}_{2}=\beta_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\beta_{2} \mathbf{v}_{3}$
$H \mathbf{v}_{3}=\quad \quad \beta_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}+\beta_{3} \mathbf{v}_{4}$
$H \mathbf{v}_{4}=r$

- Resolvent reconstructed as linear combination of Lanczos vectors
- Avoids brute force calculation of intermediate states

Symmetry tests of T_{3} amplitude

- Time reversal symmetry with exact isospin gives NME constraint
- Previously assumed nuclear T_{3} matched nucleonic system

Nuclei

$$
\begin{gathered}
T_{3}^{(0)}\left(-\nu, Q^{2}\right)=-T_{3}^{(0)}\left(\nu, Q^{2}\right) \\
T_{3}^{(1)}\left(-\nu, Q^{2}\right)=\cdots
\end{gathered}
$$

Nucleons

Pions

$$
\begin{array}{cc}
T_{3}^{(0)}\left(-\nu, Q^{2}\right)=-T_{3}^{(0)}\left(\nu, Q^{2}\right) & T_{3}^{(0)}\left(-\nu, Q^{2}\right)=-T_{3}^{(0)}\left(\nu, Q^{2}\right) \\
T_{3}^{(1)}\left(-\nu, Q^{2}\right)=T_{3}^{(1)}\left(\nu, Q^{2}\right) & T_{3}^{(1)}\left(\nu, Q^{2}\right)=0
\end{array}
$$

$$
\begin{aligned}
& \left.\left\langle{ }^{10} \mathrm{~B}\right| T_{J 0}^{\mathrm{mag},(0)}(q) G(M+i \epsilon) T_{J 0}^{5, \mathrm{el}}(q)\left|{ }^{10} \mathrm{C}\right\rangle=\left.\left\langle{ }^{10} \mathrm{C}\right| T_{J 0}^{\mathrm{mag},(0)}(q) G(M+i \epsilon) \tilde{T}_{J 0}^{5, \mathrm{el}}(q)\right|^{10} \mathrm{~B}\right\rangle \\
& \left.\left\langle{ }^{10} \mathrm{~B}\right| T_{J 0}^{\mathrm{el},(0)}(q) G(M+i \epsilon) T_{J 0}^{5, \mathrm{mag}}(q)\left|{ }^{10} \mathrm{C}\right\rangle=\left.\left\langle{ }^{10} \mathrm{C}\right| T_{J 0}^{\mathrm{el},(0)}(q) G(M+i \epsilon) \tilde{T}_{J 0}^{5, \mathrm{mag}}(q)\right|^{10} \mathrm{~B}\right\rangle
\end{aligned}
$$

About one year ago...
Poles of T_{3}

K.C. Greene

Poles

$G\left(\nu+M_{f}+i \epsilon\right)=\sum_{n} \frac{|n\rangle\langle n|}{\left[\nu+\overline{\left.M_{f}+i \epsilon\right]}-\overline{M_{n}}\right.} \quad: \quad P_{-}=\left\{M_{n}-M_{f}-i \epsilon\right\}$
$G\left(-\nu+M_{i}+i \epsilon\right)=\sum_{n} \frac{|n\rangle\langle n|}{\left[-\nu+M_{i}+i \epsilon\right]}-\overline{M_{n}} \quad: \quad P_{+}=\left\{M_{i}-M_{n}+i \epsilon\right\}$

- Numerical integration prone to instability
- Natural solution is Wick rotation

Initially thought NMEs and pole locations could not be extracted...

$$
\nu=i \nu_{E}
$$

Wick rotated T_{3}

$$
\begin{aligned}
T_{3}\left(i \nu_{E},|\vec{q}|\right)=-4 \pi & \frac{\nu_{E}}{|\vec{q}|} \sqrt{M_{i} M_{f}} \sum_{J=1}^{\infty}(2 J+1)\left\langle\Psi_{f}\right|\left\{T_{J 0}^{\mathrm{mag}} \underline{\underline{G\left(M_{f}+i \nu_{E}\right)}} T_{J 0}^{5, \mathrm{el}}+T_{J 0}^{\mathrm{el}} \underline{G\left(M_{f}+i \nu_{E}\right)} T_{J 0}^{5, \mathrm{mag}}\right. \\
& +T_{J 0}^{5, \mathrm{mag}} \underline{G\left(M_{i}-i \nu_{E}\right)} T_{J 0}^{\mathrm{el}}+T_{J 0}^{5, \mathrm{el}} \underline{\left.\underline{G\left(M_{i}-i \nu_{E}\right)} T_{J 0}^{\mathrm{mag}}\right\}(|\vec{q}|)\left|\Psi_{i}\right\rangle}
\end{aligned}
$$

$\left.\left.\left\langle{ }^{10} \mathrm{~B}\right| T_{J=1}^{\mathrm{mag}}(|\vec{q}|) G\left(M_{f}+i \nu_{E}\right) T_{J=1}^{5, \text { el }}(|\vec{q}|)\right|^{10} \mathrm{C}\right\rangle$

$$
\left\langle{ }^{10} \mathrm{~B}\right| T_{J=2}^{\mathrm{mag}}(|\vec{q}|) G\left(M_{f}+i \nu_{E}\right) T_{J=2}^{5, \mathrm{el}}(|\vec{q}|)\left|{ }^{10} \mathrm{C}\right\rangle
$$

$$
\left\langle{ }^{10} \mathrm{~B}\right| T_{J=3}^{\operatorname{maz}}(|\vec{q}|) G\left(M_{f}+i \nu_{E}\right) T_{J=3}^{5, \mathrm{el}}(|\vec{q}|)\left|{ }^{10} \mathrm{C}\right\rangle
$$

Wick rotation

$$
P_{+}=\left\{M_{i}-M_{n}+i \epsilon\right\}
$$

Wick rotation

$$
P_{+}=\left\{M_{i}-M_{n}+i \epsilon\right\}
$$

Residues for ${ }^{10} \mathrm{C} \rightarrow{ }^{10} \mathrm{~B}$ in NCSM

Poles	$n=1$	$n=2$	$n=3$
$P_{-}[\mathrm{MeV}]$	$-1.6572(J=3)$	$-0.6974(J=1)$	$-0.1861(J=1)$

Table 1: Pole locations along v axis corresponding to n-th excited state in T_{3} for ${ }^{10} \mathrm{C} \rightarrow{ }^{10} \mathrm{~B}$ transition at $N_{\max }=5$.

- Ground state 3^{+}and low-lying 1^{+}incur residues after Wick rotation
- Remaining pole in residue terms must also be treated

Electron energy expansion

$$
\square_{\gamma W}^{b}\left(E_{e}\right)=\left(\square_{\gamma W}^{b}\right)_{\text {Wick }}\left(E_{e}\right)+\left(\square_{\gamma W}^{b}\right)_{\operatorname{Res}, e}\left(E_{e}\right)+\left(\square_{\gamma W}^{b}\right)_{\operatorname{Res}, T_{3}}\left(E_{e}\right)
$$

- Wick rotated contour integral regular at $E_{e}=0$
- Electron propagator residue regular at $E_{e}=0$
- T_{3} residue contribution singular

$$
\square_{\gamma W}^{b}\left(E_{e}\right)=\boxminus_{0}+E_{e} \boxminus_{1}+\left(\square_{\gamma W}^{b}\right)_{\operatorname{Res}, T_{3}}\left(E_{e}\right)+\mathcal{O}\left(E_{e}^{2}\right)
$$

Comment on γW-box diagram subtraction for $\delta_{N S}$

- No resolution for nuclear γW-box above pion threshold
- Compensate asymptotics with contributions from free nucleon box
- $\delta_{N S}$ extracted with only free nucleon Born contribution

$$
\begin{gathered}
\delta_{N S}^{0+\mathrm{RES}}=2\left[\boxminus_{0}-\square_{\gamma W}^{\mathrm{n}, \mathrm{Born}}\right]+2 \frac{\int_{m_{e}}^{E_{m}} d E_{e}\left|\vec{p}_{e}\right| E_{e}\left(E_{e}-E_{m}\right)^{2} F\left(Z_{f}, E_{e}\right)\left(\square_{\gamma W}^{b}\right)_{\mathrm{Res}, T_{3}}\left(E_{e}\right)}{\int_{m_{e}}^{E_{m}} d E_{e}\left|\vec{p}_{e}\right| E_{e}\left(E_{e}-E_{m}\right)^{2} F\left(Z_{f}, E_{e}\right)} \\
\delta_{N S}^{1}=2 \boxminus_{1} \frac{\int_{m_{e}}^{E_{m}} d E_{e}\left|\vec{p}_{e}\right| E_{e}^{2}\left(E_{e}-E_{m}\right)^{2} F\left(Z_{f}, E_{e}\right)}{\int_{m_{e}}^{E_{m}} d E_{e}\left|\vec{p}_{e}\right| E_{e}\left(E_{e}-E_{m}\right)^{2} F\left(Z_{f}, E_{e}\right)}
\end{gathered}
$$

T_{3} residue contribution

$$
\left(\square_{\gamma W}^{b}\right)_{\operatorname{Res}, T_{3}}=\frac{e^{2}}{M} \mathcal{R} e \int_{0}^{\infty} \frac{d|\vec{q}|}{(2 \pi)^{2}}|\vec{q}|^{2} \sum_{k} \frac{M_{W}^{2}}{M_{W}^{2}-q_{k}^{2}} \frac{\mathcal{A}\left(E_{e}, \nu_{k},|\vec{q}|\right)}{q_{k}^{2}} \frac{\left[i \operatorname{Res} T_{3}\left(\nu_{k},|\vec{q}|\right)\right]}{f_{+}(0)}
$$

$$
\operatorname{Res} T_{3}\left(\nu_{k},|\vec{q}|\right)=\lim _{\nu \rightarrow \nu_{k}} T_{3}(\nu,|\vec{q}|)\left(\nu-\nu_{k}\right)
$$

- NME residues are transition matrix elements to low-lying eigenstates
- Residue integral contains additional pole in photon propagator
- Numerical techniques for safe integration

T_{3} residue contribution

$$
\left(\square_{\gamma W}^{b}\right)_{\operatorname{Res}, T_{3}}=\frac{e^{2}}{M} \mathcal{R} e \int_{0}^{\infty} \frac{d|\vec{q}|}{(2 \pi)^{2}}|\vec{q}|^{2} \sum_{k} \frac{M_{W}^{2}}{M_{W}^{2}-q_{k}^{2}} \frac{\mathcal{A}\left(E_{e}, \nu_{k},|\vec{q}|\right)}{q_{k}^{2}} \frac{\left[i \operatorname{Res} T_{3}\left(\nu_{k},|\vec{q}|\right)\right]}{f_{+}(0)}
$$

$$
\operatorname{Res} T_{3}\left(\nu_{k},|\vec{q}|\right)=\lim _{\nu \rightarrow \nu_{k}} T_{3}(\nu,|\vec{q}|)\left(\nu-\nu_{k}\right)
$$

- NME residues are transition matrix elements to low-lying eigenstates
- Residue integral contains additional pole in photon propagator
- Numerical techniques for safe integration

Benchmarking $\delta_{\text {NS }}$ results

- Structure function F_{3} instead of Compton amplitude T_{3}
- Analytic results for integral over boson energy v

$$
\boxminus_{0}=-2 e^{2} \int \frac{d^{3} q}{(2 \pi)^{3}} \sum_{k} \frac{M_{W}^{2}}{M_{W}^{2}-q_{k}^{2}} \frac{|\vec{q}|}{q_{k}^{4}} \frac{\operatorname{Res} T_{3}\left(\nu_{k},|\vec{q}|\right)}{f_{+}(0)}
$$

き TRIUMF

Isospin symmetry breaking correction δ_{C}

The pathway to δ_{C}

- δ_{C} in ab initio NCSM over 20 years ago

PHYSICAL REVIEW C 66, 024314 (2002)
$A b$ initio shell model for $\boldsymbol{A}=\mathbf{1 0}$ nuclei
E. Caurier. ${ }^{1}$ P. Navaratil, ${ }^{2}$ W. E. Ormand ${ }^{2}$ and J. P. Vary ${ }^{3}$
${ }^{1}$ Institut de Recherches Subatomiques (IN2P3-CNRS-Universite Louis Pastelr), Batiment 277, 67037 Strasbourg Cedex 2, France ${ }^{2}$ Lawrence Livermore National Laboratory, L-414, P.O. Box 808, Livermore, California 94551
${ }^{3}$ Department of Physics and Astronomy, Iova State University, Ames, Iowa 50011
(Received 10 May 2002; published 13 August 2002

HO expansion incompatible with reaction theory

i. imprecise asymptotics
ii. missing correlations in excited states
iii. description of scattering not feasible

Combine NCSM with resonating group method (RGM) [17]

No-core shell model with continuum (NCSMC)

- Generalized basis with NCSM states and microscopic cluster states

$$
\left\lvert\, \Psi_{A}^{\left.\left.\left.J^{\pi} T\right\rangle=\sum_{\alpha} c_{\alpha}\left|\psi_{A}^{J^{\pi} T} ; \alpha\right\rangle+\sum_{\nu} \int d \vec{r} \gamma_{\nu}(\vec{r}) \hat{\mathcal{A}}_{\nu}\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle, ~+\alpha\right\rangle_{\mathrm{NCSM}}^{(s)} Y_{l}\left(\hat{r}_{12}\right)\right]^{\left(J^{\pi}\right)}} \begin{gathered}
\text { Static solutions to } \\
\text { Schrödinger equation }
\end{gathered}\right.
$$

δ_{C} in NCSMC

- Compute Fermi matrix element in NCSMC [19]

$$
M_{F}=\left\langle\Psi^{J^{\pi} T_{f} M_{T_{f}}}\right| T_{+}\left|\Psi^{J^{\pi} T_{i} M_{T_{i}}}\right\rangle \longrightarrow\left|M_{F}\right|^{2}=\left|M_{F 0}\right|^{2}\left(1-\delta_{C}\right)
$$

- Total isospin operator $T_{+}=T_{+}^{(1)}+T_{+}^{(2)}$ for partitioned system

NCSM-Cluster matrix elements

${ }^{10} \mathrm{C}$ structure at $N_{\max }=9$

$$
\left|{ }^{10} \mathrm{C}\right\rangle=\sum_{\alpha} c_{\alpha}\left|{ }^{10} \mathrm{C}, \alpha\right\rangle_{\mathrm{NCSM}}+\sum_{\nu} \int d r \gamma_{\nu}^{J^{\pi} T}(r) \mathcal{A}_{\nu}\left|{ }^{9} \mathrm{~B}+\mathrm{p}, \nu\right\rangle
$$

- Treat as mass partition of proton plus ${ }^{9} \mathrm{~B}$
- Use $3 / 2^{-}$and $5 / 2^{-}$states of ${ }^{9} B$
- Known bound states captured by NCSMC

State	$\mathrm{E}_{\text {NCSM }}(\mathrm{MeV})$	$\mathrm{E}(\mathrm{MeV})$	$\mathrm{E}_{\exp }(\mathrm{MeV})$
0^{+}	-3.09	-3.46	-4.006
2^{+}	+0.40	-0.03	-0.652

${ }^{10} \mathrm{C}$ structure at $N_{\max }=9$

Eigenphase shifts

${ }^{10} \mathrm{C}$ structure at $N_{\max }=9$

Eigenphase shifts

- 1^{-}and 2^{-}resonances in ${ }^{10} \mathrm{C}$ analogs of ${ }^{10} \mathrm{Be}$ halo states
- 3- resonance present

${ }^{10} \mathrm{C}$ eigenphase shifts $N_{\max }=7-9$ comparison

${ }^{10} \mathrm{~B}$ structure result at $N_{\max }=9$

$$
\left.\left.\left.\left|{ }^{10} \mathrm{~B}\right\rangle=\left.\sum_{\alpha} c_{\alpha}\right|^{10} \mathrm{~B}, \alpha\right\rangle_{\mathrm{NCSM}}+\left.\sum_{\nu} \int d r \gamma_{\nu}(r) \mathcal{A}_{\nu}\right|^{9} \mathrm{Be}+p, \nu\right\rangle+\left.\sum_{\mu} \int d r \gamma_{\mu}(r) \mathcal{A}_{\mu}\right|^{9} \mathrm{~B}+n, \mu\right\rangle
$$

${ }^{10} \mathrm{~B}$ structure result at $N_{\max }=9$

$$
\left.\left.\left|{ }^{10} \mathrm{~B}\right\rangle=\sum_{\alpha} c_{\alpha}| |^{10} \mathrm{~B}, \alpha\right\rangle_{\mathrm{NCSM}}+\left.\sum_{\nu} \int d r \gamma_{\nu}(r) \mathcal{A}_{\nu}\right|^{9} \mathrm{Be}+p, \nu\right\rangle+\sum_{\mu} \int d r \gamma_{\mu}(r) \mathcal{A}_{\mu}\left|{ }^{9} \mathrm{~B}+n, \mu\right\rangle
$$

${ }^{10} \mathrm{~B}$ structure result at $N_{\max }=9$

$$
\left.\left.\left.\left|{ }^{10} \mathrm{~B}\right\rangle=\left.\sum_{\alpha} c_{\alpha}\right|^{10} \mathrm{~B}, \alpha\right\rangle_{\mathrm{NCSM}}+\left.\sum_{\nu} \int d r \gamma_{\nu}(r) \mathcal{A}_{\nu}\right|^{9} \mathrm{Be}+p, \nu\right\rangle+\left.\sum_{\mu} \int d r \gamma_{\mu}(r) \mathcal{A}_{\mu}\right|^{9} \mathrm{~B}+n, \mu\right\rangle
$$

${ }^{10} \mathrm{~B}$

- $\alpha+{ }^{6} \mathrm{Li}$ impacts structure of resonances and bound states above threshold

State	$E(\mathrm{MeV})$	$\mathrm{E}_{\exp }(\mathrm{MeV})$
3^{+}	-5.75	-6.5859
1^{+}	-5.33	-5.8676
0^{+}	-4.30	-4.8458
1^{+}	-4.26	-4.4316
2^{+}	-2.69	-2.9988
2^{+}	-0.93	-1.4220
2^{+}	-0.70	-0.6664
4^{+}	-0.19	-0.5609

- Goal: consistent nuclear theory corrections to Fermi transitions
- Larger basis NCSM calculations of $\delta_{\text {NS }}$
- first fully consistent NCSM calculation
- residue could be dominant feature
- NCSMC calculations for δ_{C} ongoing with Mack Atkinson

Outlook

- Benchmarking $\delta_{\text {NS }}$ via Lanczos strength function approach
- Tackle large number of many-body calculations with realistic $N_{\max }$
- seperate inhomogeneous Schrödinger equation at each $|\vec{q}|$
$-N_{|\vec{q}|} \times N_{\text {terms }} \times J_{\text {max }}=50 \times 4 \times 3=600$ many body calculations
- Improve limited uncertainty quantification
- Heavier transitions, e.g., ${ }^{14} \mathrm{O} \rightarrow{ }^{14} \mathrm{~N}$

きTRIUMF

Thank you

 Merciwww.triumf.ca
Follow us @TRIUMFLab
(5) (○) § Yout

References

1. C.Y. Seng. arXiv preprint: $2112.10942 v 2$ (2022)
2. P.A. Zyla et al. (Particle Data Group). Prog. in Theo. and Exp. Phys. 2020, 083C01. (2020)
3. C.Y. Seng, M. Gorchtein, H.H. Patel, \& M.J. Ramsey-Musolf. PRL 121(24), 241804. (2018)
4. M. Gorchtein. PRL 123(4), 042503. (2019)
5. J.C. Hardy \& I.S. Towner. PRC 102, 045501 (2020)
6. C.Y. Seng \& M. Gorchtein. PRC 107, 035503 (2023)
7. W. Haxton \& C. Lunardini. CPC 179, (2008) 345-358
8. B.R. Barrett, P. Navrátil, \& J.P. Vary. Prog. in Part. and Nuc. Phys. 69, pp. 131181. (2013)
9. Weinberg, S. Nuc. Phys. B 363, pp. 3-18 (1991)
10. E. Epelbaum, H.-W. Hammer, \& U.-G. Meißner. Rev. of Mod. Phys. 81, pp. 1773-1825. (2009)

References

11. D.R. Entem, R. Machleidt \& Y. Nosyk. PRC 96, 024004 (2017)
12. V. Somà, P. Navrátil, F. Raimondi, C. Barbieri \& T. Duguet. PRC 101, 014318 (2020)
13. Y. Hao, P. Navrátil, E.B. Norrgard, M. Iliaš, E. Eliav, R.G.E. Timmermans, V.V. Flambaum \& A. Borschevsky. PRA 102, 052828 (2020)
14. P. Froese \& P. Navrátil. PRC 104, 025502 (2021)
15. R. Haydock. JPA 7, 2120 (1974)
16. M.A. Marchisio, N. Barnea, W. Leidemann \& G. Orlandini. FBS 33(4) 259-276 (2003)
17. P. Navrátil, S. Quaglioni, I. Stetcu \& B.R. Barrett. JPG 36, 083101 (2009)
18. S. Baroni, P. Navrátil \& S. Quaglioni. PRC 87(3) 034326 (2013)
19. M.C. Atkinson, P. Navrátil, G. Hupin, K. Kravvaris \& S. Quaglioni. PRC 105, 054316 (2022)
20. E. Caurier, P. Navrátil, W.E. Ormand \& J.P. Vary. PRC 66, 024314 (2002)
21. P. Navrátil \& E. Caurier. PRC 69, 014311 (2004)

き TRIUMF

Backup slides for multipole expansion and $\delta_{N S}$

Electron energy expansion

$$
\square_{\gamma W}^{b}\left(E_{e}\right)=\boxminus_{0}+E_{e} \boxminus_{1}+\cdots+\left(\square_{\gamma W}^{b}\right)_{\operatorname{Res}, T_{3}}\left(E_{e}\right)
$$

$$
\begin{aligned}
& \boxminus_{0}=\frac{e^{2}}{M} \int \frac{d^{3} q}{(2 \pi)^{3}} \int \frac{d \nu_{E}}{2 \pi} \frac{M_{W}^{2}}{M_{W}^{2}-q^{2}} \frac{|\vec{q}|^{2}}{\nu_{E}\left(q^{2}+i \epsilon_{1}\right)^{2}} \frac{T_{3}\left(i \nu_{E},|\vec{q}|\right)}{f_{+}(0)} \\
& \boxminus_{1}=\frac{8}{3} \frac{e^{2}}{M} \int \frac{d^{3} q}{(2 \pi)^{3}} \int \frac{d \nu_{E}}{2 \pi} \frac{M_{W}^{2}}{M_{W}^{2}-q^{2}} \frac{|\vec{q}|^{2}}{\left(q^{2}+i \epsilon_{1}\right)^{3}} \frac{i T_{3}\left(i \nu_{E},|\vec{q}|\right)}{f_{+}(0)}
\end{aligned}
$$

Multipole expansion of amplitude

$$
\begin{gathered}
J^{\mu}(q)=(\rho(\vec{q}), \vec{J}(\vec{q})) \longrightarrow \vec{J}(\vec{q})=\sum_{\lambda} J(\vec{q}, \lambda) \vec{\epsilon}_{\lambda}^{*} \\
e^{-i \vec{q} \cdot \vec{r}}=4 \pi \sum_{J=0}^{\infty} \sum_{M_{J}}(-i)^{J} j_{J}(q r) Y_{J M_{J}}(\hat{q}) Y_{J M_{J}}^{*}(\hat{q}) \\
\mathcal{M}_{J M}(q, \vec{r})=j_{J}(q r) Y_{J M}(\hat{r}) \quad \overrightarrow{\mathcal{M}}_{J L}^{M}(q, \vec{r})=j_{L}(q r) \vec{Y}_{J L 1}^{M}(\hat{r})
\end{gathered}
$$

Multipole expansion of amplitude

$$
\begin{gathered}
\rho(\vec{q})=\sqrt{4 \pi} \sum_{J=0}^{\infty}(-i)^{J} \sqrt{2 J+1} M_{J 0}(q) \\
J(\vec{q}, \lambda=0)=\sqrt{4 \pi} \sum_{J=0}^{\infty}(-i)^{J} \sqrt{2 J+1} L_{J 0}(q) \\
J(\vec{q}, \lambda= \pm 1)=-\sqrt{2 \pi} \sum_{J=1}^{\infty}(-i)^{J} \sqrt{2 J+1}\left(\lambda T_{J \lambda}^{\mathrm{mag}}(q)-T_{J \lambda}^{\mathrm{el}}(q)\right)
\end{gathered}
$$

Nuclear matrix elements of multipole operators

$$
\begin{aligned}
&\left\langle N\left(p_{f} s_{f} m_{T_{f}}\right)\right| V_{T M_{T}}^{\mu}(0)\left|N\left(p_{i} s_{i} m_{T_{i}}\right)\right\rangle=\bar{u}_{s_{f}}\left(p_{f}\right)\left[F_{1}^{(T)} \left\lvert\, \gamma^{\mu}+\frac{\sqrt{F_{2}^{(T)}}}{2 m_{N}} \sigma^{\mu \nu}\left(p_{f}-p_{i}\right)_{\nu}\right.\right] u_{s_{i}}\left(p_{i}\right)\left\langle m_{T_{f}}\right| \Gamma_{T M_{T}}\left|m_{T_{i}}\right\rangle \\
& \begin{array}{l}
\left\langle N\left(p_{f} s_{f} m_{T_{f}}\right)\right| A_{T M_{T}}^{\mu}(0)\left|N\left(p_{i} s_{i} m_{T_{i}}\right)\right\rangle=\bar{u}_{s_{f}}\left(p_{f}\right)\left[G_{A}^{(T)} \gamma^{\mu} \gamma_{5}-\frac{G_{P}^{(T)}}{2 m_{N}}\right. \\
\left.\gamma_{5}\left(p_{f}-p_{i}\right)^{\mu}\right] u_{s_{i}}\left(p_{i}\right)\left\langle m_{T_{f}}\right| \Gamma_{T M_{T}}\left|m_{T_{i}}\right\rangle \\
\mathcal{M}_{J M}(q, \vec{r})=j_{J}(q r) Y_{J M}(\hat{r})
\end{array} \\
& \Delta_{J M}(q, \vec{r}):=\overrightarrow{\mathcal{M}}_{J J}^{M}(q, \vec{r}) \cdot \frac{1}{q} \vec{\nabla} \Sigma_{J M}^{\prime}(q, \vec{r}):=-i\left(\frac{1}{q} \vec{\nabla} \times \overrightarrow{\mathcal{M}}_{J J}^{M}(q, \vec{r})\right) \cdot \vec{\sigma} \\
& \Delta_{J M}^{\prime}(q, \vec{r}):=-i\left(\frac{1}{q} \vec{\nabla} \times \overrightarrow{\mathcal{M}}_{J J}^{M}(q, \vec{r})\right) \cdot \frac{1}{q} \vec{\nabla} \quad \Sigma_{J M}^{\prime \prime}(q, \vec{r}):=\left(\frac{1}{q} \vec{\nabla} \mathcal{M}_{J M}(q, \vec{r})\right) \cdot \vec{\sigma} \\
& \Sigma_{J M}(q, \vec{r}):=\overrightarrow{\mathcal{M}}_{J J}^{M}(q, \vec{r}) \cdot \vec{\sigma} \Omega_{J M}(q, \vec{r}):=\left(\mathcal{M}_{J M}(q, \vec{r}) \vec{\sigma}\right) \cdot \frac{1}{q} \vec{\nabla}
\end{aligned}
$$

き TRIUMF

Backup slides for NCSM/RGM

NCSM/RGM

- Combine NCSM with resonating group method (RGM) [15]
- $(A-a)$-target and a-nucleon projectile in ${ }^{2 s+1} l_{J}$ relative motion waves
$-\hat{r}_{A-a, a}$ connects c.m. of each cluster

$$
\begin{gathered}
\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle=\left[\left(\left|A-a \alpha_{1} I_{1}^{\pi_{1}} T_{1}\right\rangle \otimes\left|a \alpha_{2} I_{2}^{\pi_{2}} T_{2}\right\rangle\right)^{(s T)} Y_{l}\left(\hat{r}_{A-a, a}\right)\right]^{\left(J^{\pi} T\right)} \frac{\delta\left(r-r_{A-a, a}\right)}{r r_{A-a, a}} \\
H^{(A-a)}\left|\Psi_{A-a}^{I_{1}^{\pi_{1}} T_{1}}\right\rangle=E^{I_{1}^{\pi_{1}} T_{1}}\left|\Psi_{A-a}^{I_{1}^{\pi_{1}} T_{1}}\right\rangle \quad H^{(a)}\left|\Psi_{a}^{I_{2}^{\pi_{2}} T_{2}}\right\rangle=E^{I_{2}^{\pi_{2}} T_{2}}\left|\Psi_{a}^{I_{2}^{\pi_{2}} T_{2}}\right\rangle
\end{gathered}
$$

NCSM/RGM

- Combine NCSM with resonating group method (RGM) [15]
- $(A-a)$-target and a-nucleon projectile in ${ }^{2 s+1} l_{J}$ relative motion waves
$-\hat{r}_{A-a, a}$ connects c.m. of each cluster

$$
\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle=\left[\left(\left|A-a \alpha_{1} I_{1}^{\pi_{1}} T_{1}\right\rangle \otimes\left|a \alpha_{2} I_{2}^{\pi_{2}} T_{2}\right\rangle\right)^{(s T)} Y_{l}\left(\hat{r}_{A-a, a}\right)\right]^{\left(J^{\pi} T\right)} \frac{\delta\left(r-r_{A-a, a}\right)}{r r_{A-a, a}}
$$

- Require anti-symmetrization to preserve Pauli principle

$$
\hat{\mathcal{A}}_{\nu}=\sqrt{\frac{(A-a)!a!}{A!}}\left(1+\sum_{P \neq \mathbb{1}}(-1)^{p} P_{\nu}\right) \longrightarrow \begin{gathered}
\text { Anti-symmetrize } \\
\text { between clusters }
\end{gathered}
$$

NCSM/RGM

- Combine NCSM with resonating group method (RGM) [15]
- ($A-a$)-target and a-nucleon projectile in ${ }^{2 s+1} l_{J}$ relative motion waves
$-\hat{r}_{A-a, a}$ connects c.m. of each cluster

$$
\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle=\left[\left(\left|A-a \alpha_{1} I_{1}^{\pi_{1}} T_{1}\right\rangle \otimes\left|a \alpha_{2} I_{2}^{\pi_{2}} T_{2}\right\rangle\right)^{(s T)} Y_{l}\left(\hat{r}_{A-a, a}\right)\right]^{\left(J^{\pi} T\right)} \frac{\delta\left(r-r_{A-a, a}\right)}{r r_{A-a, a}}
$$

- Require anti-symmetrization to preserve Pauli principle
- Use anti-symmetrized channel states as continuous basis ansatz

$$
\left|\Psi^{J^{\pi} T}\right\rangle=\sum_{\nu} \int d r r^{2} \mathcal{A}_{\nu}\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle \frac{\left[\mathcal{N}^{-\frac{1}{2}} \cdot \chi\right]_{\nu}^{J^{\pi} T}(r)}{r}
$$

Solving RGM equations

- Solve orthogonalized RGM equations

$$
\sum_{\nu^{\prime}} \int d r^{\prime} r^{\prime 2}\left[\mathcal{N}^{-\frac{1}{2}} \mathcal{H} \mathcal{N}^{-\frac{1}{2}}\right]_{\nu \nu^{\prime}}^{J^{\pi} T}\left(r, r^{\prime}\right) \frac{\chi_{\nu^{\prime}}^{J^{\pi} T}\left(r^{\prime}\right)}{r^{\prime}}=E \frac{\chi_{\nu}^{J^{\pi} T}(r)}{r}
$$

- Norm and Hamiltonian kernels primary computational challenge

$$
\mathcal{H}_{\nu^{\prime} \nu}^{J^{\pi} T}\left(r^{\prime}, r\right)=\left\langle\Phi_{\nu^{\prime} r^{\prime}}^{J^{\pi}}\right| \hat{\mathcal{A}}_{\nu^{\prime}} \mathcal{H} \hat{\mathcal{A}}_{\nu}\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle \quad \mathcal{N}_{\nu^{\prime} \nu}^{J^{\pi} T}\left(r^{\prime}, r\right)=\left\langle\Phi_{\nu^{\prime} r^{\prime}}^{J^{\pi} T}\right| \hat{\mathcal{A}}_{\nu^{\prime}} \hat{\mathcal{A}}_{\nu}\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle
$$

Hamiltonian kernels

Well established solutions of multi-channel Schrödinger equations

Solving RGM equations

$$
\sum_{\nu^{\prime}} \int d r^{\prime} r^{\prime 2}\left[\mathcal{N}^{-\frac{1}{2}} \mathcal{H} \mathcal{N}^{-\frac{1}{2}}\right]_{\nu \nu^{\prime}}^{J^{\pi} T}\left(r, r^{\prime}\right) \frac{\chi_{\nu^{\prime}}^{J^{\pi} T}\left(r^{\prime}\right)}{r^{\prime}}=E \frac{\chi_{\nu}^{J^{\pi} T}(r)}{r}
$$

- Solve coupled channel nonlocal integro-differential equations [20-22]
- split configuration space by large matching radius r_{0}
- require continuity of wave function and derivative

Internal region
$\chi_{\nu}^{J^{\pi} T}(r)=\frac{i}{2 v_{\nu}}\left[\delta_{\nu i} H_{l}^{-}\left(\kappa_{\nu} r\right)-S_{\nu i}^{J^{\pi} T} H_{l}^{+}\left(\kappa_{\nu} r\right)\right]$

- Coulomb functions
- Expand over square integrable Lagrange functions

External region

$$
\chi_{\nu}^{J^{\pi} T}(r)=C_{\nu}^{J^{\pi} T} W_{l}\left(\kappa_{\nu} r\right)
$$

- Whittaker function asymptotics
- Normalization constant $C_{v}^{j^{\pi} T}$

Solving RGM equations

$$
\sum_{\nu^{\prime}} \int d r^{\prime} r^{\prime 2}\left[\mathcal{N}^{-\frac{1}{2}} \mathcal{H} \mathcal{N}^{-\frac{1}{2}}\right]_{\nu \nu^{\prime}}^{J^{\pi} T}\left(r, r^{\prime}\right) \frac{\chi_{\nu^{\prime}}^{J^{\pi} T}\left(r^{\prime}\right)}{r^{\prime}}=E \frac{\chi_{\nu}^{J^{T} T}(r)}{r}
$$

- Solve coupled channel nonlocal integro-differential equations [20-22]
- split configuration space by large matching radius r_{0}
- require continuity of wave function and derivative
- Eigenstates and eigenenergies for bound states
- Scattering matrix and eigenstates for unbound states
- Ab initio description of scattering off light-nuclei

NCSMC

- Generalize NCSM/RGM expansion with discrete NCSM eigenstates [16]

$$
\begin{array}{r}
\left|\Psi^{J^{\pi} T}\right\rangle=\sum_{\alpha} c_{\alpha}^{J^{\pi} T}\left|A \alpha J^{\pi} T\right\rangle+\sum_{\nu} \int d r r^{2} \mathcal{A}_{\nu}\left|\Phi_{\nu r}^{J^{\pi} T}\right\rangle \frac{\left[\mathcal{N}^{-\frac{1}{2}} \cdot \chi\right]_{\nu}^{J^{\pi} T}(r)}{r} \\
|\mathcal{Q}, \alpha\rangle_{\mathrm{NCSM}}+\left[|, \nu\rangle^{(s)} Y_{l}\left(\hat{r}_{12}\right)\right]^{\left(J^{\pi}\right)}
\end{array}
$$

$$
\left(\begin{array}{ll}
\mathbb{E} & \bar{h} \\
\bar{h} & \mathcal{H}
\end{array}\right)\binom{c}{\chi}=E\left(\begin{array}{ll}
\mathbb{1} & \bar{g} \\
\bar{g} & \mathcal{I}
\end{array}\right)\binom{c}{\chi}
$$

c_{α} and $\gamma_{\nu}(r)$ from solving coupled equations

References

20. A.M. Lane \& R.G. Thomas. Rev. Mod. Phys. 30, 257 (1958)
21. M. Hesse, J.-M. Sparenberg, F. Van Raemdonck, \& D. Baye. Nuc. Phys. A 640, pp. 37-51 (1998)
22. P. Descouvemont \& D. Baye. Rep. Prog. Phys. 73, 036301 (2010)

发TRIUMF

The real end

$A^{2}{ }^{2} z^{w^{-}}$

