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𝑉𝑢𝑑 from 

superallowed 

decays

|𝑉𝑢𝑠| from 𝐾𝑙3
decays

|𝑉𝑢𝑑/𝑉𝑢𝑠| from 

superallowed 

decays
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[1] Seng (2022)

Vud element of CKM matrix
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Vud element of CKM matrix

▪ Precise Vud from superallowed Fermi transitions

ℒ𝐶𝐶 = −
𝑔

2
ത𝑢𝐿, ҧ𝑐𝐿, ҧ𝑡𝐿 𝛾𝜇𝑊𝜇

+𝑉𝐶𝐾𝑀

𝑑𝐿
𝑠𝐿
𝑏𝐿

+ ℎ. 𝑐.

[2] Zyla et al. (2020)

‒ hadronic matrix elements modified by nuclear environment

‒ Fermi matrix element renormalized by isospin non–conserving forces

𝐺𝐹 ≡ Fermi coupling constant

determined from muon 𝛽 decay
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Historical treatment

[3] Seng et al. (2018)

[4] Gorchtein et al. (2019)

[5] Hardy et al. (2020)

Since 2018

▪ Data-driven dispersion integral approach for Δ𝑅
𝑉 [3-4]

▪ Reduced radiative correction uncertainty by factor of ~ 2

▪ Yields 𝑉𝑢𝑑 with 2 − 3 𝜎 deviation from unitarity

Last 30 years

▪ δNS from shell model and approximate single-nucleon currents

▪ δC from shell model with Woods-Saxon potential
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Since 2018

▪ Data-driven dispersion integral approach for Δ𝑅
𝑉 [3-4]

▪ Reduced radiative correction uncertainty by factor of ~ 2

▪ Yields 𝑉𝑢𝑑 with 2 − 3 𝜎 deviation from unitarity

Last 30 years

▪ δNS from shell model and approximate single-nucleon currents

▪ δC from shell model with Woods-Saxon potential

Historical treatment

[3] Seng et al. (2018)

[4] Gorchtein et al. (2019)

[5] Hardy et al. (2020)

Evaluate corrections with ab initio NCSM
10C → 10B
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ΔR
V and 𝛿𝑁𝑆

▪ Tree level beta decay amplitude

▪ Hadronic correction in forward scattering limit

Leptonic current
NME of charged 

weak current

[6] Seng et al. (2023)
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ΔR
V and 𝛿𝑁𝑆

▪ Tree level beta decay amplitude

▪ Hadronic correction in forward scattering limit

[6] Seng et al. (2023)

Leptonic current
NME of charged 

weak current
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Nonrelativistic Compton amplitude

[7] Haxton et al. (2007)

▪ Goal: Non-relativistic currents in momentum space [7]

▪ Rewrite currents with 𝐴-body propagators
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+ Translation 

invariance

Nonrelativistic Compton amplitude

▪ Goal: Non-relativistic currents in momentum space [7]

▪ Rewrite currents with 𝐴-body propagators

▪ Fourier transform currents into momentum space

[7] Haxton et al. (2007)
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Nonrelativistic Compton amplitude

▪ Goal: Non-relativistic currents in momentum space [7]
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Nonrelativistic Compton amplitude

▪ Goal: Non-relativistic currents in momentum space [7]

▪ Rewrite currents with 𝐴-body propagators

▪ Fourier transform currents into momentum space

▪ General multipole expansion of currents

[7] Haxton et al. (2007)
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1max += NN

Anti-symmetrized products of 

many-body HO states

No-core shell model (NCSM)

▪ Ab initio approach to solving many-body Schrödinger equation [8]

▪ Sole input are nuclear interactions from chiral effective field theory

[8] Barrett et al. (2013)

[9] Weinberg (1991)

[10] Epelbaum (2009)

[11] Entem et al. (2017)

[12] Somà et al. (2020)

– NN @ NN-N4LO(500) [11]

– 3N @ 3N(lnl)-N2LO(650) [12]
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1max += NN

Anti-symmetrized products of 

many-body HO states

No-core shell model (NCSM)

[8] Barrett et al. (2013)

[9] Weinberg (1991)

[10] Epelbaum (2009)

[11] Entem et al. (2017)

[12] Somà et al. (2020)

– NN @ NN-N4LO(500) [11]

– 3N @ 3N(lnl)-N2LO(650) [12]

▪ Ab initio approach to solving many-body Schrödinger equation [8]

▪ Sole input are nuclear interactions from chiral effective field theory

Accessible transitions

10C → 10B 14O → 14N 18Ne → 18F 22Mg → 22Na
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▪ Goal: Non-relativistic currents in momentum space [7]

▪ Rewrite currents with 𝐴-body propagators

▪ Fourier transform currents into momentum space

▪ General multipole expansion of currents

Nonrelativistic Compton amplitude

Lanczos continued fraction 

method to compute nuclear 

Green’s functions [13-14]

[7] Haxton et al. (2007)

[13] Hao et al. (2020)

[14] Froese et al. (2021)
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Lanczos continued fraction method

▪ Reformulate as inhomogeneous Schrödinger equation

[15] Haydock (1974)

[16] Marchisio et al. (2003)

Select pivot as source term
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Lanczos continued fraction method

▪ Reformulate as inhomogeneous Schrödinger equation

▪ Resolvent reconstructed as linear 
combination of Lanczos vectors

▪ Avoids brute force calculation of 
intermediate states

[15] Haydock (1974)

[16] Marchisio et al. (2003)
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Nuclei Nucleons Pions

Symmetry tests of 𝑇3 amplitude

▪ Time reversal symmetry with exact isospin gives NME constraint

▪ Previously assumed nuclear 𝑇3 matched nucleonic system

[6] Seng et al. (2023)
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About one year ago…

Poles of 𝑻𝟑

Me
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Poles

▪ Numerical integration prone to instability

▪ Natural solution is Wick rotation Initially thought NMEs 

and pole locations could 

not be extracted…
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Wick rotated 𝑇3
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Wick rotation
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Wick rotation
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Residues for 10C → 10B in NCSM

▪ Ground state 3+ and low-lying 1+ incur 
residues after Wick rotation

▪ Remaining pole in residue terms must 
also be treated

Table 1: Pole locations along 𝜈 axis corresponding to 𝑛–th

excited state in 𝑇3 for 10C → 10B transition at 𝑁𝑚𝑎𝑥 = 5.

Second 1+ below 0+ sensitive 

to interaction and 𝑁𝑚𝑎𝑥
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Electron energy expansion

▪ Wick rotated contour integral regular at 𝐸𝑒 = 0

▪ Electron propagator residue regular at 𝐸𝑒 = 0

▪ 𝑇3 residue contribution singular

Expand in electron energy
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Comment on 𝛾𝑊-box diagram subtraction for 𝛿𝑁𝑆

▪ No resolution for nuclear 𝛾𝑊-box above pion threshold

▪ Compensate asymptotics with contributions from free nucleon box

▪ 𝛿𝑁𝑆 extracted with only free nucleon Born contribution
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34

𝑇3 residue contribution

▪ NME residues are transition matrix elements 
to low-lying eigenstates

▪ Residue integral contains additional pole in 
photon propagator

▪ Numerical techniques for safe integration
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𝑇3 residue contribution

▪ NME residues are transition matrix elements 
to low-lying eigenstates
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photon propagator
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Benchmarking δNS results

▪ Structure function 𝐹3 instead of Compton amplitude 𝑇3

▪ Analytic results for integral over boson energy 𝜈

i. Need all residue positions in 
nuclear spectra

ii. Need transition matrix elements 
with all excited states in spectra
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Isospin symmetry breaking 
correction δC
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The pathway to δC

▪ δC in ab initio NCSM over 20 
years ago

HO expansion incompatible with reaction theory

i. imprecise asymptotics

ii. missing correlations in excited states

iii. description of scattering not feasible

[17] Navrátil et al. (2009)

[17]
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No–core shell model with continuum (NCSMC)

▪ Generalized basis with NCSM states and microscopic cluster states

Static solutions to 

Schrödinger equation

RGM cluster states describing 

long-range relative motion of 

projectile and target 

[18] Baroni et al. (2013)
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δC in NCSMC

▪ Compute Fermi matrix element in NCSMC [19]

▪ Total isospin operator 𝑇+ = 𝑇+
1
+ 𝑇+

2
for partitioned system

NCSM matrix element

NCSM-Cluster matrix elements
Continuum (cluster) matrix element

[19] Atkinson et al. (2022)
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10C structure at 𝑁𝑚𝑎𝑥 = 9

▪ Treat as mass partition of proton plus 9B

▪ Use 3/2− and 5/2− states of 9B

▪ Known bound states captured by NCSMC

State ENCSM (MeV) E (MeV) Eexp (MeV)

0+ −3.09 −3.46 −4.006

2+ +0.40 −0.03 −0.652
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10C structure at 𝑁𝑚𝑎𝑥 = 9

𝜋 = +1

Eigenphase shifts
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10C structure at 𝑁𝑚𝑎𝑥 = 9

𝜋 = −1

▪ 1− and 2− resonances 
in 10C analogs of 10Be 
halo states

▪ 3− resonance present

Eigenphase shifts
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10C eigenphase shifts 𝑁𝑚𝑎𝑥 = 7 − 9 comparison

𝜋 = +1
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10B structure result at 𝑁𝑚𝑎𝑥 = 9

▪ Use 3/2− and 5/2− states of 9B and 9Be

▪ Eight of twelve bound states predicted

State E (MeV) Eexp (MeV)

3+ −5.75 −6.5859

1+ −5.33 −5.8676

0+ −4.30 −4.8458

1+ −4.26 −4.4316

2+ −2.69 −2.9988

2+ −0.93 −1.4220

2+ −0.70 −0.6664

4+ −0.19 −0.5609
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10B structure result at 𝑁𝑚𝑎𝑥 = 9

▪ Correct ordering of 3+ and excited 1+

▪ Sensitive to 3N part of Hamiltonian [20-21]

[20] Caurier et al. (2002)

[21] Navrátil et al. (2004)

State E (MeV) Eexp (MeV)

3+ −5.75 −6.5859

1+ −5.33 −5.8676

0+ −4.30 −4.8458

1+ −4.26 −4.4316

2+ −2.69 −2.9988

2+ −0.93 −1.4220

2+ −0.70 −0.6664

4+ −0.19 −0.5609
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10B structure result at 𝑁𝑚𝑎𝑥 = 9

▪ α + 6Li impacts structure of resonances 

and bound states above threshold

State E (MeV) Eexp (MeV)

3+ −5.75 −6.5859

1+ −5.33 −5.8676

0+ −4.30 −4.8458

1+ −4.26 −4.4316

2+ −2.69 −2.9988

2+ −0.93 −1.4220

2+ −0.70 −0.6664

4+ −0.19 −0.5609
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▪ Goal: consistent nuclear theory corrections to Fermi transitions

▪ Larger basis NCSM calculations of δNS
– first fully consistent NCSM calculation

– residue could be dominant feature

▪ NCSMC calculations for δC ongoing with Mack Atkinson

Outlook

▪ Benchmarking δNS via Lanczos strength function approach

▪ Tackle large number of many-body calculations with realistic 𝑁𝑚𝑎𝑥

– seperate inhomogeneous Schrödinger equation at each Ԧ𝑞

–𝑁|𝑞| × 𝑁𝑡𝑒𝑟𝑚𝑠 × 𝐽𝑚𝑎𝑥 = 50 × 4 × 3 = 600 many body calculations

▪ Improve limited uncertainty quantification

▪ Heavier transitions, e.g., 14O → 14N
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Thank you
Merci



51

References

1. C.Y. Seng. arXiv preprint: 2112.10942v2 (2022)

2. P.A. Zyla et al. (Particle Data Group). Prog. in Theo. and Exp. Phys. 2020, 

083C01. (2020)

3. C.Y. Seng, M. Gorchtein, H.H. Patel, & M.J. Ramsey-Musolf. PRL 121(24), 

241804. (2018)

4. M. Gorchtein. PRL 123(4), 042503. (2019)

5. J.C. Hardy & I.S. Towner. PRC 102, 045501 (2020)

6. C.Y. Seng & M. Gorchtein. PRC 107, 035503 (2023)

7. W. Haxton & C. Lunardini. CPC 179, (2008) 345-358

8. B.R. Barrett, P. Navrátil, & J.P. Vary. Prog. in Part. and Nuc. Phys. 69, pp. 131-

181. (2013)

9. Weinberg, S. Nuc. Phys. B 363, pp. 3-18 (1991)

10. E. Epelbaum, H.-W. Hammer, & U.-G. Meißner. Rev. of Mod. Phys. 81, pp. 

1773-1825. (2009)



52

References

11. D.R. Entem, R. Machleidt & Y. Nosyk. PRC 96, 024004 (2017)

12. V. Somà, P. Navrátil, F. Raimondi, C. Barbieri & T. Duguet. PRC 101, 014318 

(2020)

13. Y. Hao, P. Navrátil, E.B. Norrgard, M. Iliaš, E. Eliav, R.G.E. Timmermans, V.V. 

Flambaum & A. Borschevsky. PRA 102, 052828 (2020)

14. P. Froese & P. Navrátil. PRC 104, 025502 (2021)

15. R. Haydock. JPA 7, 2120 (1974)

16. M.A. Marchisio, N. Barnea, W. Leidemann & G. Orlandini. FBS 33(4) 259-276 

(2003)

17. P. Navrátil, S. Quaglioni, I. Stetcu & B.R. Barrett. JPG 36, 083101 (2009)

18. S. Baroni, P. Navrátil & S. Quaglioni. PRC 87(3) 034326 (2013)

19. M.C. Atkinson, P. Navrátil, G. Hupin, K. Kravvaris & S. Quaglioni. PRC 105, 054316 

(2022)

20. E. Caurier, P. Navrátil, W.E. Ormand & J.P. Vary. PRC 66, 024314 (2002)

21. P. Navrátil & E. Caurier. PRC 69, 014311 (2004)



53

D
is

c
o

v
e
ry

,
a
c
c
e
le

ra
te

d

2023-05-10

Backup slides for 
multipole 

expansion and 𝛿𝑁𝑆
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Electron energy expansion
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Multipole expansion of amplitude

[7] Walecka (2004)
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Multipole expansion of amplitude
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Nuclear matrix elements of multipole operators
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NCSM/RGM

▪ Combine NCSM with resonating group method (RGM) [15]

– 𝐴 − 𝑎 -target and 𝑎-nucleon projectile in 2𝑠+1𝑙𝐽 relative motion waves

– Ƹ𝑟𝐴−𝑎,𝑎 connects c.m. of each cluster

[15] Navrátril et al. (2009)
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– Ƹ𝑟𝐴−𝑎,𝑎 connects c.m. of each cluster

▪ Require anti-symmetrization to preserve Pauli principle
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[15] Navrátril et al. (2009)
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NCSM/RGM

▪ Combine NCSM with resonating group method (RGM) [15]

– 𝐴 − 𝑎 -target and 𝑎-nucleon projectile in 2𝑠+1𝑙𝐽 relative motion waves

– Ƹ𝑟𝐴−𝑎,𝑎 connects c.m. of each cluster

▪ Require anti-symmetrization to preserve Pauli principle

▪ Use anti-symmetrized channel states as continuous basis ansatz

Linear variational 

amplitudes

[15] Navrátril et al. (2009)
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Solving RGM equations

▪ Solve orthogonalized RGM equations

Hamiltonian kernels Norm kernels

▪ Norm and Hamiltonian kernels primary computational challenge

Well established solutions of multi-channel 
Schrödinger equations
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Solving RGM equations

▪ Solve coupled channel nonlocal integro–differential equations [20-22]

– split configuration space by large matching radius 𝑟0
– require continuity of wave function and derivative

[20] Lane et al. (1958)

[21] Hesse et al. (1998)

[22] Descouvemont et al. (2010)

Internal region External region

– Coulomb functions

– Expand over square integrable 
Lagrange functions

– Whittaker function asymptotics

– Normalization constant C𝜈
𝐽𝜋𝑇
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Solving RGM equations

▪ Solve coupled channel nonlocal integro–differential equations [20-22]

– split configuration space by large matching radius 𝑟0
– require continuity of wave function and derivative

▪ Eigenstates and eigenenergies for bound states

▪ Scattering matrix and eigenstates for unbound states

▪ Ab initio description of scattering off light–nuclei 

[20] Lane et al. (1958)

[21] Hesse et al. (1998)

[22] Descouvemont et al. (2010)
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NCSMC

▪ Generalize NCSM/RGM expansion with discrete NCSM eigenstates [16]

[16] Baroni et al. (2013)

𝑐𝛼 and 𝛾𝜈 𝑟 from solving 
coupled equations
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