Bose gases out of equilibrium: from Turbulence to Coarsening

Martin Gazo (mg816@cam.ac.uk)

Compressible Turbulence: From Cold Atoms to Neutron Star Mergers 24 Jun 2025

Science and Technology

Facilities Council

EPSRC

Engineering and Physical Sciences Research Council

European Research Council

People involved in the work

Zoran Hadzibabic

Andrey Karailiev

Gevorg Martirosyan

Jiří Etrych

Simon Fisher

Seb Morris

Maciej Gałka

Tanish Satoor

Christoph Eigen

Panos Christodoulou

Julian Schmitt

Chris Ho

Experimental tools: ${}^{39}K$ Bose–Einstein Condensate in a box

2D Box trap (BEC 2)

3D Box trap (BEC3)

Tunable interactions

≈ 30–70k atoms

 $\omega_z/(2\pi) \approx 1 - 3 \text{ kHz}$ Trap depth: up to $k_B \times 800 \text{ nK}$ up to \approx 300k atoms Trap depth: up to k_B × 250 nK

Feshbach resonance (with zero crossing)

Magnetic Field, B (G)

Turbulence in Bose gases

1. Driven steady-state turbulence (2D gas)

Galka et.al., PRL **129**, 190402 (2022) Karailiev et. al., PRL **133**, 243402 (2024)

2. Free turbulence & universal coarsening (2D & 3D gas)

Gazo et.al., arXiv:2312.09248 (2023) Martirosyan et. al., arXiv: 2411.19948 (2024)

(Wave) turbulence

Wavenumber k (μm^{-1})

Big whorls have little whorls Which feed on their velocity, And little whorls have lesser whorls And so on to viscosity. Lewis Richardson

Here:

whirls viscosity → (dominantly) waves
 → trapdepth

Key signature: Power law $n_k \sim k^{-\gamma}$

(Vortex) turbulence *elsewhere*

Weak wave turbulence

S Dipole pair

Steady-state turbulence in 2D gas

Usually $\gamma = d$, here finite-size effects \rightarrow log-corrections

Emergence of the cascade

Key concepts:

Emergent isotropy
 Dynamic scaling of momentum distributions

Cascade front: $k_{cf} \sim t^{-\beta}$

More generally:

In its wake: $n_k \sim k^{-\gamma}$ $n_k \qquad \approx k_{cf}$ $n_k(k,t) = \left(\frac{t}{t_0}\right)^{\alpha} n_k \left[\left(\frac{t}{t_0}\right)^{\beta} k, t_0 \right]$

Here : $\alpha = \gamma \beta$ $\beta = 1/(\gamma - d - 2)$... also known in: KPZ, NTFP, phase-ordering

1) Isotropy of the cascade

Low *k*: PCA (in-situ)

-0.04 0.04

anisotropic acoustic cascade?

1) Isotropy of the cascade

2) Dynamic scaling – large k

Plot $k^{\gamma}n_k$ ($\gamma = 2.9$)

4

3

2

1.5

2

 $n_k k^\gamma$ (arb. units)

 $(t/t_0)^{\beta}k \ (\mu m^{-1})$

 $k \,(\mu m^{-1})$

Inverse wave cascade in 2D gas

Isotropic excitation $k_{\rm F} \approx 2 \ \mu {\rm m}^{-1}$ > $k_{\xi} = 0.8 \ \mu {\rm m}^{-1}$

Time

Inverse wave cascade in 2D gas

Look at: $k_{\xi} < k < k_F$

Dual cascade: Inverse & Direct Dissipation k_D finite \rightarrow direct cascade with Π_N Injection k_F finite \rightarrow inverse cascade with Π_E Experiment: $\gamma = 1.55(15)$ Theory: $\gamma = 4/3$ (ignoring all problems)

(Weakly) nonlocal cascade, reflected fluxes

Get still ~ $k^{-1.5}$ along the drive

Nonlocality of the cascade

Qualitatively similar

Turbulence in Bose gases

1. Driven steady-state turbulence (2D gas)

Galka et.al., PRL **129**, 190402 (2022) Karailiev et. al., PRL **133**, 243402 (2024)

2. Free turbulence & universal coarsening (2D & 3D gas)

Gazo et.al., arXiv:2312.09248 (2023) Martirosyan et. al., arXiv: 2411.19948 (2024)

How does a Bose–Einstein condensate form?

Typical situation: a rapid <u>quench</u> through a phase transition into the <u>ordered phase</u>

Preparing far-from-equilibrium states

Navon et. al, Nature (2016)

Chaotic driving @ zero interactions, but disorder important

Destroys condensate faster

Experiment: Martirosyan et.al., PRL, 132, 113401 2024 Theory: Zhang et.al., 2024

Bidirectional relaxation

Dynamic self-similar scaling (IR and UV):

$$n_k(k,t) = \left(\frac{t}{t_0}\right)^{\alpha} n_k \left[\left(\frac{t}{t_0}\right)^{\beta} k, t_0 \right]$$

Berges et.al., 101, 041603 (2008). Schmied et.al., 2019

(+ more recent ones...)

Dynamic scaling observed in experiments, but with exponents not fully understood

Experiment (2D)

Spectral particle density $\mathbf{N}_k \propto k^{d-1} \ n_k$

Experiment (2D)

Bidirectional relaxation

(particles to IR, energy to UV)

First, focus on the IR:

$$n_k(k,t) = \left(\frac{t}{t_0}\right)^{\alpha} n_k \left[\left(\frac{t}{t_0}\right)^{\beta} k, t_0 \right]$$
$$\alpha = d\beta = d/z = d/2 \quad \Rightarrow \alpha = 1$$

"decreasing level of confidence"

For condensate population n_0 :

$$n_0 = n_k (k = 0) \propto t^d$$

Condensate growth $n_0(t)$

the universal highway has its one clock

$$t_1 \neq t_2$$
$$t^* = t_1 - t_2$$
$$t_{\text{uni}} = t - t^*$$

 $n_{0} \propto (t - t^{*})^{\alpha}$ $t^{*} < 0 \quad t^{*} > 0$ $lgnoring t^{*}:$ $\frac{d \ln n_{0}}{d \ln t} = \frac{\alpha}{1 - t^{*}/t}$ $\log t$

Theorist:

prescaling (... and just waits)

Mazeliauskas et. al., **122**, 122301 (2019) Schmied et. al., **122**, 170404 (2019) Heller et. al., **132**, 071602 (2024)

Experimentalist:

gets wrong exponents (... and cannot wait)

A solution

Moreover, this reveals values of t^*

Collapse full IR n_k curves with theoretical exponents:

Exponent κ in the shape:

Vortices: $\kappa = 4$ Porod's law, phase-ordering kineticse.g. Bray, Adv. Phys. 51, 481 (2002)Waves: $\kappa = 3$ Resummed kinetic theoryChantesana et.al., PRA 99, 043620 (2019)
Rosenhaus, Falkovich, Arxiv: (2024)

Experiment: $\kappa = 2.9(2) \rightarrow$ wave-dominated dynamics!

UV dynamics: characteristic lengthscale

$$n_k(k,t) = \left(\frac{t}{t_0}\right)^{\alpha} n_k \left[\left(\frac{t}{t_0}\right)^{\beta} k, t_0 \right]$$

weak-wave free turbulence

 $\beta = -1/6$ $\alpha = (d+2)\beta$ But no special k givin a simple power law...

Peak of $\epsilon \sim k^3 n_k$

UV dynamics: dynamic scaling

Different *E* cannot collapse

Can we understand different *E*?

UV dynamics: relation to fluxes

 $\left| \Pi_arepsilon = -rac{eta}{t_{ ext{uni}}} k \, arepsilon_k \, .
ight.$

$$n_k(k,t) = \left(\frac{t}{t_0}\right)^{\alpha} n_k \left[\left(\frac{t}{t_0}\right)^{\beta} k, t_0 \right]$$

Energy spectral density $\epsilon_k \sim k^3 n_k$

Energy flux Π_{ε} : $\nabla \Pi_{\varepsilon} = \dot{\epsilon}_k$ (k-dependent energy flux)

 n_k reveals fluxes

 $\Pi_{\epsilon} \sim \epsilon_k \sim n_k$? EoS: $n_0 \sim \Pi_{\varepsilon}^{\kappa}$ with $\kappa < 1$ t_{uni} has to be different!

Estimate EoS exponent: $\kappa \approx 0.6$

21

3D Bose gas

Key universal features also **work** in 3D:

1) Coarsening:

$$\alpha = d\beta = d/z = 3/2$$

$$\Rightarrow n_0^{2/3} \text{ is linear in time}$$

2) Universal shape:

Martirosyan et. al., arXiv: 2411.19948

Interaction strength dependence

In WWT: timescales $\propto g^2$

Coarsening: ?

 $g_{\rm eff} \sim p^2$ independent on bare g

Chantesana et.al., PRA 99, 043620 (2019) Rosenhaus, Falkovich, arXiv:2501.12451 (2025)

- 1. Non-scaling part (open symbols): ...*depends on g*
- 2. Universal NTFP part (solid symbols): ...*independent on bare g!*

Universal slope:

Effective interaction strength

Martirosyan et. al., arXiv: 2411.19948

Transition from the weakly interacting (perturbative) regime

So far: IR dynamics $k \leq 1/\xi$ (strongly-interacting regime)

Opposite regime also possible $k > 1/\xi$: coarsening \rightarrow weak-wave turbulence

Predictions for inverse cascade: ≈ 2.5 (not 7/3)

Thank you for you attention!

Martin Gazo mg816@cam.ac.uk

European Research Council