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INTRODUCTION
▸ The energy frontier (LHC) is a direct avenue to study physics Beyond the Standard Model (BSM). 

▸ However, to date, the most important signatures for deviations from the Standard Model arose in the 
precision frontier – high precision combined theory-experiment effort: neutrino mass, W mass, and muon 
g-2. 

▸ These signatures provide motivation to search for more deviations in the electroweak sector.

▸ Nuclear phenomena have an important role in the precision frontier in the search for BSM signatures:

▸ New techniques allow unprecedented experimental accuracy.

▸ Theory can have controlled accuracy, with high precision, description of these phenomena, to analyze 
experimental results and pinpoint new physics. 

▸ Studies of nuclear beta-decay observables have proven in the past as very effective in pin-pointing hints 
for new physics. 
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BETA DECAY OBSERVABLES – IN THE QUEST FOR BSM SIGNATURES
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Precision Correlation Studies Precision spectrum studies

b decays

▸ We search for observables sensitive to interference of 
Standard Model currents with the new physics. 

▸ New physics can thus appear as additionnal gauge 
fermion “𝑓” vertices with W: 𝑊 − 𝑓 − 𝑓’ or new 
contact four fermion interactions generated by 
exchange of heavy particles. Thus, we expect an effect 
to scale as:
𝐺! ⋅ 𝜖" where 𝛼 ∈ 𝐿, 𝑅, 𝑆, 𝑃, 𝑇 labels the Lorentz
structure of the interaction.

▸ This is an effective field theory approach to the
extended Standard Model, where the dimensionless 
couplings relate to new physics scale Λ via: 

𝜖! ≈
"
#

$
with 𝑣 ≈ 174GeV the SM VEV.

▸ Thus, experimental sensitivity for 𝜖! < 10%& can 
explore new physics at the largely unexplored
Λ = 𝑓𝑒𝑤 TeV scale.

V. Cirigliano, A. Garcia, DG, O. Naviliat-Cuncic, G. Savard, A. Young, Precision beta decay as a probe of new physics, arXiv:1907.02164 (2019). 
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Energy spectrum

Angular correlation

V. Cirigliano, A. Garcia, DG, O. Naviliat-Cuncic, G. Savard, A. Young, Precision beta decay as a probe of new physics, arXiv:1907.02164 (2019). 
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Precision Correlation Studies Precision spectrum studies

b decays

Experimental 
sensitivity of 

10-4

Theoretical 
calculation to

10-4

New physics 
exploration 
at 10 TeV

At the Hebrew University, we have combined experimental and
theoretical efforts for precision β-decay studies.

The scope of our studies is enhanced by use of short-lived
radioactive nuclei, that will be produced at the SARAF-II
accelerator in Israel.



Experimental 
sensitivity of 

10-4

Theoretical 
calculation to

10-4

New physics 
exploration 
at 10 TeV

BETA DECAY OBSERVABLES

8

Precision Correlation Studies Precision spectrum studies

b decays

WHAT ARE THE 
THEORY NEEDS 

FOR SUCH 
CALCULATION?



▸ The main challenges of theory, and especially nuclear theory, include three main fronts: 

▸ nuclear structure corrections, to known precision and accuracy, to the interaction of the electro-weak 
probes with the nucleus, beyond the leading order approximation of the probes interacting with a 
single nucleon in the nucleus; 

▸ nuclear structure effects in the calculation of radiative corrections, particularly the γ-W box; 

▸ a lattice-QCD assessment of nucleon charges, essential to connect nuclear observables to quark-level 
couplings. In particular, the uncertainties in gA, gS, and gT, limit the sensitivity to εR, εS, and εT, 
respectively. 

(NUCLEAR) THEORY NEEDS 9

See Misha Gorshteyn’s talk

See Ross Young’s talk
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THEORETICAL ANALYSIS OF CORRECTIONS 
IN AND BEYOND THE STANDARD MODEL
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
2) J + 1






[
1 −

(
ν̂ · q̂

)( !β · q̂
)]∑

J≥1

(
|〈‖Ê J ‖〉|2 + |〈‖M̂ J ‖〉|2

)

± q̂ ·
(
ν̂ − !β

)∑

J≥1

2)〈‖Ê J ‖〉〈‖M̂ J ‖〉∗

+
∑

J≥0

[[
1 − ν̂ · !β + 2

(
ν̂ · q̂

)( !β · q̂
)]

|〈‖L̂ J ‖〉|2

+
(

1 + ν̂ · !β
)

|〈‖Ĉ J ‖〉|2

− 2q̂ ·
(
ν̂ + !β

)
)〈‖Ĉ J ‖〉〈‖L̂ J ‖〉∗

]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.

Differential b decay rate

286 A. Glick-Magid et al. / Physics Letters B 767 (2017) 285–288
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Nuclear independent part

Momentum transfer 𝛽 = !
", 𝛽 particle momentum to energy ratio 𝜈 neutrino momentum

×(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠)
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neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
2) J + 1






[
1 −

(
ν̂ · q̂

)( !β · q̂
)]∑

J≥1

(
|〈‖Ê J ‖〉|2 + |〈‖M̂ J ‖〉|2

)

± q̂ ·
(
ν̂ − !β

)∑

J≥1

2)〈‖Ê J ‖〉〈‖M̂ J ‖〉∗

+
∑

J≥0

[[
1 − ν̂ · !β + 2

(
ν̂ · q̂

)( !β · q̂
)]

|〈‖L̂ J ‖〉|2

+
(

1 + ν̂ · !β
)

|〈‖Ĉ J ‖〉|2

− 2q̂ ·
(
ν̂ + !β

)
)〈‖Ĉ J ‖〉〈‖L̂ J ‖〉∗

]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
2) J + 1
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
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1 −
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+
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+
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]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me
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− 1
5

(
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(
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)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.

Nuclear independent part

Momentum transfer 𝛽 = !
", 𝛽 particle momentum to energy ratio 𝜈 neutrino momentum

Classification of b decays is achieved via momentum transfer dependence: 

×(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠)
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)
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, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
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d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1
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1 − |CT |2+|C ′

T |2
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, and b = 2 CT +C ′
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[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),
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The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:
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d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
2) J + 1






[
1 −

(
ν̂ · q̂

)( !β · q̂
)]∑

J≥1

(
|〈‖Ê J ‖〉|2 + |〈‖M̂ J ‖〉|2

)

± q̂ ·
(
ν̂ − !β

)∑

J≥1

2)〈‖Ê J ‖〉〈‖M̂ J ‖〉∗
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(
ν̂ · q̂
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(
ν̂ + !β

)
)〈‖Ĉ J ‖〉〈‖L̂ J ‖〉∗

]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
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)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
2) J + 1






[
1 −

(
ν̂ · q̂

)( !β · q̂
)]∑

J≥1

(
|〈‖Ê J ‖〉|2 + |〈‖M̂ J ‖〉|2

)

± q̂ ·
(
ν̂ − !β

)∑

J≥1
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+
∑

J≥0

[[
1 − ν̂ · !β + 2

(
ν̂ · q̂

)( !β · q̂
)]

|〈‖L̂ J ‖〉|2

+
(
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)

|〈‖Ĉ J ‖〉|2

− 2q̂ ·
(
ν̂ + !β

)
)〈‖Ĉ J ‖〉〈‖L̂ J ‖〉∗

]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
2) J + 1






[
1 −

(
ν̂ · q̂

)( !β · q̂
)]∑

J≥1

(
|〈‖Ê J ‖〉|2 + |〈‖M̂ J ‖〉|2

)

± q̂ ·
(
ν̂ − !β

)∑

J≥1

2)〈‖Ê J ‖〉〈‖M̂ J ‖〉∗

+
∑

J≥0

[[
1 − ν̂ · !β + 2

(
ν̂ · q̂

)( !β · q̂
)]

|〈‖L̂ J ‖〉|2

+
(
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)

|〈‖Ĉ J ‖〉|2

− 2q̂ ·
(
ν̂ + !β

)
)〈‖Ĉ J ‖〉〈‖L̂ J ‖〉∗

]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
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]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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∝ 𝑞&#%
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Assuming V-A structure

We have similar expressions for Tensor and Scalar structures, and interferences. Glick-Magid, DG, PRD (2023)
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
2) J + 1






[
1 −

(
ν̂ · q̂

)( !β · q̂
)]∑

J≥1

(
|〈‖Ê J ‖〉|2 + |〈‖M̂ J ‖〉|2

)

± q̂ ·
(
ν̂ − !β

)∑

J≥1

2)〈‖Ê J ‖〉〈‖M̂ J ‖〉∗

+
∑

J≥0

[[
1 − ν̂ · !β + 2

(
ν̂ · q̂

)( !β · q̂
)]

|〈‖L̂ J ‖〉|2

+
(

1 + ν̂ · !β
)

|〈‖Ĉ J ‖〉|2

− 2q̂ ·
(
ν̂ + !β

)
)〈‖Ĉ J ‖〉〈‖L̂ J ‖〉∗

]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.

Differential b decay rate

Momentum transfer 𝛽 = !
", 𝛽 particle momentum to energy ratio 𝜈 neutrino momentum

Nuclear dependent part – neglecting rad. corrections:
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
2) J + 1






[
1 −

(
ν̂ · q̂

)( !β · q̂
)]∑

J≥1

(
|〈‖Ê J ‖〉|2 + |〈‖M̂ J ‖〉|2

)

± q̂ ·
(
ν̂ − !β

)∑

J≥1

2)〈‖Ê J ‖〉〈‖M̂ J ‖〉∗

+
∑

J≥0

[[
1 − ν̂ · !β + 2

(
ν̂ · q̂

)( !β · q̂
)]

|〈‖L̂ J ‖〉|2

+
(

1 + ν̂ · !β
)

|〈‖Ĉ J ‖〉|2

− 2q̂ ·
(
ν̂ + !β

)
)〈‖Ĉ J ‖〉〈‖L̂ J ‖〉∗

]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.

Differential b decay rate

Momentum transfer 𝛽 = !
", 𝛽 particle momentum to energy ratio 𝜈 neutrino momentum

Nuclear dependent part – neglecting rad. corrections:
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
2) J + 1






[
1 −

(
ν̂ · q̂

)( !β · q̂
)]∑

J≥1

(
|〈‖Ê J ‖〉|2 + |〈‖M̂ J ‖〉|2

)

± q̂ ·
(
ν̂ − !β

)∑

J≥1

2)〈‖Ê J ‖〉〈‖M̂ J ‖〉∗

+
∑

J≥0

[[
1 − ν̂ · !β + 2

(
ν̂ · q̂

)( !β · q̂
)]

|〈‖L̂ J ‖〉|2

+
(

1 + ν̂ · !β
)

|〈‖Ĉ J ‖〉|2

− 2q̂ ·
(
ν̂ + !β

)
)〈‖Ĉ J ‖〉〈‖L̂ J ‖〉∗

]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫
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Ê J M(q) = 1
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where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),
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where me is the electron mass. This is accurate up to (recoil) 
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teraction entails aβν = − 1
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the relative strength of the tensor (pseudo-tensor) and the axial-
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the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since
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The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),
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The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
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the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
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[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2
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, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
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The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:
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With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2
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with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫
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∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me
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+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1
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the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since
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(allowed) ∝ '(ε)
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1 + b
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. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),
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The last term linearly depends on 
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. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:
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with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
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[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
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| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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|〈‖Ê J ‖〉|2 + |〈‖M̂ J ‖〉|2

)

± q̂ ·
(
ν̂ − !β

)∑

J≥1
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|〈‖Ĉ J ‖〉|2

− 2q̂ ·
(
ν̂ + !β

)
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where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1
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(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
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[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2
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with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2
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with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
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.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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|〈‖Ĉ J ‖〉|2

− 2q̂ ·
(
ν̂ + !β

)
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, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),
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(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:
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= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,
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(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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2)〈‖Ê J ‖〉〈‖M̂ J ‖〉∗

+
∑

J≥0

[[
1 − ν̂ · !β + 2

(
ν̂ · q̂

)( !β · q̂
)]

|〈‖L̂ J ‖〉|2

+
(

1 + ν̂ · !β
)
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where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
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L̂ J M(q) = i
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∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
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the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓
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(allowed) ∝ '(ε)
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1 + b

me
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)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),
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5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.

Differential b decay rate

Momentum transfer 𝛽 = !
", 𝛽 particle momentum to energy ratio 𝜈 neutrino momentum

Nuclear dependent part – neglecting rad. corrections:

PRECISION B-DECAY STUDIES TO PINPOINT BSM EFFECTS

Θ 𝑞, 𝛽 ⋅ 𝜈̂ ≈ 𝜖(
)# ⋅ Θ$ 𝑞, 𝛽 ⋅ 𝜈̂ ⋅ 1 + 𝜖( ⋅ 𝛿Θ% 𝑞, 𝛽 ⋅ 𝜈̂ + 𝜖(, ⋅ 𝛿Θ, 𝑞, 𝛽 ⋅ 𝜈̂ + ⋯

The multipole expansion naturally leads to an expansion in the momentum transfer 𝜖! =
𝑞𝑅
ℏ𝑐

≈ 0.005 − 0.1

e.g., for a typical medium-mass nucleus: Few % correction Few 0.01% correction

Experimental precision determines where this expansion should be cut-off. 
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
2) J + 1






[
1 −

(
ν̂ · q̂

)( !β · q̂
)]∑

J≥1

(
|〈‖Ê J ‖〉|2 + |〈‖M̂ J ‖〉|2

)

± q̂ ·
(
ν̂ − !β

)∑

J≥1

2)〈‖Ê J ‖〉〈‖M̂ J ‖〉∗

+
∑

J≥0

[[
1 − ν̂ · !β + 2

(
ν̂ · q̂

)( !β · q̂
)]

|〈‖L̂ J ‖〉|2

+
(

1 + ν̂ · !β
)

|〈‖Ĉ J ‖〉|2

− 2q̂ ·
(
ν̂ + !β

)
)〈‖Ĉ J ‖〉〈‖L̂ J ‖〉∗

]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.

Differential b decay rate

Momentum transfer 𝛽 = !
", 𝛽 particle momentum to energy ratio 𝜈 neutrino momentum

Nuclear dependent part – neglecting rad. corrections:

PRECISION B-DECAY STUDIES TO PINPOINT BSM EFFECTS

Θ 𝑞, 𝛽 ⋅ 𝜈̂ ≈ 𝜖(
)# ⋅ Θ$ 𝑞, 𝛽 ⋅ 𝜈̂ ⋅ 1 + 𝜖( ⋅ 𝛿Θ% 𝑞, 𝛽 ⋅ 𝜈̂ + 𝜖(, ⋅ 𝛿Θ, 𝑞, 𝛽 ⋅ 𝜈̂ + ⋯

The multipole expansion naturally leads to an expansion in the momentum transfer 𝜖! =
𝑞𝑅
ℏ𝑐

≈ 0.005 − 0.1

Depends on the 
nuclear model

Depends on the 
nuclear model
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
2) J + 1






[
1 −

(
ν̂ · q̂

)( !β · q̂
)]∑

J≥1

(
|〈‖Ê J ‖〉|2 + |〈‖M̂ J ‖〉|2

)

± q̂ ·
(
ν̂ − !β

)∑

J≥1

2)〈‖Ê J ‖〉〈‖M̂ J ‖〉∗

+
∑

J≥0

[[
1 − ν̂ · !β + 2

(
ν̂ · q̂

)( !β · q̂
)]

|〈‖L̂ J ‖〉|2

+
(

1 + ν̂ · !β
)

|〈‖Ĉ J ‖〉|2

− 2q̂ ·
(
ν̂ + !β

)
)〈‖Ĉ J ‖〉〈‖L̂ J ‖〉∗

]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, !β · ν̂)

= ) J
2) J + 1






[
1 −

(
ν̂ · q̂

)( !β · q̂
)]∑

J≥1

(
|〈‖Ê J ‖〉|2 + |〈‖M̂ J ‖〉|2

)

± q̂ ·
(
ν̂ − !β

)∑

J≥1

2)〈‖Ê J ‖〉〈‖M̂ J ‖〉∗

+
∑

J≥0

[[
1 − ν̂ · !β + 2

(
ν̂ · q̂

)( !β · q̂
)]

|〈‖L̂ J ‖〉|2

+
(

1 + ν̂ · !β
)

|〈‖Ĉ J ‖〉|2

− 2q̂ ·
(
ν̂ + !β

)
)〈‖Ĉ J ‖〉〈‖L̂ J ‖〉∗

]}
, (4)

where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, !β · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ε

− 1
5

(
2
(
ν̂ · !β

)
−

(
ν̂ · q̂

)( !β · q̂
))(

1 − |CT |2 + |C ′
T |2

|C A |2
)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.

Nuclear Structure corrections

Gamow-Teller



EXAMPLE: GAMOW-TELLER TRANSITIONS 26

BSM (tensor) signatures

286 A. Glick-Magid et al. / Physics Letters B 767 (2017) 285–288

than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2
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2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),
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The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:
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d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,
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π2

2) J + 1
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(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),
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The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ε , momentum 
!k and direction !β = !k

ε , and neutrino ν̄(ν) of momentum !ν in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdε
= '(ε) · ((q, !β · ν̂). (1)

With !q = !k + !ν is the momentum transfer in the process.
'(ε) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ε) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ε0 − ε)2kε F (±)(Z f ,ε), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ε0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (±) for a β(±) decay [16,17],

F (±)(Z f ,ε) = 2(1 + γ0)(2εR f )
2(γ0−1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, !β · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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where, 〈‖Ô J ‖〉, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

d!x j J (qx)Y J M(x̂)Ĵ0(!x) (5)

Ê J M(q) = 1
q

∫
d!x !∇ × [ j J (qx)!Y J J M(x̂)] · !̂J (!x) (6)

M̂ J M(q) =
∫

d!x j J (qx)!Y J J M(x̂) · !̂J (!x) (7)

L̂ J M(q) = i
q

∫
d!x !∇[ j J (qx)Y J M(x̂)] · !̂J (!x), (8)

where Ĵ µ(!x) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR - 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ε
+ aβν !β · ν̂)〈‖L̂1‖〉2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2
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, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dε
(allowed) ∝ '(ε)

(
1 + b

me

ε

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = −C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),
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The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT −C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.

Differential b decay rate

Momentum transfer 𝛽 = !
", 𝛽 particle momentum to energy ratio 𝜈 neutrino momentum

Nuclear dependent part – neglecting rad. corrections:

PRECISION B-DECAY STUDIES TO PINPOINT BSM EFFECTS

Θ 𝑞, 𝛽 ⋅ 𝜈̂ ≈ 𝜖(
)# ⋅ Θ$ 𝑞, 𝛽 ⋅ 𝜈̂ ⋅ 1 + 𝜖( ⋅ 𝛿Θ% 𝑞, 𝛽 ⋅ 𝜈̂ + 𝜖(

)# ⋅ 𝑂 𝜖( ⋅ 𝜖'-./0

The multipole expansion naturally leads to an expansion in the momentum transfer 𝜖! =
𝑞𝑅
ℏ𝑐

≈ 0.005 − 0.1

Uncertainty

For a typical medium-mass nucleus a 10% theoretical uncertainty on the nuclear model allows cutting off 
the expansion at the sub-leading to reach a total theoretical uncertainty much better than 0.1%!



ANALYSING EXPERIMENTAL DEMANDS
▸ Current experiments aim at <0.1% precision, 

which is sufficient to significantly identify BSM 
signatures at the few TeV scale.

▸ Future experiments aim at 10#1 precision, 
probing new physics beyond LHC scale.

▸ Nuclear theory corrections to the standard 
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Nuclear models are ubiquitously known to have systematic errors. This is a huge problem when studying BSM effects 
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Nuclear
current

Low energy QCD has (accidental) scale separation

EFT Lagrangian

Low energy EFT –
Cutoff Lbr>>Q dictates viable deg. of freedom

Wave 
functions

Nuclear potential

Nuclear Matrix 
Element of 

characteristic 
momentum Q

Nöther current

Theoretical uncertainty quantification: 
Power Counting: systematic expansion 
RG invariance: cutoff variation

Matrix element accuracy: 𝜖123456 1 + 𝛼𝜖789 + 𝛽𝜖789: + 𝛾𝜖789; +⋯

30%             10%           3%

𝛼: Any basic nuclear correlations – your favorite many body technic 

𝛽: including nuclear correlations ab-initio. 

𝛾: a state of the art nuclear calculation, including 3NF,

Accuracy significantly increased for light nuclei.



EFFECTIVE FIELD THEORY FOR THE NUCLEAR-PROBE INTERACTION

▸ EFT expansion parameter 𝜖'() ∝
*+,(.,0,… )

3!"
≈ 4

&
− 4

5
:

▸ Breakdown scale in chiral EFT is about 4𝜋𝑓6 ≈ 1 GeV/c

▸ Order by order expansion of the currents:
𝐽CD = 𝐽EF + 𝜖GHI ⋅ 𝐽JEF + 𝜖GHIK 𝐽J'EF 𝑤𝑖𝑡ℎ 𝑎 > 1

▸LO – single nucleon current

▸NLO – corrections to single nucleon currents 

▸NLO  or higher orders include 
2-body currents (magnetic –𝑁𝐿𝑂, weak axial –𝑁L/M÷O𝐿𝑂)

36

The Nuclear Current in EFT:

Exchange 

currents
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Small parameter #1: 𝜖! =
!"
ℏ$ ≈ 10%& - multipole expansion

Small parameter #2: 𝜖'() ≈ 0.3 - systematic uncertainty in the nuclear model.

Small parameter #3: 𝜖*" =
+789:;<7

, ≈ 0.05 − 0.2 Non-relativistic expansion of currents.

Small parameter #4: 𝜖-.$/01 =
!
, ≈ 0.001 nucleaon recoil.

Small parameter #5: 𝜖2 =
3!
4=
> ≈ 10%5 Pseudo-scalar poles.

Small parameter #7: 𝜖6/17.- numerical error in the solution of the Schrödinger equation

For precision beta decays, at least the leading correction needs to be 
calculated explicitly to reach experimental sensitivity. 

Small parameter #6: 𝝐𝜶 = 𝜶𝒁𝒇 ≈ 𝟏𝟎#𝟐 − 𝟏 Coulomb corrections.
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Small parameter #1: 𝜖! =
!"
ℏ$ ≈ 10%& - multipole expansion

Small parameter #3: 𝜖*" =
+789:;<7

, ≈ 0.05 − 0.2 Non-relativistic expansion of currents.

Small parameter #4: 𝜖-.$/01 =
!
, ≈ 0.001 nucleaon recoil.

Small parameter #5: 𝜖2 =
3!
4=
> ≈ 10%5 Pseudo-scalar poles.

Small parameter #7: 𝜖6/17.- numerical error in the solution of the Schrödinger equation

For precision beta decays, at least the leading correction needs to be 
calculated explicitly to reach experimental sensitivity. 

Small parameter #6: 𝝐𝜶 = 𝜶𝒁𝒇 ≈ 𝟏𝟎#𝟐 − 𝟏 Coulomb corrections.

Small parameter #2: 𝜖+,- ≈ 0.3 - systematic uncertainty in the nuclear model.
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Conclusion: for many nuclei, 
it is possible to calculate nuclear

matrix elements to better than 10% accuracy
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NUCLEUS INTERACTION WITH A PROBE, EFT POINT OF VIEW: 41

Nuclear
current

Low energy QCD has (accidental) scale separation

EFT Lagrangian

Low energy EFT –
Cutoff Lbr>>Q dictates viable deg. of freedom

Wave 
functions

Nuclear potential

Nuclear Matrix 
Element of 

characteristic 
momentum Q

Nöther current

Theoretical uncertainty quantification: 
Power Counting: systematic expansion 
RG invariance: cutoff variation

Matrix element accuracy: 𝜖123456 1 + 𝛼𝜖789 + 𝛽𝜖789: + 𝛾𝜖789; +⋯

30%             10%           3%

𝛼: Any basic nuclear correlations – your favorite many body technic 

𝛽: including nuclear correlations ab-initio. 

𝛾: a state of the art nuclear calculation, including 3NF, 2BC

Accuracy significantly increased for light nuclei.

𝜖+,- ≈ 0.3 - Small parameter determining the 
systematic uncertainty in the nuclear model.



Δ𝑀 ≈

AB-INITIO CALCULATION OF 6HE BETA DECAY INTO 6LI
Pure Gamow-Teller

Glick-Magid, Forssén, Gazda, DG, Gysbers & Navrátil, (PLB 2022)



𝜓@ 𝜓0

Nuclear matrix elements
ab initio No

Core Shell Model (NCSM)

𝜓@ /𝑂A 𝜓0

/𝑂A
Nuclear wave functions Multipole operators

Nuclear currents
at LO (1-body currents)

1𝒥 𝑥⃗

Glick-Magid, Forssén, Gazda, DG, Gysbers & Navrátil, (PLB 2022)

Observables’ 
corrections

𝑑𝜔 ∝ 1 + 𝑎!"𝛽 ⋅ 𝜈̂ + 𝑏#
𝑚$

𝜖
𝜓& 𝐿̂% 𝜓'

&

𝛿<, 𝛿;, 𝛿=

Nuclear Hamiltonian 
𝐍𝟐𝐋𝐎𝐨𝐩𝐭 (𝐬𝐚𝐭)

5𝐻 𝑥⃗

AB-INITIO CALCULATION OF 6HE BETA DECAY INTO 6LI



Glick-Magid, Forssén, Gazda, DG, Gysbers & Navrátil, (PLB 2022)

𝑑𝜔 ∝ 1 + 𝑎!"𝛽 ⋅ 𝜈̂ + 𝑏#
𝑚$

𝜖
𝜓& 𝐿̂% 𝜓'

&

AB-INITIO CALCULATION OF 6HE BETA DECAY INTO 6LI



Glick-Magid, Forssén, Gazda, DG, Gysbers & Navrátil, (PLB 2022)

𝑑𝜔 ∝ 1 + 𝑎!"𝛽 ⋅ 𝜈̂ + 𝑏#
𝑚$

𝜖
𝜓& 𝐿̂% 𝜓'

&

AB-INITIO CALCULATION OF 6HE BETA DECAY INTO 6LI



ESTIMATING 𝜖!"# IN THE 6HE CASE
Electro-magnetic 

transitions

Pastore et al., PRC87 035503 (2013)
Friman-Gayer et al., PRL126 102501 (2021)

(Li 0) → 1) : 𝐵 𝑀1 =
1
3

@𝑀*
+ ,

2b: )𝑀!" ~ 10%~𝒪 𝜖#$%

𝜖789 ∼ 15%

Glick-Magid, Forssén, Gazda, DG, Gysbers & Navrátil, (PLB 2022)

Using the recent King et al, PRC (2023), who go further in EFT (exchange currents) validates this estimate, 
and allows reaching higher accuracy! 



Glick-Magid, Forssén, Gazda, DG, Gysbers & Navrátil, (PLB 2022)

AB-INITIO CALCULATION OF 6HE BETA DECAY INTO 6LI

𝑑𝜔
𝑑𝐸𝑑ΩE𝑑ΩF

∝ 1 + 𝛿G
GKHL ⋅

⋅ 1 + 𝑎HF
GKHL𝛽⃗ ⋅ 𝜈̂ + C𝛿GKHL

𝑚.
𝜖



Experiments are aiming at ~few 0.1% precision.

‣ 𝑎GH = − I
J
1 + '𝛿K + IJ

KL IJ
M K

K IN
K

BSM
GT

SM 
correction

Johnson et al., Phys.Rev.132.3; Gluck, Nucl.Phys.A628;
Gonzalez-Alonso & Naviliat-Cuncic, Phys.Rev.C94

Glick-Magid, Forssén, Gazda, DG, Gysbers & Navrátil, PLB 2022

𝛿 -
𝑎 .

/

Using the recent King et al, PRC (2023), reduces the uncertainty 5-fold!

6HEà6LI – ANGULAR CORRELATION



The spectrum is used to find induced Fierz-like 
behavior term

𝑏$ = 0 + 𝛿% +
𝐶&∗ + 𝐶&(∗

𝐶)

‣ Looking for  *0
∗+*0

2∗

*3
~ 10,#

‣ 𝛿% = −1.46 17 ⋅ 10,#

‣ Uncertainty < 2 ⋅ 10,-

BSMSM 
correctio

n
GT

𝛿 '

Glick-Magid, Forssén, Gazda, DG, Gysbers & Navrátil (PLB 2022)

𝟔𝐇𝐞 → 𝟔𝐋𝐢 INDUCED FIERZ-LIKE SPECTRAL TERM

Using the recent King et al, PRC (2023), reduces the uncertainty 5-fold!



The spectrum is used to find induced Fierz-like 
behavior term

𝑏$ = 0 + 𝛿% +
𝐶&∗ + 𝐶&(∗

𝐶)

‣ Looking for  *0
∗+*0

2∗

*3
~ 10,#

‣ 𝛿% = −1.46 17 ⋅ 10,#

‣ Uncertainty < 2 ⋅ 10,-

BSMSM 
correctio

n
GT

𝛿 '

Glick-Magid, Forssén, Gazda, DG, Gysbers & Navrátil (PLB 2022)

IHE → ILI INDUCED FIERZ-LIKE SPECTRAL TERM

Using the recent King et al, PRC (2023), reduces the uncertainty 5-fold!Theory is ready for the 

next generation 6He  

experiments!

Current experiments aim at 
b<10-3,

leading to 
ϵL < 1.5 ⋅ 10MN or Λ > 14 TeV

Essential
!



NUCLEAR BETA DECAY EXPERIMENTS IN SEARCH FOR BSM PHYSICS (2019)

51

Energy spectrum

Angular correlation

V. Cirigliano, A. Garcia, DG, O. Naviliat-Cuncic, G. Savard, A. Young, Precision beta decay as a probe of new physics, arXiv:1907.02164 (2019). 



SARAF: measuring ,4Ne’s branching 
ratio with a ~ 0.5% uncertainty

Mishnayot, Glick-Magid, DG, et al., arXiv:2107.14355 (2021)

Gamow-
Teller

𝜓@ 𝜓0

Nuclear matrix elements
Shell Model (NCSM)

𝜓@ /𝑂A 𝜓0

/𝑂A
Nuclear wave functions Multipole operators

Nuclear currents
at LO (1-body currents)

1𝒥 𝑥⃗

Observables’ 
corrections

𝛿<, 𝛿;, 𝛿=

Nuclear Hamiltonian US 
~10% uncertainty

5𝐻 𝑥⃗
BETA DECAY OF 23NE INTO 23NA: PRELIMINARY

https://arxiv.org/abs/2107.14355v1


BETA DECAY OF 23NE INTO 23NA: PRELIMINARY 53

Mishnayot, Glick-Magid, DG et al, in prep.

Novel SARAF measurement together with reanalysis of 
Carlson’s old measurements allow a joint assessment 
of 𝑎EF and 𝑏G simultaneously  for 6He and 23Ne



Some preliminary 
thoughts on future 

opportunities

54



ISOTOPES TO BE PRODUCED @ SARAF-II (2025) 55

New high flux 6He, and Neon 
isotopes beta decays measurements

Spectrum of the Unique first forbidden  
decay of 16N – different BSM sensitivity 
(see Ayala Glick Magid’s talk)

Glick Magid, DG et al, PLB (2017), Ohayon, Chocron, DG, et al., Hyp.Int (2018)

https://link.springer.com/article/10.1007%2Fs10751-018-1535-x


NEW EFFORTS AT HUJI: UNIQUE FIRST FORBIDDEN DECAY OF 90Y INTO 90ZR

‣ Unique first forbidden decay with 2.3 MeV end-point

‣ Efficient production method.

‣ Feasible calculation to 10% accuracy.

56



NEW EFFORTS AT HUJI: 131CS ELECTRON CAPTURE ASYMMETRIES 

‣ The HUNTER experiment is a large-scale experiment (located at UCLA) designed to 
search for sterile neutrinos using trapped 131Cs.

‣ 131Cs decays via electron capture (EC). EC is a two-body decay, and as such it is 
significantly simpler to analyze than β-decay reactions, amenable to complete 
kinematical reconstruction.

‣ We intend to use HUNTER infrastructure to study the asymmetries in the 
capture, which are sensitive to various BSM couplings.

‣ This would be the first BSM constraint from EC decay, and we expect 0.5% 
precision.

‣ Calculation are feasible to few~10% accuracy via shell-model. cf. 131Xe.

57



NEW OPPORTUNITIES IN BETA DECAYS WITH VERY LOW ENERGY ENDPOINTS

▸ The energy endpoints of beta decays range a few orders of magnitude. 

▸ Low endpoints have increased sensitivities in certain cases (see neutrino mass measurements).

58 DG (in prep 2023)



NEW OPPORTUNITIES IN BETA DECAYS WITH VERY LOW ENERGY ENDPOINTS

▸ The energy endpoints of beta decays range a few orders of magnitude. 

▸ Low endpoints have increased sensitivities in certain cases (see neutrino mass measurements).

▸ In particular, for nuclear recoil, terms imitating the spectral behavior of Fierz-term H1
I1

are significantly 

enhanced, while other recoil correction are significantly suppressed.

59 DG (in prep 2023)

∝

3H – 19 keV: 2(
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> 2(
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187Re – 2.6 keV:2(
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≈ 200



NEW OPPORTUNITIES IN BETA DECAYS WITH VERY LOW ENERGY ENDPOINTS

▸ The energy endpoints of beta decays range a few orders of magnitude. 

▸ Low endpoints have increased sensitivities in certain cases (see neutrino mass measurements).

▸ In particular, terms like JK
41
51

and H1
I1

create enhanced sensitivity to new BSM coupling terms:

60 DG (in prep 2023)

3H – 19 keV: 2(
3(
> 2(

3)
≈ 25

187Re – 2.6 keV:2(
3(
> 2(

3)
≈ 200

∝

Jackson, Treiman, Wyld, Nuclear Physics 4 (1957) 206.

In particular we suggest that concurrent study of triton and neutron decay can significantly enhance BSM constraints



SUMMARY
▸ Nuclear beta decays are an important front for “new physics” discoveries.

▸ New experiments will have <0.1% precision.

▸ In order for theory to reach these precision levels – explicit calculations of nuclear corrections are needed.

▸ A complete formalism was built to assess theory accuracy, with particular emphasis on the EFT systematic 
uncertainty.

▸ Coming years hold the premise for many cutting-edge efforts that will constrain BSM physics at energies 
comparable to the LHC.

61

To the 10 TeV and beyond


