# Trace anomaly as a measure of conformality in dense matter EoS

### Yuki Fujimoto

### (University of Washington)



INSTITUTE for NUCLEAR THEORY

Ref: Y. Fujimoto, K. Fukushima, L. McLerran, M. Praszalowicz, PRL 129, 252702 (2022).

June 28, 2023 — INT Workshop: Neutron Rich Matter on Heaven and Earth

### Dense matter EoS from QCD



### Synopsis of this talk

We introduce a new quantity, **trace anomaly**:

$$\Delta = \frac{1}{3} - \frac{P}{\varepsilon}$$

This is a measure of **conformality** (conformal EoS:  $P = \frac{1}{3}\varepsilon$ )

The behavior of  $\Delta$  may signify the conformal matter in NSs.

From theory consideration, we conjecture  $\Delta \ge 0$ . This conjecture can be tested by the future NS observations.



Drischler, Han, Lattimer, Prakash, Reddy, Zhao (2020)

### **Rapid stiffening in EoS**

NS data favors rapid increase in sound velocity,

accompanied by a peak structure

Fujimoto, Fukushima, Murase (2019)



 $v_s^2 = 1/3$  is referred to as conformal limit Because  $v_s^2 \nearrow 1/3$  when  $\varepsilon \to \infty$ . Conformal limit is violated at intermediate density

Bedaque, Steiner (2015); Tews, Carlson, Gandolfi, Reddy (2018); Altiparmak, Ecker, Rezzolla (2022); Gorda, Komoltsev, Kurkela (2022) & many others

### **Trace anomaly equation**

Related to scale/conformal nature of matter:

$$j_D^{\nu} = x_{\mu} T^{\mu\nu} \to \partial_{\nu} j_D^{\nu} = T_{\mu}^{\mu} \begin{cases} = 0 & \text{Classical YM} \\ \neq 0 & \text{in QFT (RG effect)} \end{cases}$$

Expectation value: 
$$\langle T^{\mu}_{\mu} \rangle = \langle T^{\mu}_{\mu} \rangle_{\mu_{B}} + \langle T^{\mu}_{\mu} \rangle_{0}$$
  
matter  
( $\mu_{B}$ -dependent) vacuum

Finite- $\mu_B$  part of the trace anomaly (interaction measure):

$$\langle T^{\mu}_{\ \mu} \rangle_{\mu_B} = \varepsilon - 3P$$

... related to EoS of neutron star matter

### **Behavior of trace anomaly**

Fujimoto, Fukushima, McLerran, Praszalowicz, PRL129 (2022)

$$\Delta \equiv \frac{\langle T^{\mu}_{\ \mu} \rangle_{\mu_B}}{3\varepsilon} = \frac{1}{3} - \frac{P}{\varepsilon}$$

#### Inference of EoSs from NS observations shows:



 $\Delta \sim 0$ , i.e.,  $P \sim \varepsilon/3$ already at  $\sim 5\varepsilon_0$ rapid stiffening to conformality

Strongly-coupled conformal matter?

### Trace anomaly and sound velocity

Fujimoto, Fukushima, McLerran, Praszalowicz, PRL129 (2022)

(Normalized) trace anomaly: 
$$\Delta = \frac{\langle T^{\mu}_{\mu} \rangle_{\mu_{B}}}{3\varepsilon} = \frac{1}{3} - \frac{P}{\varepsilon}$$
  
cf. Gavai,Gupta,Mukherjee (2004)  
Sound velocity:  $v_{s}^{2} = \frac{dP}{d\varepsilon} = -\varepsilon \frac{d\Delta}{d\varepsilon} + (\frac{1}{3} - \Delta)$ 

#### **Conformal limits:**

$$\begin{array}{l} \Delta(\varepsilon) \searrow 0 \\ v_s^2(\varepsilon) \nearrow 1/3 \end{array} \quad \text{when } \varepsilon \to \infty \end{array}$$

Bedaque, Steiner (2015) It is very likely that  $v_s^2 > 1/3$ . Simultaneously,  $\Delta \gtrsim 0$ .

## Meaning of the sound velocity peak

Fujimoto, Fukushima, McLerran, Praszalowicz, PRL129 (2022)



Rapid stiffening to the conformal EoS creates a peak

### Positive trace anomaly conjecture

Fujimoto, Fukushima, McLerran, Praszalowicz, PRL129 (2022)

Combining QCD ab-initio calculations:



### Positive trace anomaly conjecture

Fujimoto, Fukushima, McLerran, Praszalowicz, PRL129 (2022)

Combining QCD ab-initio calculations:



Our conjecture:  $\Delta\gtrsim 0$  at any  $\varepsilon$  for NS matter

### Positive trace anomaly conjecture

Fujimoto, Fukushima, McLerran, Praszalowicz, PRL129 (2022)

Combining QCD ab-initio calculations:



#### Our conjecture: $\Delta\gtrsim 0$ at any $\varepsilon$ for NS matter

Caveat: QCD at finite- $\mu_I$  or SU(2) QCD gives  $\Delta < 0$ 

e.g., Cotter, Giudice, Hands, Skullerud (2012); Iida, Itou (2022) Son, Stephanov (2001); Brandt, Endrodi+ (2018-)...

### Justification of the $\Delta \geq 0$ bound

Trace anomaly is related to the counting of the effective degrees of freedom in pressure,  $\nu \equiv P/\mu_B^4$ :

$$\Delta \propto \frac{\langle T^{\mu}_{\mu} \rangle_{\mu_B}}{\mu_B^4} = \mu_B \frac{d\nu}{d\mu_B} \ge 0$$

If  $\nu$  keeps increasing, we get  $\Delta \geq 0$ 

**Open question**: the effect of color superconductivity?

→ Cooper pairing reduces the d.o.f. but this is only a phenomenon around the Fermi surface

## Justification of the $\Delta \geq 0$ bound

From the QCD energy-momentum tensor in the chiral limit:

$$\Delta \propto \langle T^{\mu}_{\ \mu} \rangle = \frac{\beta}{2g} \langle B^2 - E^2 \rangle_{\mu_B}$$

Interaction between quarks are mediated dominantly by chromo-electric fields  $\rightarrow$  gluon condensate < 0

Given  $\beta < 0$  (asymptotic freedom), the total trace anomaly is positive.



ChEFT data: Drischler, Han, Lattimer, Prakash, Reddy, Zhao (2020)15

### Testing the $\Delta \geq 0$ bound

Combining the radius observation:



### Summary

- Trace anomaly  $\Delta$  is a measure of conformality. It is a complement to the speed of sound  $v_s^2$
- NS data suggest  $\Delta$  rapidly approach to the conforal limit and  $\Delta \to 0$  naturally gives rise to the sound velocity peak
- Strongly-interacting conformal matter may be inside NSs
- The trace anomaly may be positive (not proven). It can be tested by, e.g., the bound on the maximum mass of NSs
- Quarkyonic matter can be responsible for rapid stiffening to conformality see, e.g., Fujimoto,Kojo,McLerran [2306.04304]