∂TRIUMF

Progress and Goals of the TRIUMF nEDM Measurement

Dr. D. Fujimoto

What is "nEDM"?

neutron Electric Dipole Moment

Why measure the nEDM?

Sakharov:

CP-symmetry violation is a necessary condition for baryogenesis

$$\mathcal{H} = -\left(\mu_n \boldsymbol{B} + d_n \boldsymbol{E}\right) \frac{\boldsymbol{S}}{|S|}$$

If $d_n \neq 0$ then \mathcal{H} is asymmetric under time and parity inversion

Who has measured the nEDM?

(neutron)

Larmor frequency :
$$u_{\ell} = \frac{1}{\pi \hbar} \left| \mu_{\mathsf{n}} B_0 \right|$$

Larmor frequency :
$$\nu_{\ell} = \frac{1}{\pi \hbar} |\mu_{\mathsf{n}} B_0 - d_{\mathsf{n}} E_0|$$

Larmor frequency :
$$\nu_{\ell} = \frac{1}{\pi \hbar} |\mu_{n}B_{0} - d_{n}E_{0}|$$

 $nEDM : d_{n} = \frac{\pi \hbar}{2E_{0}} (\nu_{\ell}^{\uparrow\downarrow} - \nu_{\ell}^{\uparrow\uparrow})$

Spin polarization in the Ramsey cycle

Polarized neutrons in a static B_0 :

- \rightarrow Apply B_1 : " $\pi/2$ " pulse over duration t_{flip}
- \rightarrow Free precession over duration $t_{\rm free}$
- \rightarrow Apply B_1 : " $\pi/2$ " pulse over duration t_{flip}

Spin polarization in the Ramsey cycle

Polarized neutrons in a static B_0 :

- \rightarrow Apply B_1 : " $\pi/2$ " pulse over duration t_{flip}
- \rightarrow Free precession over duration $t_{\rm free}$
- \rightarrow Apply B_1 : " $\pi/2$ " pulse over duration t_{flip}

$$\nu_{\ell} = \frac{1}{\pi \hbar} \left| \mu_{\mathrm{n}} B_0 - d_{\mathrm{n}} E_0 \right|$$

Look for a E_0 -dependent phase shift

Spin asymmetry at central fringe. Phase shift induced by E_0 .

Fit with
$$\mathcal{A}(\nu_{\text{flip}}) = \mathcal{A}_{\text{off}} - \alpha' \cos\left(\frac{\pi}{\Delta \nu}(\nu_{\text{flip}} - \nu_{\ell})\right)$$

Proton beam current: 40 µA

Spallation neutron production

Moderators: D_2O and LD_2

Expected storage lifetime in LHe-II bottle: $\sim 20 \, \text{s}$

UCN diffuse down NiP-coated guides. About 1 % reach EDM cell

Applied fields: $B_0 = 1 \,\mu\text{T}, E_0 = 12.5 \,\text{kV/cm}$. UCN density: $\sim 200 \,\text{UCN/cm}^3$

About 10 % of UCN in cell reach detectors and are detected

Count N_{\uparrow} and N_{\downarrow} in each cell

Simulated UCN Statistics

Simulated transport and storage efficiency:

Source \rightarrow Detected: $\sim 0.1 \%$

Statistical uncertainty:

$$\sigma(d_n) \propto \frac{1}{\sqrt{N}}$$

Expect ~ 300 days of measurement time

TUCAN Experiment Features

- \rightarrow Intense neutron source
- \rightarrow Guiding fields
- \rightarrow Magnetically shielded room
- \rightarrow Ambient field compensation
- \rightarrow Self-shielded B_0 coil
- \rightarrow Double precession cells
- → Hg comagnetometer
- \rightarrow Cs magnetometer array

$$\sigma(d_n) \propto \frac{1}{\sqrt{N}}$$

$$\nu_{\ell} = \frac{1}{\pi \hbar} \left| \mu_{\mathsf{n}} B_0 - d_{\mathsf{n}} E_0 \right|$$
$$d_{\mathsf{n}} = \frac{\pi \hbar}{2E_0} (\nu_{\ell}^{\uparrow\downarrow} - \nu_{\ell}^{\uparrow\uparrow})$$

The UCN Source

Components:

- $\rightarrow 40 \, \mu \text{A}$ proton beam
- \rightarrow Tungsten target
- \rightarrow Moderators: D₂O and LD₂
- \rightarrow Graphite reflectors
- $\rightarrow\,$ Converter: Isopure He-II (1.15 K)

Result: neutrons at $\sim 1 \text{ mK}$ ($\sim 100 \text{ neV}$)

The UCN Source

Timeline:

- \rightarrow 2023: Cryostat installation
- $\rightarrow\,$ 2024: First UCN with this source
- $\rightarrow\,$ 2025: Production-levels of UCN

Polarization is preserved when transport is adiabatic

$$k = \gamma_n \frac{B^2}{\frac{dB}{dt}} \gg 1$$

Field inhomogeneity along a linear path

$$k = \gamma_n \frac{B^2}{v_n \frac{dB}{dx}}$$

- $\rightarrow\,$ Neutron polarization must be preserved during transport
- \rightarrow Offline prototyping setup: mock polarizer, B_0 coil, guides, and MSR

- \rightarrow Neutron polarization must be preserved during transport
- \rightarrow Offline prototyping setup: mock polarizer, B_0 coil, guides, and MSR

Magnetically Shielded Room

- \rightarrow 4 layers mu-metal, 1 layer copper
- $\rightarrow~{\rm Keep}$ noise ${<}1\,{\rm pT}$ over ${\sim}100\,{\rm s}$
- $\rightarrow\,$ DC magnetic shielding factor: 10^5
- $\rightarrow\,$ Assembly complete end of 2023

Ambient Magnetic Compensation

- $\rightarrow\,$ Split helmholtz coils counteract the cyclotron field
- $\rightarrow\,$ Includes platform for top access
- $\rightarrow\,$ Coils tested end of year

Ambient Magnetic Compensation

- $\rightarrow\,$ Split helmholtz coils counteract the cyclotron field
- $\rightarrow\,$ Includes platform for top access
- $\rightarrow~$ Coils tested end of year

 $\rightarrow\,$ Produce a stable 1 μT magnetic field decoupled from mumetal

- $\rightarrow\,$ Produce a stable $1\,\mu\text{T}$ magnetic field decoupled from mumetal
- $\rightarrow\,$ Lightweight and rigid support frame
- \rightarrow 3D printed wire guides: <1 mm deviation over 2 m
- \rightarrow Prototyping ongoing, commissioning in 2024

Sandwich Skin

- $\rightarrow\,$ Produce a stable $1\,\mu\text{T}$ magnetic field decoupled from mumetal
- $\rightarrow\,$ Lightweight and rigid support frame
- ightarrow 3D printed wire guides: <1 mm deviation over 2 m
- \rightarrow Prototyping ongoing, commissioning in 2024

- $\rightarrow\,$ Produce a stable $1\,\mu\text{T}$ magnetic field decoupled from mumetal
- $\rightarrow~$ Lightweight and rigid support frame
- ightarrow 3D printed wire guides: <1 mm deviation over 2 m
- \rightarrow Prototyping ongoing, commissioning in 2024

Wire guides

Double precession cells

- \rightarrow Both orientations of electric field possible at once
- $\rightarrow\,$ Increases statistics due to larger volume
- ightarrow Reduces some systematic effects

Storage and outgassing tests at JPARC

Double precession cells

- → Both orientations of electric field possible at once
- $\rightarrow\,$ Increases statistics due to larger volume
- ightarrow Reduces some systematic effects
- $\rightarrow\,$ Temporarily de-scoped to single cell due to budget

Storage and outgassing tests at JPARC

 \rightarrow Fill space with Hg gas

- \rightarrow Fill space with Hg gas
- ightarrow Optically probe precession frequency
- \rightarrow Result: in-situ measurement of $\langle B_0 \rangle$ on fT scale

- $\rightarrow\,$ Fill space with Hg gas
- $\rightarrow~$ Optically probe precession frequency
- \rightarrow Result: in-situ measurement of $\langle B_0 \rangle$ on fT scale
- → Prototyped at UBC.
 Further development at TRIUMF in 2024

Cs Magnetometer Array

- $\rightarrow\,$ Array of 20 sensors outside of vacuum chamber
- \rightarrow Measurement of field gradients
- \rightarrow Development ongoing at TRIUMF. Moving into MSR 2024

Applied field from small coil as measured by a single sensor ($\Delta B \approx 2 \,\mathrm{pT}$)

∂TRIUMF

- \rightarrow **Goal**: measure the nEDM to 10^{-27} ecm
- \rightarrow UCN in 2024!
- \rightarrow Magnetometry commissioning in 2024
- ightarrow Start neutron measurements in 2025

(END)