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Why dynamic modeling?

We do not expect that we can directly compare experimental data with
equilibrium expectations for suceptibilities:

e Finite size effects, rapid expansion.
e Non-equilibrium effects (critical slowing, memory).
e Consistent treatment of fluctuations and dissipation.

e Freezeout, resonances, global charge conservation, etc.



Hydrodynamics of fluctuations

Stochastic

Random hydro variables: ¢

o) = —V - (Flux[zﬂ] + Noise)

+ fewer variables and egs.

— cutoff dependence

Deterministic

%

= (), G = (i), etc.
O = —V - Flux[v, G);

8,G = L[G; ).

— more variables and egs.

+ no cutoff dependence
(renormalization)
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Deterministic approach to non-Gaussian fluctuations

® |nfinite hierarchy of coupled equations An et al 2009.10742 PRL

for hydrodynamic correlators H,, = (61 . .. §u))connected:

——
n

OH, = —nI(H, — H,[w,H, ..., H" 1) + O(");

To leading order, the equations are iterative and “linear”.

® Generalized Wigner transform:
H(x1,...,2n) = W(z;q1,...,q)

W,’s quantify magnitude and non-gaussianity of fluctuation har-
monics with wave-vectors g;.
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Example: expansion through a critical region
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Stochastic Hydrodynamics

Ordinary Hydro + Stochastic Noise SR -
) , v A g i
8HTM = 07 ™ Tdeal .3 T\ttlscous Sﬁolse ) E
a,uJM =0, JH = Jldea v1scous —‘_ Igmse :
Y

= Fluctuation-Dissipation Relation (FDR)

(I*(z1)I" (z2)) = 2To AM§™) (z1 — x)

J. Kapusta, B. Muller, M. Stephanov, PRC 85 (2012)
054906

Advantages (comparing with hydro-kinetics)

dv,/vy (in percent)

- Directly relates to final observables

= Easily incorporated with various IC models or mechanisms
Challenges

- Instabilities (large gradients, negative density, multiplicative problem
- Results are sensitive on grid-size or cut-off

- Requires large statistics (with IC and afterburner fluctuations)

A. De, C. Shen, J. Kapusta, PRC 106 (2022) 5, 054903

A. Sakai, K. Murase, T. Hirano, PRC 102 (2020) 6, 064903

M. Nahrgang, M. Bluhm, T. Schafer, S. Bass, APPS 10 (2017)
687

M. Nahrgang, M. Bluhm, T. Schafer, S. Bass, PRD 99 (2019) 11,

Recent progress

Non-critical flow (Murase, De, Chun, etc.)
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Linearized Stochastic Charge Transport

For LO, the evolution of T*Y and N* can be calculated separately

Charge-neutral Baryon Fluctuation + Transportation

Background
: VT I i
Energy-momentum conservation : I auNi# =0, Charge conservation
_______ : e e — N/ = nut + qf'
I v_ |
| 0T =0

()& (x) = 2KpA*Y§ W (x — )

N. Borghini, BF, S. Schlichting, Phys. Rev. D 111 (2025) 11, 116019

Application in 3+1-d MUSIC

B  Stable: based on hydro K-T algorithm

B Accurate: independent of cut-off momentum or grid size
B Fast: saves ~98% computation time comparing with

traditional fluctuating hydro.

MUSIC 2PC independent of cut-off or grid size
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2 Point Correlation Results in Fourier Space

(Noise emerge) time ordering of 2PC

B | ong range correlation - early noise (diffusion)

B Short range correlation - late noise (equilibrium)

B Experimental measurements mostly reflects eq. fluctuations

N. Borghini, BF, S. Schlichting
Phys. Rev. D 111 (2025) 11, 116019
(fm)

Hydro + Noise
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Line: Mathematica ]
Symbol: MUSIC

2-point correlation

20

Diagonal and off-diagonal correlations of {B,Q,S}
Significant QQ and SS correlations

Sizeable off-diagonal correlations: mixed charge transport
Model uncertainties in quantitative level

Future: n-point correlation and charge conserved frz-out
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Stochastic Hydrodynamics via Metropolis algorithm

Simple Stochastic Diffusion Example

> d:n=—V(—=DVn+ _vn )

Diffusion  Advection

» Thermal fluctuations o exp [-8H] with H = f;%

> Replace —DVn — £ with (&) = —Ddn
» Fluctuation-dissipation theorem
Ek(t, x)E(t, X)) — (€)% = 2TD x5k (x — x")o(t — t')

» Numerically: Ideal adv. dynamics 4+ Metropolis update

» Propose Gaussian &,
» Accept/Reject step pacc = min(1, exp(—FSAH))
> Automatically (€) = [ D[E] € pprop Pace = —DVn + O(At3)

(€x)

dxN



Stochastic Hydrodynamics via Metropolis algorithm

Advantages: Metropolis regulates 6(*)(x — x’) ~ 1/(AtAx3), ensures equilibration
under all conditions, avoids discretization ambiguities

Problem: Noisy configurations difficult for numerical PDE solvers (ideal step)
~> No exact entropy conservation in ideal step

3 25 A —
Fluctuations and non-linear interactions: < 50- 1 *
Rl [ )
52 THY - 157 e
- (TH[o]) = T [(9)] + ST (60a(x)565(x)) + § 0]
Renormalization of transport coefficients, equation of state gcé 51

Right: Renormalization of shear viscosity in full two-dimensional non-relativistic hydrodynamics : ' '

Bare Shear Viscosity Lg,



Hydrodynamic equation for critical mode

Equation of motion for critical mode ¢ (“model H")

¢ 5F oF B
o ="V (Vo) =7 +¢ (g=1)

Diffusion  Advection Noise

Equation of motion for momentum density 7

ort oF o0F ( oF

—r =1V =7 +9(V¢) =~ 9| 5=7

._) =T -
5 53 V)W + &

Free energy functional: Order parameter ¢, momentum density @ = wv

_ s | Lo 1 a0 m_22 4 2
F = dx27r+2(v¢)+2qb+)\q§ D =m*k

w



Numerical results (critical Navier-Stokes)

Order parameter (3d) Order parameter/velocity field (2d)
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Summary

e Viscous hydro reads with T* = (£, M*):

0E + 0.M =0
atM + axTa:x (5) — aa: (T/i:cxa:x .’IZ/BZI?)
e The equations are strictly first order in time and stable.

» Solve using an ideal step and Crank-Nicholson like step
» The only variables are (€, M)

» Only parameters are 1 and ¢ and equation of state

e Each Lorentz observer defines a hydro-frame by setting up spatial
volume, measuring the charge, and defining 3, from the EOS

dsY = =5, d€ — B, dM®
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Freezeout of fluctuations

Pradeep, MS, 2211.09142, PRL

® Freezeout: mapping of correlators of €, U, B 1 foroton, foiony - - -
hydrodynamic fluctuations (¢ = ¢, ng, u) —
(0 ...00) = Hp(xq, ..., xp) o
. L
to particle correlators -
<5f e 5f> = Gn(wl,pl, e ,:Un,pn). freezleout

® There is a mapping from H,, to G,, which:
® Satisfies all conservation laws, and

®» Maximizes entropy.
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Freezing out event-by-event fluctuatlons

Maximum Entropy Freeze-out

ds,

< NEXIN
Fluctuating particle
) e\ multiplicity
Fluctuating distribution
hydrodynamic
S
_J Freeze-out hyper surface )
\

[ .

Dual descriptions at freeze-out - Hydrodynamics + fluctuations & Particle multiplicity distributions

Matching conditions to ensure that conserved quantities are preserved across freeze-out.

There exist infinitely many particle distributions that reproduce the same macroscopic (hydrodynamic) averages.
The freeze-out prescription amounts to choosing one such distribution — the Maximum Entropy principle provides

a natural and consistent choice.

Cooper & Frye , 74 — Freeze-out of mean yields
Everett, Chattopadhyay, Heinz, 21 — Matching conditions for viscous hydrodynamics
Pradeep & Stephanov, 22 — Generalization to freeze-out of fluctuations



Hope : Data 9 EoS of QCD near CP+ Dynamics

Lessons about equilibrium properties learnt so far

. Aa)llj ~ w_l'ZAY}I'z_k ~ fk(s —n)/2-3 Magnitude sensitive to w and the closeness of the

freeze-out curve to cross-over line
arXiv : 2508.19237, Karthein, Pradeep, Rajagopal, Stephanov, Yin

s p=p w936 controls the position of peaks/dips along a freeze-out curve

lllustrative choices for non-universal parameters : y. = 500MeV,7T, = 115MeV,a; = 10°, 0, =—6°
™ 0.00 I o0z o p=0.14,w=20
0.025 ¢« R I - TEAN - p=074,w=1
0.020 \\, -0.01 (f“” . T 0.01 : “ \\ 3 116 . w=1 w=1 plOtS
. -y L P - p=116,w=
S ’ e, & 0.02 l,f . & 0.00 ‘\ ! has been
w 0.015 M0 W i £ 001! | rescaled by
‘m,/ AT 0.03 ™ i DA T the factor
0.010 o, S, Bhdaadi -0.02 : N e T 2012
g, [ 3
0.005 i ~0.04 —0.03 .
5 10 20 5 10 20 5 10 20
VS (GeV) VS (GeV) Vs (GeV)

» The trajectory of the Lee-Yang singularities of QCD near the CP, can be used to constrain p , setting
bounds on the equilibrium position of peaks/dips once other non-universal parameters are fixed.

Basar, Pradeep, Stephanov(in preparation)



Summary

What exists: Deterministic equations for Gaussian and non-Gaussian
fluctuations (in non-trivial background, but not coupled to velocity
fluctuations).

Direct simulation of linearized stochastic hydro, full non-linear model H (in
a box), stochastic algorithm for relativistic hydro in density frame. Also:
Freezeout prescriptions.

Goals and Questions

How does the stochastic fluid baseline compare to the RQMD baseline?

How to proceed: Stochastic simulation on top of standard hydro
backgound? Or aim for complete simulation?

Stochastic fluids vs stochastic kinetics vs molecular dynamics.



