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Why dynamic modeling?

We do not expect that we can directly compare experimental data with

equilibrium expectations for suceptibilities:

• Finite size effects, rapid expansion.

• Non-equilibrium effects (critical slowing, memory).

• Consistent treatment of fluctuations and dissipation.

• Freezeout, resonances, global charge conservation, etc.



Hydrodynamics of fluctuations

Stochastic

Random hydro variables: ψ̆

∂tψ̆ = −∇ ·
(

Flux[ψ̆] + Noise
)

+ fewer variables and eqs.

− cutoff dependence

Deterministic

ψ ≡ 〈ψ̆〉, G ≡ 〈ψ̆ψ̆〉, etc.

∂tψ = −∇ · Flux[ψ,G];

∂tG = L[G;ψ].

− more variables and eqs.

+ no cutoff dependence
(renormalization)
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Deterministic approach to non-Gaussian fluctuations

Infinite hierarchy of coupled equations An et al 2009.10742 PRL

for hydrodynamic correlators Hn ≡ 〈δψ̆ . . . δψ̆︸ ︷︷ ︸
n

〉connected:

∂tHn = −nΓ(Hn − H̄n[ψ,H, . . . ,Hn−1]) +O(εn);

To leading order, the equations are iterative and “linear”.

Generalized Wigner transform:
H(x1, . . . , xn)→W (x; q1, . . . , qn)

Wn’s quantify magnitude and non-gaussianity of fluctuation har-
monics with wave-vectors qi.
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Example: expansion through a critical region

An et al 2009.10742, PRL

Two main features:

Lag, ”memory”.

Smaller Q – slower evolution.
Conservation laws.
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Stochastic Hydrodynamics
Ordinary Hydro + Stochastic Noise

- Fluctuation-Dissipation Relation (FDR)

Advantages (comparing with hydro-kinetics)
- Directly relates to final observables

- Easily incorporated with various IC models or mechanisms 

Challenges
- Instabilities (large gradients, negative density, multiplicative problem, … )

- Results are sensitive on grid-size or cut-off

- Requires large statistics (with IC and afterburner fluctuations)

J. Kapusta, B. Muller, M. Stephanov, PRC 85 (2012) 
054906

Recent progress
- Non-critical flow (Murase, De, Chun, etc.)

- Critical observables (Nahrgang, etc.)

A. De, C. Shen, J. Kapusta, PRC 106 (2022) 5, 054903
A. Sakai, K. Murase, T. Hirano, PRC 102 (2020) 6, 064903
M. Nahrgang, M. Bluhm, T. Schäfer, S. Bass, APPS 10 (2017) 
687
M. Nahrgang, M. Bluhm, T. Schäfer, S. Bass, PRD 99 (2019) 11, 
116015
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Application in 3+1-d MUSIC
 Stable: based on hydro K-T algorithm

 Accurate: independent of cut-off momentum or grid size

 Fast: saves ~98% computation time comparing with 

traditional fluctuating hydro.

 

Charge-neutral 
Background

 

 
 

Diffusion with noise

 

Linearized Stochastic Charge Transport
 

Baryon Fluctuation + Transportation

 

N. Borghini, BF, S. Schlichting, Phys. Rev. D 111 (2025) 11, 116019

Energy-momentum conservation Charge conservation

MUSIC 2PC independent of cut-off or grid size
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2 Point Correlation Results in Fourier Space
(Noise emerge) time ordering of 2PC Diagonal and off-diagonal correlations of {B,Q,S}

N. Borghini, BF, S. Schlichting
Phys. Rev. D 111 (2025) 11, 116019

 Long range correlation – early noise (diffusion)

 Short range correlation – late noise (equilibrium) 

 Experimental measurements mostly reflects eq. fluctuations

 Significant QQ and SS correlations

 Sizeable off-diagonal correlations: mixed charge transport

 Model uncertainties in quantitative level

 Future: n-point correlation and charge conserved frz-out

N. Borghini, BF, S. Schlichting, In progress



Stochastic Hydrodynamics via Metropolis algorithm
Simple Stochastic Diffusion Example

▶ ∂tn = −∇⃗(−D∇⃗n︸ ︷︷ ︸
Diffusion

+ v⃗n︸︷︷︸
Advection

)

▶ Thermal fluctuations ∝ exp [−βH] with H =
∫
x⃗

n2

2χ

▶ Replace −D∇⃗n → ξ⃗ with ⟨ξk⟩ = −D∂kn
▶ Fluctuation-dissipation theorem

⟨ξk(t, x)ξl(t ′, x ′)⟩ − ⟨ξ⟩2 = 2TDχδklδ(x − x ′)δ(t − t ′)

▶ Numerically: Ideal adv. dynamics + Metropolis update
▶ Propose Gaussian ξk
▶ Accept/Reject step pacc = min(1, exp(−β∆H))
▶ Automatically ⟨ξ⃗⟩ =

∫
D[ξ⃗] ξ⃗ pprop pacc = −D∇⃗n +O(∆t3)

ξx



Stochastic Hydrodynamics via Metropolis algorithm

Advantages: Metropolis regulates δ(4)(x − x ′) ∼ 1/(∆t∆x3), ensures equilibration
under all conditions, avoids discretization ambiguities

Problem: Noisy configurations difficult for numerical PDE solvers (ideal step)
⇝ No exact entropy conservation in ideal step

Fluctuations and non-linear interactions:

⇝ ⟨Tµν [ϕ]⟩ = Tµν [⟨ϕ⟩] + δ2Tµν

δϕaδϕb
⟨δϕa(x)δϕb(x)⟩+ . . .

Renormalization of transport coefficients, equation of state
Right: Renormalization of shear viscosity in full two-dimensional non-relativistic hydrodynamics



Hydrodynamic equation for critical mode

Equation of motion for critical mode ϕ (“model H”)

∂ϕ

∂t
= κ∇2 δF

δϕ
− g

(
∇⃗ϕ

)
· δF
δπ⃗T

+ ζ (g = 1)

Diffusion Advection Noise

Equation of motion for momentum density π

∂π⃗T

∂t
= η∇2 δF

δπ⃗T
+ g

(
∇⃗ϕ

)
· δF
δϕ

− g

(
δF
δπ⃗T

· ∇⃗
)
π⃗T + ξ⃗

Free energy functional: Order parameter ϕ, momentum density π⃗ = wv⃗

F =

∫
d3x

[
1

2w
π⃗2 +

1

2
(∇⃗ϕ)2 + m2

2
ϕ2 + λϕ4

]
D = m2κ



Numerical results (critical Navier-Stokes)

Order parameter (3d) Order parameter/velocity field (2d)



Renormalized viscosity and dynamic scaling

Renormalization of η

“Stickiness of shear waves”
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Summary

• Viscous hydro reads with T 0µ = (E ,Mx):

∂tE + ∂xM = 0

∂tM + ∂xT xx(β) = ∂x (Tκ
xxxx∂xβx)

• The equations are strictly first order in time and stable.

▶ Solve using an ideal step and Crank-Nicholson like step

▶ The only variables are (E ,M)

▶ Only parameters are η and ζ and equation of state

• Each Lorentz observer defines a hydro-frame by setting up spatial
volume, measuring the charge, and defining βµ from the EOS

dS0 = −β0 dE − βx dM
x

Teaney 13 / 40



Freezeout of fluctuations

Pradeep, MS, 2211.09142, PRL

Freezeout: mapping of correlators of
hydrodynamic fluctuations (ψ = ε, nB, u)

〈δψ . . . δψ〉 = Hn(x1, . . . ,xn)

to particle correlators

〈δf . . . δf〉 = Gn(x1,p1, . . . ,xn,pn).

There is a mapping from Hn to Gn which:

Satisfies all conservation laws, and

Maximizes entropy.
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Freezing out event-by-event fluctuations
Maximum Entropy Freeze-out

Dual descriptions at freeze-out - Hydrodynamics + fluctuations & Particle multiplicity distributions


Matching conditions to ensure that conserved quantities are preserved across freeze-out.


There exist infinitely many particle distributions that reproduce the same macroscopic (hydrodynamic) averages.


The freeze-out prescription amounts to choosing one such distribution — the Maximum Entropy principle provides 

a natural and consistent choice.

Cooper & Frye , 74 — Freeze-out of mean yields

Everett, Chattopadhyay, Heinz, 21 — Matching conditions for viscous hydrodynamics

Pradeep & Stephanov, 22 — Generalization to freeze-out of fluctuations

Fluctuating particle 
multiplicity 
distribution
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Hope : Data         EoS of QCD near CP+ Dynamics
Lessons about equilibrium properties learnt so far

 plots 
has been 

rescaled by 
the factor 

w = 1

20−1.2

•  - Magnitude sensitive to w and the closeness of the 
freeze-out curve to cross-over line 


•  controls the position of peaks/dips along a freeze-out curve

Δ̂ωk
p ∼ w−1.2ΔT1.2−k

f ∼ ξk(5 − η)/2−3

ρ̄ = ρ w0.36

 Basar, Pradeep, Stephanov(in preparation) 

• The trajectory of the Lee-Yang singularities of QCD near the CP, can be used to constrain  , setting 
bounds on the equilibrium position of peaks/dips once other non-universal parameters are fixed.

ρ̄

Illustrative choices for non-universal parameters : μc = 500 MeV , Tc = 115 MeV , α1 = 10∘ , α2 = − 6∘

arXiv : 2508.19237, Karthein, Pradeep, Rajagopal, Stephanov, Yin



Summary

What exists: Deterministic equations for Gaussian and non-Gaussian

fluctuations (in non-trivial background, but not coupled to velocity

fluctuations).

Direct simulation of linearized stochastic hydro, full non-linear model H (in

a box), stochastic algorithm for relativistic hydro in density frame. Also:

Freezeout prescriptions.

Goals and Questions

How does the stochastic fluid baseline compare to the RQMD baseline?

How to proceed: Stochastic simulation on top of standard hydro

backgound? Or aim for complete simulation?

Stochastic fluids vs stochastic kinetics vs molecular dynamics.


