MODELING OF HADRONIZATION OF JETSIIN VACUUM AND IN MEDIUM

RAINER MYFRIES

TEZASAEMUNVESIIY
En
TEXAS A\&M

THE HADRONIZATION PROBLEM

- No solutions based on first principles.
- For Monte Carlos: need models based on reasonable assumptions that can describe data.
- Long, successful history for 'vacuum' systems: Lund
 string fragmentation, cluster hadronization.
- Excellent results in e+e- and p+p systems.

THE HADRONIZATION PROBLEM

- Many features in heavy ion collisions not addressed by these models (baryon chemistry, quark number scaling): can be explained by quark recombination
- New data, even in p+p is challenging some models.

- We want to look for a comprehensive model that can be consistently applied to everything from e+e- to A + A collisions \rightarrow Hybrid Hadronization

HYBRID HADRONIZATION

- A hybrid of string fragmentation and recombination.

- Interpolates smoothly in between, two limits:
- Dilute systems \rightarrow Dominance of string fragmentation
- Dense systems \rightarrow Dominance of quark recombination

- Use a physics criterion to separate the domains: recombination probabilities vanish for large phase space distances
K. C. Han, R. J. Fries, C. M. Ko, Jet Fragmentation via Recombination of Parton Showers, Phys.Rev.C 93, 045207 (2016)
o Monte Carlo implementation available, e.g. JETSCAPE

HYBRID HADRONIZATION WORK FLOW

```
Input:
Provide partons with virtualities
below some cutoff, with space-
time information and color tags
```

Recombination Step:
Provisionally decay gluons into $q \bar{q}$. Go through the system sampling the recombination probabilities for all possible qqbar and q-q-q bound states.

Intermediate Step:
Recombined hadrons and remnant partons in a string system (only color singlets were removed).

Fragmentation Step:

Remnant partons tend to be farther apart in phase space. Fragement using PYTHIA 8.

HYBRID HADRONIZATION WORK FLOW IN A MEDIUM

```
Input:
Provide partons with virtualities
below some cutoff, with space-
time information and color tags
```

```
Bath of
thermal
```

Recombination Step:
Provisionally decay gluons into $q \bar{q}$. Go through the system sampling the recombination probabilities for all possible qqbar and q-q-q bound states.

Recombination with thermal partons

Intermediate Step:
Recombined hadrons and remnant partons in a string system (only color singlets were removed).

Remnant strings
with thermal partons

Fragmentation Step:
Remnant partons tend to be farther apart in phase space. Fragement using PYTHIA 8.

SETTING UP THE RECOMBINATION PROBLEM

- Quarks/antiquarks = wave packets in phase space
- For simplicity: Gaussian wave packets around centroid phase space coordinates (\vec{r}_{i}, \vec{p}_{i}), of \checkmark given width δ. Color and spin information might be available (otherwise treated statistically).

- Short range interaction modeled by isotropic harmonic oscillator potential of width $1 / v$.
- Use the Wigner formalism in phase space. We need angular momentum eigenstates.
- Total probability for coalescence $P_{\text {tot }}=P_{\text {phase-space }} \times P_{\text {spin }} \times P_{\text {color }}$

ANGULAR MOMENTUM EIGENSTATES IN PHASE SPACE

- Wigner distribution in phase space for given wave functions ψ_{1}, ψ_{2} :

- (Diagonal) results known for angular momentum eigenstates: S. Shlomo, M. Prakash, Phase space distribution of an N-dimensional harmonic oscillator, Nucl. Phys. A 357,157 (1981).
- In 2-D closed-form, elegant result from the quantum optics community: R. Simon, G. S. Agarwal, Wigner representation of Laguerre-Gaussian beams, Opt. Lett. 25, 1313 (2000);
- Recalculate Wigner distributions using an expansion of angular momentum eigenstates in products of 1D-states.
M. Kordell, R. J. Fries, C. M. Ko, Annals Phys. 443, 168960 (2022)
o Here summed over magnetic quantum number m (no polarization).

3D-HARMONIC OSCILLATOR IN PHASE SPACE

- Use the well-studied 1D-phase space distributions to build the 3D ones

- The off-diagonal 1-D Wigner distributions are known [T. Curtright, T. Uematsu, C. K. Zachos, J. Math. Phys. 42 (2001)]

$$
W_{n^{\prime} n}(x, q)=\frac{(-1)^{n^{\prime}}}{\pi \hbar} \sqrt{\frac{n^{\prime}}{n}} u^{\frac{n-n^{\prime}}{2}} e^{-u / 2} e^{-i\left(n-n^{\prime}\right) \zeta} L_{n^{\prime}}^{\left(n-n^{\prime}\right)}(u)
$$

WIGNER DISTRIBUTIONS

- Recall that Wigner distributions can be negative.
- When summed over m, they only depend on magnitudes of position r and momentum q, and the relative angle θ between.
- Examples of a few lowest states

$v r$

$W_{01}=W_{00}\left(-1+\frac{2}{3} \nu^{2} r^{2}+\frac{2}{3} \frac{q^{2}}{\hbar^{2} \nu^{2}}\right)$
$W_{02}=W_{00}\left(1+\frac{4}{15} \nu^{4} r^{4}-\frac{4}{3} \nu^{2} r^{2}+\frac{16}{15} \frac{r^{2} q^{2}}{\hbar^{2}}\right.$ $\left.-\frac{8}{15} \frac{(\mathbf{r} \cdot \mathbf{q})^{2}}{\hbar^{2}}-\frac{4}{3} \frac{q^{2}}{\hbar^{2} \nu^{2}}+\frac{4}{15} \frac{q^{4}}{\hbar^{4} \nu^{4}}\right)$

COALESCENCE

- Probability for coalescence of Gaussian wave packets using the Wigner distributions.

Wigner for center of mass motion.

- Again sum over m, since we are not interested in polarization here (see remark later).
- Results discussed here for $1 / v=2 \delta$ (relation between quark wave packet width δ and harmonic oscillator length scale $1 / v$).

COALESCENCE PROBABILITIES

- Probabilities depend on the relative coordinates of the wave packet centroids, called r and p here.
- $\theta=$ angle between r and p.

COALESCENCE PROBABILITIES

- Probabilities can be written in terms of just two variables: total phase space distance squared v and

$$
\begin{aligned}
& \mathcal{P}_{00}=e^{-v} \\
& \mathcal{P}_{01}=e^{-v} v,
\end{aligned}
$$ total angular momentum squared t.

$$
\begin{aligned}
v & =\frac{\nu^{2} r^{2}}{2}+\frac{p^{2}}{2 \hbar^{2} \nu^{2}} \\
t & =\frac{1}{\hbar^{2}}\left[p^{2} r^{2}-(\mathbf{p} \cdot \mathbf{r})^{2}\right]=\frac{1}{\hbar^{2}} L^{2}
\end{aligned}
$$

$$
\mathcal{P}_{02}=\frac{1}{2} e^{-v}\left(\frac{2}{3} v^{2}+\frac{1}{3} t\right)
$$

$$
\mathcal{P}_{10}=\frac{1}{2} e^{-v}\left(\frac{1}{3} v^{2}-\frac{1}{3} t\right)
$$

- If summed over states with the same energy, the probabilities are simply Poissonian given by phase space distance

Both are states with $\mathrm{N}=3$

- Energy degeneracy broken by orbital angular momentum of the quarks. t makes an intuitive connection between the relative angular momentum of the incoming quarks and the quantum number l of their bound state.

REMNANT PARTONS: STRING REPAIR

○ Recombination only removes color singlets. Remaining strings "snap together" the right way automatically.

- Remnant partons with color tag 0 (e.g. from LBT) must be introduced into strings; unused gluons are restored.
- If the initial system was not a color singlet extra partons must be introduced to balance color (this could be thermal partons, beam partons, or extra partons with zero momentum).

REMNANT STRINGS: FRAGMENTATION

- Strings are handed to PYTHIA 8 for fragmentation.
- Decays of excited states can happen in PYTHIA or by invoking the hadronic transport model SMASH.
- In a vacuum system all partons hadronize.
- Check on the cutoff between recombination and fragmentation with $e^{+} e^{-}$example:
- As intended fragmentation dominates this dilute system, in particular for high energy hadrons.

ADDING A MEDIUM

- The formalism stays the same, just take care of these additional points
- Some shower partons (e.g. LBT) arrive with randomized color (color tag 0)
- Thermal partons can be sampled from a specified $T=T_{c}$ hypersurface, or a brick.
- Recombination from only thermal partons, or strings with only thermal partons are disabled. Shower partons are always hadronized.
- HH can process "negative partons" separately, if needed for background subtraction. Depending on the shower MC they can be used to track "holes" left in the medium through processes like q (shower) +g (medium) -> q (shower) + g (shower).

IN-MEDIUM JETS: SPACE-TIME CONSIDERATIONS

- Sampled spatial positions of shower partons after shower evolution for 100 GeV jets (arb. normalization)
- Here: JETSCAPE:pGun+MATTER

IN-MEDIUM JETS: SPACE-TIME CONSIDERATIONS

- Sampled spatial positions of shower partons after shower evolution for 100 GeV jets (arb. normalization)
- Here:

JETSCAPE:pGun+MATTER+LBT+Brick

Shower partons inside QGP are absorbed by the medium or accumulate on the hypersurface; color is randomized

The jet starts in QGP; the temperature is set to drop below T_{c} after $4 \mathrm{fm} / \mathrm{c}$

EXCITED HADRON STATES ARE IMPORTANT

- In the recombination channel, occupation numbers of excited hadron states are determined by their respective probabilities.
- Here: meson states up to $N=2 k+l=4$. Parton input from PYTHIA $8 \mathrm{e}+\mathrm{e}-$ at 91 GeV
- No decays. Spin treated statistically, color flow from PYTHIA.

Total angular mom.

(Hadrons from recombination only)

TUNING TO VACUUM SYSTEMS

o The features of HH introduced here are available in v3.6 of JETSCAPE (and will be in v1.1 of XSCAPE)

- Credit: Hendrik Roch, Michael Kordell, Cameron Parker
- Next step: parameter tuning
- Hadronization can not be tuned by itself, only in conjunction with the codes that create the parton input
- Ongoing effort to create a new vacuum tune for JETSCAPE 3.6:PYTHIAgun+MATTER+HH
- Mix of parameters from MATTER, HH and PYTHIA 8 fragmentation
- Bayes inference to determine optimal parameters

VACUUM SYSTEMS: E+E- WITH JETSCAPE 3.6

- ALEPH data for 91.2 GeV and posteriors

ALEPH: https://doi.org/10.17182/hepdata.47582

Example of two parameters that are well constrained ...

... and two
parameters that aren't

Work in progress

VACUUM SYSTEMS: P+P

- Some Jet and High-PT observables with JETSCAPE 3.5 (new analysis coming)

CMS: https://doi.org/10.17182/hepdata.77601
PHENIX: https://doi.org/10.48550/arXiv.0704.3599

IN-MEDIUM JETS: ROLE OF THERMAL PARTONS

- The following study with a QGP brick was done with JETSCAPE 3.0
- Check hadron origin: Thermal parton contribution grows with medium size.

BACKGROUND SUBTRACTION EXAMPLE

- Example for subtraction of "negative" particles for jet in a 2 fm brick.

IN-MEDIUM JETS: BARYON ENHANCEMENT

- We recover a key signature of quark recombination: baryon/meson enhancement in a medium
- Hadronization is sensitive to medium flow.

IN-MEDIUM JETS: FLOW SIGNALS

- Correlation of soft partons with the jet increases with medium size.
- Hadronization is sensitive to medium flow.

IN-MEDIUM JETS: FLOW TRANSVERSE TO THE JET

- Medium flow transverse to the jets can be picked up by hadrons associated with the jet.
- Only releveant for low and intermediate momenta.

$d^{2} N /\left(d p_{y} d p_{z}\right)$ of Soft (2-10 GeV) Hadrons, Liquefied $E_{j e t} \mathrm{I}_{10.0} 00 \mathrm{GeV}, T=0.3 \mathrm{GeV}, L=4 \mathrm{fm}$, Flow $=(0,0.8,0)$
$d^{2} N /\left(d p_{y} d p_{z}\right)$ of Most Energetic Hadron, Liquefied $E_{j e t_{10}} \overline{\bar{O}}_{0} 100 \mathrm{GeV}, T=0.3 \mathrm{GeV}, L=4 \mathrm{fm}$, Flow $=(0,0.8,0)$

PREVIEW: POLARIZATION

- If we don't sum recombination probabilities over magnetic quantum numbers they are sensitive to the angular momentum component L_{z} of the quarks.
- If the collective motion of the quarks carries net orbital angular momentum, hadronization can give you correspondingly polarized p - and d-wave mesons.

$$
P_{011}=e^{-v}\left(\frac{1}{2} v_{T}+\frac{L_{z}}{2 \hbar}\right)
$$

$$
P_{011}=e^{-v} v_{L}
$$

L_{z} selects a
preferred polarization of the meson
$P_{01-1}=e^{-v}\left(\frac{1}{2} v_{T}-\frac{L_{z}}{2 \hbar}\right)$
$v_{T}, v_{L}:$ squared phase space distance perpendicular and parallel to the quantization axis.

PREVIEW: HADRONIC PHASE FOR HARD PROBES

- HH in JETSCAPE has not the capability to send hadrons from hard processes to an hadronic afterburner, in addition to the soft hadrons.
- Ongoing work: Follow up the pion jet + hadron gas study by Dorau et al. Phys.Rev.C 101, 035208 (2020) using SMASH.
J. Wél et al, Phys Rev. C94, 054905 (2016)

Simulating
Multiple
Accelerated
Strongly-interacting
Hadrons

- Monte-Carlo solver of relativistic Boltzmann equations

BUU type approach, testparticles ansatz: $N \rightarrow N \cdot N_{\text {test }}, \sigma \rightarrow \sigma / N_{\text {test }}$

- Degrees of freedom
- most of established hadrons from PDG up to mass 2.3 GeV
- strings: do not propagate, only form and decay to hadrons
- Propagate from action to action (timesteps only for potentials) action \equiv collision, decay, wall crossing
- Geometrical collision criterion: $d_{i j} \leq \sqrt{\sigma / \pi}$
- Interactions: $2 \leftrightarrow 2$ and $2 \rightarrow 1$ collisions, decays, potentials, string formation (soft - SMASH, hard - Pythia 8) and fragmentation via Pythia 8

Slide by D. Olinychenko

PRELIMINARY RESULTS OF HADRONIC RESCATTERING

- $e^{+}+e^{-}$charged hadrons at 91.2 GeV and $\mathrm{p}+\mathrm{p}$ at 200 GeV : Hybrid Hadronization + SMASH
- Runs: SMASH decays only, SMASH rescattering with two assumptions about the duration of the hadronization process
- 5-15\% effets observed depending on system density (explored by the time parameters)

SUMMARY

- Hybrid Hadronization is an attempt to model hadronization consistently from very small to very large systems
- Recombination in Wigner formalism + string fragmentation
- Vacuum systems (e+e-, pp) computed with HH in JETSCAPE: tuning ongoing
- Clear medium effects: baryon enhancement and manifestation of flow
- Hadronic rescattering study for hard probes
- Novel polarization effects from orbital angular motion of quarks?

JETS IN HYBRID HADRONIZATION

- Decay gluons provisionally into qqbar pairs (gluons whose quarks don't recombine are later reformed)
- Go through all possible quark pairs/triplets, compute the recombination probability and sample it. Recombine the pair/triplet if successful.
- Rejected partons again form acceptable string systems (only color singlets removed!)
- Remnant strings are fragmented by PYTHIA 8.

Remnant strings from color flow
String Fragmentation

EXCITED MESONS AND THEIR DECAYS

- We include excited mesons up to $N=k+2 l=4$.
- Hybrid Hadronization uses PYTHIA 8 for decays: available excited states are limited, but the user can easily add more.
- Many more resonances in the PDG -> add
- Add as of yet unconfirmed bound states: extrapolate unknown properties.

