Mass decomposition on the light front

Adam Freese

University of Washington

June 14, 2022

June 14, 2022

1/21

Intended takeaways

• Mass decomposition depends on coordinate system employed.

• Differs for light front and instant form.

$$M_{\rm IF} = \sum_{q,g} M \Big(A_{q,g}(0) + \bar{c}_{q,g}(0) \Big)$$
$$M_{\rm LF} = \sum_{q,g} M \Big(A_{q,g}(0) + 2\bar{c}_{q,g}(0) \Big)$$

- 2 Light front coordinates **are not** the infinite momentum frame.
 - Conceptually differ
 - Mathematically differ: P^0 is not P^- in any frame.

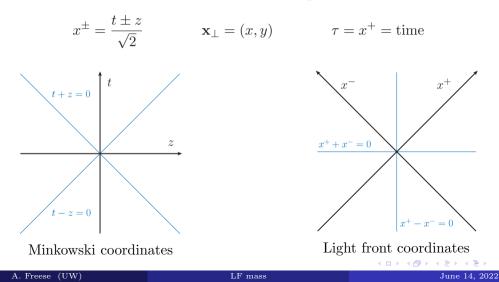
These results are not new; see Sec. IV.C of:

• Lorcé, Metz, Pasquini, & Rodini, JHEP 11 (2021) 121 [2109.11785]

...I just want to make sure they're fully understood and appreciated by everyone.

Light front coordinates

Light front coordinates are a different foliation of spacetime.



3/21

э

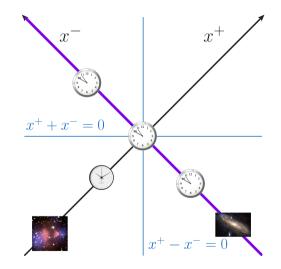
Light front: Myths and Facts

- Myth: Light front coordinates are a reference frame.
- Fact: Light front coordinates can be employed in any reference frame.
- Myth: Light front coordinates describe the perspective of light.
- Fact: Light front coordinates describe *our* perspective.
 - ... but only in the z direction!
 - Light has no perspective.
- Myth: Light front coordinates come from boosting to infinite momentum.
- Fact: Light front coordinates from from redefining:
 - Interval and the second sec
 - **2** What we mean by *boosting*
 - (a) How we break the Poincaré group into generators (Galilean subgroup)

Light front & time synchronization

${\rm Light\ front\ redefines\ simultaneity}$

- Fixed $x^+ = \frac{t+z}{\sqrt{2}}$ means simultaneous
- Look in the $+\hat{z}$ direction...
 - Whatever you see *right now*, is **happening** *right now*.
 - Only true for $+\hat{z}$ direction though.
- Light front coordinates are what we see.
 - $\bullet \ \ldots at$ least in one fixed direction.
 - (great for small systems—hadrons!)
 - Not what light "sees."



Terrell rotations

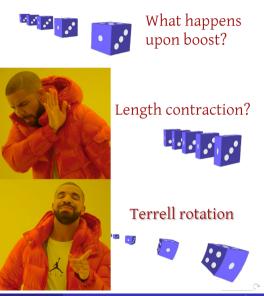
- Lorentz-boosted objects appear *rotated*.
 - Terrell rotation
 - \bullet Optical effect: contraction + delay
- Light front transverse boost *undoes* Terrell rotation:

$$B_x^{(\rm LF)} = \frac{1}{\sqrt{2}} \Big(K_x + J_y \Big)$$

- Combination of ordinary boost + rotation!
- Leaves x^+ (time) invariant!
- Changes p_z , but leaves p^+ invariant:

$$P^{+} = \frac{E + p_{z}}{\sqrt{2}} = \frac{\sqrt{p_{z}^{2} + \mathbf{p}_{\perp}^{2} + M^{2}} + p_{z}}{\sqrt{2}}$$

• Dice images by Ute Kraus, https://www.spacetimetravel.org/



A. Freese (UW)

Galilean subgroup

- Poincaré group has a (2+1)D Galilean subgroup.
 - x^+ is time and \mathbf{x}_{\perp} is space under this subgroup.
 - x^- can be integrated out.
 - $P^+ = \frac{1}{\sqrt{2}}(E_{\mathbf{p}} + p_z)$ is the central charge.
 - x^+ and P^+ are invariant under this subgroup!
- Basically, light front coordinates should give a **fully relativistic** 2D picture that looks like *non-relativistic* physics.
 - But with P^+ in place of M.

$$\frac{\mathrm{d}\mathbf{P}_{\perp}}{\mathrm{d}x^{+}} = P^{+} \frac{\mathrm{d}^{2}\mathbf{x}_{\perp}}{\mathrm{d}x^{+2}}$$
$$H = P^{-} = H_{\mathrm{rest}} + \frac{\mathbf{P}_{\perp}^{2}}{2P^{+}}$$
$$\mathbf{v}_{\perp} = \frac{\mathbf{P}_{\perp}}{P^{+}}$$

See Matthias Burkardt, Int. J. Mod. Phys. A18 (2003) 173

The EMT and momentum densities

• Continuity equation:

$$\partial_{\mu}\hat{T}^{\mu\nu}(x) = 0$$

• For any choice τ of time (\bar{x} for space):

$$\frac{\partial}{\partial \tau} \Big[\hat{T}^{\tau\nu}(\tau, \bar{x}) \Big] + \sum_{\alpha=1}^{3} \frac{\partial}{\partial \bar{x}^{\alpha}} \Big[\hat{T}^{\alpha\nu}(\tau, \bar{x}) \Big] = 0$$

• e.g., $\tau = x^+$ for light front, $\tau = x^0$ for instant form.

• Integrate over infinite spatial (\bar{x}) volume:

$$\frac{\partial}{\partial \tau} \left[\int \mathrm{d}^3 \bar{x} \, \hat{T}^{\tau \nu}(\tau, \bar{x}) \right] = \frac{\partial}{\partial \tau} \Big[\hat{P}^{\nu}(\bar{x}, \tau) \Big] = 0 \, .$$

Energy density operator

• Four-momentum density for any coordinate system:

$$\hat{\mathscr{P}}^{\nu}(\bar{x},\tau) = \hat{T}^{\tau\nu}(\tau,\bar{x})$$

- Which ν to use for *energy* density depends on coordinate system.
 - Instant form: ν = 0 because Ĥ = P̂⁰
 Light front: ν = because Ĥ = P̂⁻
- Two energy densities:

$$\hat{\mathscr{H}}_{\mathrm{IF}}(\mathbf{x},t) = \hat{T}^{00}(\mathbf{x},t)$$
$$\hat{\mathscr{H}}_{\mathrm{LF}}(\mathbf{x}_{\perp},x^{-},x^{+}) = \hat{T}^{+-}(\mathbf{x}_{\perp},x^{-},x^{+})$$

• I have *not* chosen a frame or boosted to infinite momentum!

Translation dictionary

• Coordinate definitions:

$$x^{+} = \frac{1}{\sqrt{2}} \left(x^{0} + x^{3} \right) \qquad x^{-} = \frac{1}{\sqrt{2}} \left(x^{0} - x^{3} \right)$$
$$x^{0} = \frac{1}{\sqrt{2}} \left(x^{+} + x^{-} \right) \qquad x^{3} = \frac{1}{\sqrt{2}} \left(x^{+} - x^{-} \right)$$

• Tensor relationships:

$$\hat{T}^{+-}(x) = \frac{1}{2} \left(\hat{T}^{00}(x) + \hat{T}^{30}(x) - \hat{T}^{03}(x) - \hat{T}^{33}(x) \right)$$
$$\hat{T}^{00}(x) = \frac{1}{2} \left(\hat{T}^{++}(x) + \hat{T}^{+-}(x) - \hat{T}^{-+}(x) - \hat{T}^{--}(x) \right)$$

- The same x is used as arguments in both.
- Cannot set $x^+ = 0$ and $x^0 = 0$ at the same time while leaving x^3 and x^- free.
- Red terms cancel for symmetric EMT.

A. Freese (UW)

Boosting the EMT

• Suppose we apply a Lorentz boost in the z direction (*active* boost):

$$\hat{T}'^{\mu\nu}(x) = \Lambda^{\mu}{}_{\alpha}\Lambda^{\nu}{}_{\beta}\hat{T}^{\alpha\beta}(\Lambda^{-1}x) \qquad \qquad \Lambda^{\mu}{}_{\alpha} = \begin{bmatrix} \gamma & 0 & 0 & \beta\gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \beta\gamma & 0 & 0 & \gamma \end{bmatrix}$$

• EMT components transform as (spacetime argument suppressed):

$$\begin{split} \hat{T}'^{00} &= \gamma^2 \hat{T}^{00} + \beta \gamma^2 \hat{T}^{03} + \beta \gamma^2 \hat{T}^{30} + \beta^2 \gamma^2 \hat{T}^{33} \\ \hat{T}'^{03} &= \beta \gamma^2 \hat{T}^{00} + \gamma^2 \hat{T}^{03} + \beta^2 \gamma^2 \hat{T}^{30} + \beta \gamma^2 \hat{T}^{33} \\ \hat{T}'^{30} &= \beta \gamma^2 \hat{T}^{00} + \beta^2 \gamma^2 \hat{T}^{03} + \gamma^2 \hat{T}^{30} + \beta \gamma^2 \hat{T}^{33} \\ \hat{T}'^{33} &= \beta^2 \gamma^2 \hat{T}^{00} + \beta \gamma^2 \hat{T}^{03} + \beta \gamma^2 \hat{T}^{30} + \gamma^2 \hat{T}^{33} \\ \hat{T}'^{+-}(x) &= \hat{T}^{+-} (\Lambda^{-1} x) \end{split}$$

Boosting to infinite momentum?

- Let's take the $\beta \to 1 \ (\gamma \to \infty)$ limit.
 - Instant form energy density:

$$\hat{T}^{00} \xrightarrow[\text{boost}]{} \gamma^2 \hat{T}^{00} - \beta \gamma^2 \hat{T}^{03} - \beta \gamma^2 \hat{T}^{30} + \beta^2 \gamma^2 \hat{T}^{33} \xrightarrow[\beta \to 1]{} \infty$$

• Light front energy density:

$$\hat{T}^{+-} \xrightarrow[\text{boost}]{} \hat{T}^{+-} = \text{finite}$$

- Instant form **does not** become light front at infinite momentum!
- For a direct light front perspective:

$$\begin{array}{cccc} V^+ & e^{+\eta}V^+ & & \eta = \tanh^{-1}\beta & & V^2 = 2V^+V^- - \mathbf{V}_{\perp}^2 \\ V^- & \longrightarrow & e^{-\eta}V^- & & \\ \mathbf{v}_{\perp} & & \mathbf{v}_{\perp} & & \\ \end{array}$$

$$\begin{array}{cccc} & & \eta = \tanh^{-1}\beta & & V^2 = 2V^+V^- - \mathbf{V}_{\perp}^2 \\ & & \hat{T}^{+-} \text{ transforms like } V^+V^- \end{array}$$

What about total energy?

• Light front energy vanishes at infinite momentum!

$$P^{-} \xrightarrow{\text{boost}} e^{-\eta}P^{-} \xrightarrow{\eta \to \infty} 0$$

$$P^{-} = \int dx^{-} d^{2}\mathbf{x}_{\perp} \hat{T}^{+-}(x) \xrightarrow{\text{boost}} \int d(e^{-\eta}x^{-}) d^{2}\mathbf{x}_{\perp} \hat{T}^{+-}(x) = e^{-\eta}P^{-} \xrightarrow{\eta \to \infty} 0$$

$$P^{-} = \frac{M^{2} + \mathbf{P}_{\perp}^{2}}{2P^{+}} \xrightarrow{P^{+} \to \infty} 0$$

• Instant form energy becomes infinite:

$$P^{0} \xrightarrow[\text{boost}]{} \gamma P^{0} + \beta \gamma P^{3} \xrightarrow[\beta \to 1]{} \infty$$
$$P^{0} = \sqrt{M^{2} + \mathbf{P}^{2}} \xrightarrow[P^{3} \to \infty]{} \infty$$

- These quantities differ in the infinite momentum limit.
- Light front is not instant form at infinite momentum!

A. Freese (UW)

Regarding decompositions

• Density given by expectation value with **physical state** $|\Psi\rangle$.

$$T^{\mu\nu}(x) = \langle \Psi | \hat{T}^{\mu\nu}(x) | \Psi \rangle$$

• Break down into quark/gluon pieces:

$$\hat{T}^{\mu\nu}(x) = \hat{T}^{\mu\nu}_{q}(x) + \hat{T}^{\mu\nu}_{g}(x)$$

• Total momentum/energy given by spatial integral:

$$P_{q,g}^{\nu} = \int \mathrm{d}^3 \bar{x} \, \langle \Psi | \hat{T}_{q,g}^{\tau\nu}(x) | \Psi \rangle$$

• Consider **spin-zero** example:

$$\langle p | \hat{T}_{q,g}^{\mu\nu}(0) | p \rangle = 2 p^{\mu} p^{\nu} A_{q,g}(0) + 2 M^2 \bar{c}_{q,g}(0)$$

Quick calculation sketch

I won't flesh out the calculation; but if you use:

• Completeness relations:

$$1 = \int \frac{\mathrm{d}^3 \mathbf{p}}{2E_{\mathbf{p}}(2\pi)^3} |\mathbf{p}\rangle \langle \mathbf{p}| \qquad 1 = \int \frac{\mathrm{d}p^+ \mathrm{d}^2 \mathbf{p}_\perp}{2p^+ (2\pi)^3} |p^+, \mathbf{p}_\perp\rangle \langle p^+, \mathbf{p}_\perp|$$

• Wave functions:

$$\psi_{\rm IF}(\mathbf{p}) = \langle \mathbf{p} | \Psi \rangle \qquad \qquad \psi_{\rm LF}(p^+, \mathbf{p}_\perp) = \langle p^+, \mathbf{p}_\perp | \Psi \rangle$$
$$\int \frac{\mathrm{d}^3 \mathbf{p}}{2E_{\mathbf{p}}(2\pi)^3} \left| \psi_{\rm IF}(\mathbf{p}) \right|^2 = 1 \qquad \qquad \int \frac{\mathrm{d} p^+ \mathrm{d}^2 \mathbf{p}_\perp}{2p^+(2\pi)^3} \left| \psi_{\rm LF}(p^+, \mathbf{p}_\perp) \right|^2 = 1$$

• Translation operators:

$$\hat{T}^{\mu\nu}(x) = e^{i\hat{P}\cdot x}\hat{T}^{\mu\nu}_{q,g}(0)e^{-\hat{P}\cdot x}$$

Then you get ...

A. Freese (UW)

Arbitrary frame energy decompositions

• Instant form decomposition:

$$P_{q,g}^{0} = \langle E_{\mathbf{p}} \rangle A_{q,g}(0) + M \left\langle \frac{1}{E_{\mathbf{p}}} \right\rangle \bar{c}_{q,g}(0)$$

• Light front decomposition:

$$P_{q,g}^{-} = M^2 \left\langle \frac{1}{2p^+} \right\rangle \left(A_{q,g}(0) + 2\bar{c}_{q,g}(0) \right) + \left\langle \frac{\mathbf{p}_{\perp}^2}{2p^+} \right\rangle A_{q,g}(0)$$

• $\langle \hat{O} \rangle$ is **expectation value** with physical state $|\Psi\rangle$.

• Could use momentum eigenstates to remove angled brackets.

Infinite momentum frame energy decompositions

• Instant form decomposition:

$$P_{q,g}^{0} = \langle E_{\mathbf{p}} \rangle A_{q,g}(0) + M \left\langle \frac{1}{E_{\mathbf{p}}} \right\rangle \bar{c}_{q,g}(0) \xrightarrow{p_{z} \to \infty} \langle p_{z} \rangle A_{q,g}(0) + \mathcal{O}\left(\frac{1}{p_{z}}\right)$$

• Light front decomposition:

$$P_{q,g}^{-} = M^2 \left\langle \frac{1}{2p^+} \right\rangle \left(A_{q,g}(0) + 2\bar{c}_{q,g}(0) \right) + \left\langle \frac{\mathbf{p}_{\perp}^2}{2p^+} \right\rangle A_{q,g}(0) \xrightarrow[p^+ \to \infty]{} e^{-\eta} P_{q,g}^{-}$$

• These don't match in infinite momentum limit.

• Actually, $P_{q,g}^0$ tends to $\sqrt{2}P_{q,g}^+$.

Rest frame energy decompositions

• Instant form decomposition:

$$P_{q,g}^{0} = \langle E_{\mathbf{p}} \rangle A_{q,g}(0) + M \left\langle \frac{1}{E_{\mathbf{p}}} \right\rangle \bar{c}_{q,g}(0) \xrightarrow{\text{rest}} M \left(A_{q,g}(0) + \bar{c}_{q,g}(0) \right)$$

• Light front decomposition:

$$P_{q,g}^{-} = M^2 \left\langle \frac{1}{2p^+} \right\rangle \left(A_{q,g}(0) + 2\bar{c}_{q,g}(0) \right) + \left\langle \frac{\mathbf{P}_{\perp}^2}{2p^+} \right\rangle A_{q,g}(0) \xrightarrow[\text{rest}]{} \frac{M}{\sqrt{2}} \left(A_{q,g}(0) + 2\bar{c}_{q,g}(0) \right)$$

- These results give mass decompositions
 - Interpreting mass as **rest frame energy**.
- Light front and instant form give different decompositions!

Why does it matter?

- **1** I want to set the record straight regarding light front vs. IMF.
- **2** Proton mass decomposition entails ambiguities.
 - Renormalization scheme
 - Coordinate system
 - $\bullet\,$ What we mean by mass (rest frame energy, Galilean charge, Lorentz scalar, $\ldots)$
- **③** Need to think about **what physics** the decomposition should encode.
 - Are we interested in a rest frame energy budget?
 - Does a particle picture work in the framework we're using? (Light front, Fock space)
 - Can total hadron motion and intrinsic structure be cleanly separated?

$$P_{q,g}^{-} = M^2 \left\langle \frac{1}{2p^+} \right\rangle \left(A_{q,g}(0) + 2\bar{c}_{q,g}(0) \right) + \left\langle \frac{\mathbf{p}_{\perp}^2}{2p^+} \right\rangle A_{q,g}(0)$$

- Can the mass decomposition be studied in simple, intuitive models? (See Jerry's talk on Thursday!)
- Is an energy budget for the **pion in the chiral limit** worth investigating?

Regarding DIS and the EMT

• The gluon momentum fraciton found in DIS is:

$$\langle x_g \rangle = \frac{\langle p | \hat{T}_g^{++}(0) | p \rangle}{\langle p | \hat{T}^{++}(0) | p \rangle} = A_g(0)$$

• Classically?

$$T_g^{++} = F^{+\rho}F_{\rho}^{+} = \frac{1}{4}(\mathbf{E}^2 + \mathbf{B}^2) + (\mathbf{E} \times \mathbf{B})_3 + \frac{1}{2}(E_3^2 - B_1^2 - B_2^2) \neq \frac{1}{2}(\mathbf{E}^2 + \mathbf{B}^2)$$

• In renormalized QFT?

$$[T_{\gamma}^{++}]_{R} = \frac{1}{4} \Big[\mathbf{E}^{2} + \mathbf{B}^{2} \Big]_{R} - [(\mathbf{B}\mathbf{E})_{3}]_{R} - \frac{1}{2} [E_{3}^{2}] + \frac{1}{2} \left[\sum_{k=1}^{\infty} B_{3k} B_{3k} \right]_{R} \neq \frac{1}{2} \Big[\mathbf{E}^{2} + \mathbf{B}^{2} \Big]_{R}$$

- Recall space is ∞ -dimensional in dimreg (see Collins)
- Magnetic field is 2-form if space isn't 3D.
- Can't distribute $[]_R$ over infinite sum.

A. Freese (UW)

Thank you for your time!

э

3