Terrestrial and Astrophysical Probes of Early-Universe Relics

M.A.F., P. W. Graham, S. Kalia, D. F. Jackson Kimball. Phys. Rev. D **104**, 075023 (2021) [arXiv:2106.00022]. M.A.F., P. W. Graham, S. Kalia, D. F. Jackson Kimball. Phys. Rev. D **104**, 095032 (2021) [arXiv:2108.08852]. A. Arza, M.A.F., P. W. Graham, S. Kalia, D. F. Jackson Kimball. Phys. Rev. D **105**, 095007 (2022) [arXiv:2112.09620].

M.A.F., P.W. Graham, and S. Rajendran. Phys. Rev. D 101, 115021 (2020) [arXiv:1911.08883]

Dark Matter in Compact Objects, Stars, and in Low Energy Experiments University of Washington Program INT-22-2B Virtual talk

August 30, 2022

Michael A. Fedderke

mfedderke@jhu.edu mfedderke.com

Overall plan of my talk

* <u>Part I: A new signal of ultralight dark-photon and axion-like particle dark</u> matter in terrestrial magnetometer data

M.A.F., P. W. Graham, S. Kalia, D. F. Jackson Kimball. Phys. Rev. D 104, 075023 (2021) [arXiv:2106.00022]. M.A.F., P. W. Graham, S. Kalia, D. F. Jackson Kimball. Phys. Rev. D 104, 095032 (2021) [arXiv:2108.08852]. A. Arza, M.A.F., P. W. Graham, S. Kalia, D. F. Jackson Kimball. Phys. Rev. D 105, 095007 (2022) [arXiv:2112.09620].

* <u>Part II:</u> Using white dwarfs to constrain a different early-universe relic: charged massive particles (CHAMPs)

M.A.F., P.W. Graham, and S. Rajendran. Phys. Rev. D 101, 115021 (2020) [arXiv:1911.08883]

I will try to cover two quite different topics within the theme of the program:

Earth as a Transducer for Dark-Matter Detection

Dark Matter in Compact Objects, Stars, and in Low Energy Experiments

Outline - Part I

Motivation

- Ultralight Bosonic Dark Matter (dark photons and ALPs / axions)
- Phenomenology of the photon dark-photon or photon axion system
- * A new signal of DM:

surface of Earth, with a known spatial and vectorial pattern

Results of a search with SuperMAG data

Outlook and future directions

Magnetic field oscillating coherently & in-phase across the entire

Dark Matter

Classical field description

 $\phi(t)/\Phi_{DM}$ 5

Search strategies can leverage oscillatory phenomenology

$$(-\mathbf{k}_{\mathrm{DM}}\cdot\mathbf{x})\sim \frac{\sqrt{\rho_{\mathrm{DM}}}}{m_{\mathrm{DM}}}\cos(m_{\mathrm{DM}}t)$$

$$T_{\rm coh} \sim v_{\rm DM}^{-2} T_{\rm osc} \sim 10^6 \, \lambda_{\rm Compton}$$

$$\lambda_{\rm coh} \sim v_{\rm DM}^{-1} \, \lambda_{\rm Compton} \sim 10^3 \, \lambda_{\rm Compton}$$

Ultralight Bosonic Dark Matter II

Kinetically Mixed Dark Photon Dark Matter (DPDM)

Phys. Lett. B 166 (1986) 196–198; Phys. Rev. D 84 (2011) 103501 [arXiv:1105.2812]

Electromagnetically Coupled Axions

Phys. Rev. Lett. 38 (1977) 1440–1443; Phys. Rev. Lett. 40 (1978) 223–226; Phys. Rev. Lett. 40 (1978) 279–282. JHEP 06 (2006) 051 [arXiv:hep-th/0605206]; Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720]

$$\mathscr{L} = \mathscr{L}_{\rm SM} + \frac{1}{2} (\partial_{\mu} \phi)^2$$

Mixings with SM EM sector cause observable EM effects:

- oscillatory with period set by fundamental physics parameter $m_{\rm DM}$
- narrowband / phase-coherent over long times
- spatially uniform / phase-coherent over large distances

JCAP 06 (2012) 013 [arXiv:1201.5902]

$$F_{\mu\nu}^{(\prime)} \equiv \partial_{\mu}A_{\nu}^{(\prime)} - \delta_{\mu\nu\alpha\beta}$$
$$\tilde{F}^{\mu\nu} \equiv \frac{1}{2}\epsilon^{\mu\nu\alpha\beta}F_{\alpha}$$

$$\mathscr{L} = \mathscr{L}_{SM} - \frac{1}{4} (F')^2 + \frac{1}{2} m_{A'}^2 (A')^2 + \frac{\epsilon}{2} FF'$$

 $(\epsilon \ll 1)$

Note: ϵ is dimensionless, $g_{\phi\gamma}$ has dimensions of $(mass)^{-1}$

 $-\frac{1}{2}m_{\phi}^2\phi^2 - g_{\phi\gamma}\phi F\tilde{F}$

Disclaimer: in this talk "axions" means "axion-like particles (ALPs)'

* Detectable field A_I in the vacuum region? Expand mass t

* DPDM field A'_I acts as oscillating background current sourcing EM: $J^{\mu}_{\text{eff}} \sim - \varepsilon m^2_{A'} (A'_I)^{\mu}$.

* Non-relativistic limit: $\mathbf{J}_{\text{eff}} \sim -\varepsilon m_{A'}^2 \mathbf{A}'_I \sim -\varepsilon m_{A'} \sqrt{\rho_{\text{DM}}} \cos(m_{A'}t) \hat{\mathbf{A}}'_I$.

or region of high plasma frequency

term:
$$\mathscr{L} \supset -(J_{\text{EM}} - \varepsilon m_{A'}^2 A_I') \cdot A_I$$

DPDM Pheno II Apply the Ampère-Maxwell Law to this simple geometry $\int \mathbf{J} \cdot \mathbf{dA} = \phi \mathbf{B} \cdot \mathbf{dI} \Rightarrow R^2 J_{\text{eff}} \sim BR$

A circumferential magnetic field is generated:

$$B_{\phi}(r \sim R) \sim R J_{\text{eff}} \sim \varepsilon(m_{A'}R) \sqrt{\rho_{\text{DM}}} c$$

* Suppressed by a ratio of length scales: $m_{A'}R \sim R/\lambda_{Compton}$

Electric field further suppressed by $(m_{A'}R)^2$, $v_{DM}(m_{A'}R)$

Phys. Rev. D 92 (2015) 075012 [arXiv: 1411.7382] IEEE Trans. Appl. Supercond. 27 (2017) 4, 1400204 [arXiv:1610.09344] Springer Proc. Phys. 245 (2020) 139-145 [arXiv:1906.08814]

"You're gonna need a bigger boat"

- * DPDM fields source magnetic fields in a vacuum gap in an electromagnetically shielded region.
- Effects decouple as DPDM mass drops below the inverse size of the box.
 - What if we want to look for DPDM with $m_{A'} \lesssim 1/(1 \text{ meter}) \sim 2 \times 10^{-7} \text{ eV}$?
- Options? OUR WORK PICKS UP HERE
 - Build a more sensitive magnetometer? OK, but noise.
 - Build Death Star 4.0? Impractical, at best.
 - Find a pre-existing natural shield?
- What about the Earth?
 - ► It's big enough: $1/R_{\oplus} \sim 3 \times 10^{-14} \,\mathrm{eV}$
 - But is it a shield?

Near-Earth Conductivity Environment

Is the Earth a shield? It depends; for some masses, yes!

- The ground / interior is a region of high conductivity ("inner shield")
- The lower atmosphere is a region of low conductivity ("vacuum gap")
- The ionosphere / interplanetary medium beyond is a region of high conductivity / plasma frequency ("outer shield")
- A nested conductor-insulator-conductor sandwich!

Simplified model

A new signal of DPDM I

- Spherical conductor, surrounded by a (vacuum-like) air gap, surrounded by a shield (ionosphere / IPM)
- What is the field on the ground?
- Run a similar Ampèrian loop argument:

$$\iint \mathbf{J} \cdot \mathbf{dA} = \oint \mathbf{B} \cdot \mathbf{dI} \Rightarrow R_{\oplus}^2 J_{\text{eff}} \sim BR_{\oplus}^2$$
$$|B| \sim \varepsilon (m_{A'}R_{\oplus}) \sqrt{\rho_{\text{DM}}} \sim 0.7 \text{ nG} \times \left(\frac{\varepsilon}{10}\right)$$

- * A PERSISTENT, GLOBAL, NARROWBAND MAGNETIC FIELD OSCILLATION
- * The field is very small, but spectral and spatial features differ from noise sources
- * Suppressed by $(m_{A'}R_{\oplus})$, not $(m_{A'}h_{atmos})$

WITH A KNOWN PATTERN, IN-PHASE OVER THE ENTIRE SURFACE OF EARTH

$$\ll (m_{A'}R_{\oplus})!$$

A new signal of DPDM II

Performing the computation rigorously, we find

$$\mathbf{B}(\Omega, t) = \sqrt{\frac{\pi}{3}} \varepsilon m_{A'}^2 R_{\bigoplus} \sum_{m=-1}^{1} A'_m \Phi_{1m}(\Omega) e^{-i(m_{A'} - 2\pi f_d m) t} + higher-order$$
where $\frac{1}{2} m_{A'}^2 \langle |A'|^2 \rangle_{T \gg T} = \rho_{DM}$

- * Signal found in one type of Vector Spherical Harmonic (VSH): $\Phi_{1m}(\Omega)$
- * Field evaluated at ground magnetometer station at $\Omega = (\theta, \phi)$. Earth frame (rotating).
- * DPDM polarization state \mathbf{A}' fixed in inertial space (within coherence time / patch)
- Non-trivial frequency structure Sensitive to DPDM polarization state

Sidebands offset by $f_d = 1/(\text{siderial day})$

- * Signal derivation holds for $10^{-21} \,\mathrm{eV} \lesssim m_{A'} \lesssim 1/R_{\oplus} \sim 3 \times 10^{-14} \,\mathrm{eV}$
- * Complications and caveats arise in real world: this signal remains (leading-order TM field in an $m_{A'}L$ expansion)

terms + TE fields

 $m_{A'}/(2\pi) - f_d \quad m_{A'}/(2\pi) \quad m_{A'}/(2\pi) + f_d$

What about the axion?

- A similar signal arises, because of the Earth's st $* \mathscr{L} \supset \frac{g_{\phi\gamma}}{A} \phi F \tilde{F} = g_{\phi\gamma} \phi \mathbf{E} \cdot \mathbf{B} \longrightarrow g_{\phi\gamma}(\partial_t \phi) \mathbf{B}_{\oplus}$ \bullet Once again, looks like an effective current: $\mathbf{J}_{\rm eff}$ * $\hat{\mathbf{B}}_{\oplus}$ plays the role of $\hat{\mathbf{A}}_{I}'$ [Earth Planets Space 73 (2021) 49] lpha Use the International Geomagnetic Reference Field (IGRF-13) model for ${f B}_{\oplus}$ $\mathbf{B}(\Omega, t) = -i(g_{\phi\gamma}\phi_0)(m_{\phi}R_{\oplus})\sum \frac{C_{lm}}{l}\Phi_{lm}(\Omega)e^{-im_{\phi}t}$ l.mwhere $\frac{1}{2}m_{\phi}^2 \langle \phi_0^2 \rangle_{T \gg T_{\text{coh}}} = \rho_{\text{DM}}$
- * Signal still found in one type of VSH, but get higher multipoles l from Earth's field
- Sourcing magnetic field is co-rotating with the ground-based detectors: frequency content now only at $f = m_{A'}/(2\pi)$

Rough translation for amplitude

tatic geomagnetic field
$${f B}_{\oplus}!$$

$$\varepsilon m_{A'} \leftrightarrow g_{\phi\gamma}$$

Assuming DM field-amplitude normalisations [BUT: different pattern]

$$\mathbf{A} \sim -ig_{\phi\gamma}m_{\phi}\phi\mathbf{B}_{\oplus}\cdot\mathbf{A}$$

$$\mathbf{g} = ig_{\phi\gamma}m_{\phi}\phi\mathbf{B}_{\oplus}$$

Fixed by IGRF-13

$$B \sim 1 \,\mathrm{nG} \times \left(\frac{g_{\phi\gamma}}{10^{-10} \,\mathrm{GeV^{-1}}}\right)$$

Signal Properties

- * In both cases, the Earth acts as a transducer to convert dark-matter oscillations to an oscillating magnetic field:
 - narrowband frequency peaked near $\omega \sim m_{\rm DM}$
 - Iong coherence time and length
 - present globally & in-phase across the whole surface of the Earth
 - known pattern
- We would like to implement a search for these signals. How?
- * This is a perfect signal to search for using a network of geographically distributed vector magnetometers that record time-series field data
- They must be unshielded! Unfortunately, GNOME doesn't work for this [Ann. Phys. (Berl.) 525 (2013) 659]

SuperMAG

- Geophysics to the rescue!
- Collaboration based at JHU-APL (J. W. Gjerloev, PI). Many contributors.
- Make publicly available a database of:
 - Unshielded magnetic field measurements
 - at $\mathcal{O}(500)$ unshielded magnetometer stations; maximally, $\mathcal{O}(250)$ reporting at any single time
 - widely geographically distributed over the Earth's surface
 - ► in time-series
 - with 60s resolution*
 - since ~1970 (more data at later times)
 - in a common data format
 - in a data-driven co-ordinate reference frame (average magnetic E-W nulled; reference to IGRF)

* A near-ideal dataset to analyse for our dark-matter signals

*a smaller dataset with 1s resolution is also available... see later in the talk

Search for a signal - Analysis Overview (DPDM)

narrowband excess magnetic field power with the correct spatial configuration

broadband magnetic field background estimated from data PRD 104, 095032 (2021)

Search for:

over a

DPDM Results I - Limits

Complementary to * astrophysical limits

- Very different systematics!
- First "direct" constraints on this piece of parameter space.

https://cajohare.github.io/AxionLimits/ PRD 104, 095029 (2021) [arXiv:2105.04565]

DPDM Results II - Signal candidates?

- ✤ 30 naive signal candidates identified
- * Reject 24 completely on the basis of **robustness tests** for spatial consistency, temporal constancy.
- ✤ 6 remaining candidates are in tension with at least one of the checks (or are otherwise) problematic); further work might be required to definitively exclude.
- * E.g.: candidate at 3.344939mHz has a 6.1σ global significance, but p = 0.034 on the temporal constancy robustness check (p = 0.97 on the spatial check).
- * We do <u>not</u> claim any robust evidence for a DPDM signal

Axion Results

*CAST does not need to assume the axion is all of the dark matter

- Analysis proceed similarly, but simpler.
- Similar naive signal candidates exist (27).
- Again reject most (23) outright with robustness checks.
- Some weak signals remain (4), but have tensions with checks.
- * We do <u>not</u> claim any robust evidence for an axion signal

Outlook and Future Directions

- * SuperMAG has 1s resolution data available. But less of it (fewer stations, less time).
- * Limit of our 60s-cadence analysis at high frequencies is the measurement sampling frequency.
- In 60s data, noise falls with increasing frequency.
- * Potential to sacrifice some sensitivity* with data quantity, but push to higher frequency.

- * Win in a relative sense? More competitive with astro limits? CAST?
- * Watch this space. Analysis in progress (in formal collaboration with SuperMAG).
- * Even higher frequencies? A dedicated network of higher-frequency magnetometers: SNIPE Hunt

21

There was a poster about this at the APS DAMOP Meeting in June

Summary

* Earth is a transducer to generate new signals of dark-photon and axion dark matter

vectorial spatial pattern over whole surface of the Earth

- Distributed networks of unshielded magnetometers are DM detectors
- Search in SuperMAG magnetic field data:
 - No robust candidates of either DM type
 - New limits, complementary to existing constraints
- * Search in other existing data is underway. Extend reach to new parameter space?
- Dedicated search push to even higher frequencies being considered *

Coherent, narrowband oscillating magnetic fields that have particular

Questions on this part of the talk?

White Dwarfs as Amplifiers for CHAMP Detection

THE SHORT STORY

(Maybe some very tiny fraction of) Dark Matter in Compact Objects, Stars, and in Low Energy Experiments

... get dragged into galaxies, distributed like DM $\sigma/m_X \ll (\sigma/m)_{\rm SM}$...

Neutron Stars

IMAGE: NASA, ESA, CSA, STScl, Webb **ERO Production Team**

 X^{-} bind as $(\text{He}X)^{+}$

...where the CHAMPs sink...

Old NS existence bounds CHAMP abundances

[Gould, Draine, Nussinov, Romani, Phys. Lett. B 238 (1990) 337]

... but they can get trapped in denser protostellar gas clouds...

... and contaminate stars from birth (or get captured directly)

which evolve to...

Old Neutron Star Bounds

 $M_{\rm Chand.}^X \sim 1.4 M_{\odot} \times$

OUR QUESTION

Can we find a system where this region CAN be bounded?

Possibly orders of magnitude of improvement to be had

... get dragged into galaxies, distributed like DM $\sigma/m_X \ll (\sigma/m)_{\rm SM}$...

IMAGE: NASA, ESA, CSA, STScl. Webb **ERO Production Team**

 X^{-} bind as $(\text{He}X)^{+}$

...where the CHAMPs sink...

...and self-gravitate... $(M_X^{\text{tot}} > \overline{M_{\text{s.g.}}})$

which maybe also still

Under very general conditions, a BH born inside a WD such that it evaporates will do so within the WD lifetime (~Gyr), and will trigger the Type-Ia SN instability (runaway carbon burning)

Bramante, Acevedo (2019)

White Dwarfs

accrete some CHAMPs

Old WD existence bounds CHAMP abundances

... but they can get trapped in denser protostellar gas clouds...

grow

... and contaminate stars from birth (or get captured directly)

 $M \sim 2 - 8 M_{\odot}$

which evolve to...

... and can form a mini black hole inside the WD...

...which can...

Janish, Narayan, Riggins (2019)

supernova instability

Michael A. Fedderke (JHU)

... and trigger the

Old White Dwarf Bounds - X^+

<u>Require</u>

enough CHAMPs to get into the WD

via

primordial contamination and accretion

to achieve the larger of a

self-gravitating mass of CHAMPs or a Chandrasekhar mass of CHAMPs

AND

destroy the WD within its cooling age

Name	$M_{\scriptscriptstyle m WD} \; [M_{\odot}]$	B [MG]	$t_{ m cool.}~[m Gyr]$
WDJ062144.86 + 753011.67	1.18 - 1.23		4.1
WDJ013839.12-254233.40	1.17 – 1.22		4.2
WD 2202-000	1.08	1.0	2.19

PRD 101, 115021 (2020)

Old White Dwarf Bounds - X⁻

 X^- exist in WD as $(CX)^{5+}$ or $(OX)^{7+}$ objects.

Binding energies are 3-4 MeV.

$$M_{\text{Chand.}}^X \sim 1.4 M_{\odot} \times \left(\frac{Q_{(NX)}m_p}{m_X}\right)^2$$

$M_{\scriptscriptstyle m WD} \; [M_\odot]$	B [MG]	$t_{ m cool.} ~[m Gyr]$
1.18 - 1.23		4.1
1.17 – 1.22		4.2
1.08	1.0	2.19
	$egin{array}{c} M_{ m wD} \; [M_\odot] \ 1.18\mathchar`-1.23 \ 1.17\mathchar`-1.22 \ 1.08 \end{array}$	$egin{array}{cccc} M_{ m WD} & [M_\odot] & B \ [{ m MG}] \ 1.18{-}1.23 & \ 1.17{-}1.22 & \ 1.08 & 1.0 \end{array}$

Summary

- Charged massive particles (CHAMPs) contaminate white dwarfs
- gravitating masses), form mini black hole inside the WD
- destroys WD, except if it takes too long.
 - Other supernova trigger mechanisms discussed in the paper
- on high- m_X CHAMPs

If sufficient total CHAMP mass in the WD (larger of Chandrasekhar and self-

BH either accretes up in mass, or Hawking radiates down in mass. Either way

In Dramatic, orders of magnitude improvement of GDRN galactic abundance bounds

Speculation: trigger for Ca-Rich Gap Transients? Correct spatial morphology?

Concluding remarks

I told you about:

terrestrial magnetometer data, and new limits

M.A.F., P. W. Graham, S. Kalia, D. F. Jackson Kimball. Phys. Rev. D 104, 075023 (2021) [arXiv:2106.00022]. M.A.F., P. W. Graham, S. Kalia, D. F. Jackson Kimball. Phys. Rev. D 104, 095032 (2021) [arXiv:2108.08852]. A. Arza, M.A.F., P. W. Graham, S. Kalia, D. F. Jackson Kimball. Phys. Rev. D 105, 095007 (2022) [arXiv:2112.09620].

 Using white dwarfs to constrain a different early-universe relic: charged
 massive particles (CHAMPs), and new limits

M.A.F., P.W. Graham, and S. Rajendran. Phys. Rev. D 101, 115021 (2020) [arXiv:1911.08883]

* A new signal of ultralight dark-photon and axion-like particle dark matter in

Questions?

