Zachariah Etienne

Department of Physics

Funding Acknowledgements PHY-2110352 (Grav theory, 2021-2024) AST-2108072 (WoU-MMA, 2021-2024)

Disclaimer: Not a review talk

Why we need new techniques in numerical relativity

- Current codes don't have all the physics we need for BNS
 - GR solver
 - Neutrino physics with advanced EOSs, nuclear physics
 - GRMHD
 - EM radiation transport

Why we need new techniques in numerical relativity

- Current codes don't have all the <u>physics we need for BNS</u>
 - GR solver
 - Neutrino physics with advanced EOSs, nuclear physics
 - GRMHD
 - EM radiation transport
- Current-gen codes too inefficient to <u>survey needed BNS</u> parameter space
 - All else being the same, cost ~ # of gridpoints

Most NR codes use Cartesian AMR Grids

AMR Grids

Adaptive Mesh Refinement (Most Popular Method in NR)

4 dx

<mark>8 dx</mark>

16 dx

Most important MMA system: BH accretion disk in full 3D Comparison of Cartesian AMR vs spherical grids

Red circle: path of fluid element in BH accretion disk Resolution changes by 1.4x over path Induces artificial high-order multipole modes Azimuthal resolution ~1.4x lower: ~2x inefficiency (over spherical grids) ~2x jumps in dr vs smooth dr: ~2x inefficiency

sqrt(2)*dx

dx

dx

BH

dx/2

Most important MMA system: BH accretion disk in full 3D Comparison of Cartesian AMR vs spherical grids

Situation becomes far worse if angular momentum transport causes fluid element to orbit more closely!

Sharp AMR corners *wasted*: ~2x inefficiency Coarse grid underneath fine grid: ~1.2x inefficiency Fine grids' wide AMR boundary: ~1.5x inefficiency

Summary: Cart AMR ~15x inefficient

dx

6

dx/2

BH

Why we need new techniques in numerical relativity

- Current codes don't have all the <u>physics we need for BNS</u>
 - GR solver
 - Neutrino physics with advanced EOSs, nuclear physics
 - GRMHD
 - EM radiation transport
- Current-gen codes too inefficient to <u>survey needed BNS</u> parameter space
 - All else being the same, cost ~ # of gridpoints
 - Cartesian AMR: ~15x more gridpoints than needed
 - Next-gen AMR: maybe ~1.5x improvement at best
 - Thinking outside the box is probably optimal

<u>Core need for next-gen NR:</u> Move beyond proof-of-principle simulations & into realm of connecting with observations

<u>Core need for next-gen NR:</u> Move beyond proof-of-principle simulations & into realm of connecting with observations

Keys to unlocking next-gen NR

- 1. Efficiency
- 2. Efficiency
- 3. Efficiency

<u>Core need for next-gen NR:</u> Move beyond proof-of-principle simulations & into realm of connecting with observations

Keys to unlocking next-gen NR

- 1. Efficiency, so we can add more physics
- 2. Efficiency, so we can span param space
- 3. Efficiency, so that others can afford using & connecting to their own codes
 - a. OSS & good documentation!

<u>Core need for next-gen NR:</u> Move beyond proof-of-principle simulations & into realm of connecting with observations

Keys to unlocking next-gen NR

- 1. Efficiency, so we can add more physics
- 2. Efficiency, so we can span param space
- 3. Efficiency, so that others can afford using & connecting to their own codes
 - a. OSS & good documentation!

Higher order methods (*Higher effective resolution*) *DG, WENO, high-order FD* <u>Characteristics of</u> <u>next-gen NR</u>

<u>Core need for next-gen NR:</u> Move beyond proof-of-principle simulations & into realm of connecting with observations

Keys to unlocking next-gen NR

- 1. Efficiency, so we can add more physics
- 2. Efficiency, so we can span param space
- 3. Efficiency, so that others can afford using & connecting to their own codes
 - a. OSS & good documentation!

Higher order methods (*Higher effective resolution*) *DG, WENO, high-order FD* <u>Characteristics of</u> <u>next-gen NR</u>

Excellent single-CPU performance, GPU capabilities, Task-based parallelism

<u>Core need for next-gen NR:</u> Move beyond proof-of-principle simulations & into realm of connecting with observations

Keys to unlocking next-gen NR

- 1. Efficiency, so we can add more physics
- 2. Efficiency, so we can span param space
- 3. Efficiency, so that others can afford using & connecting to their own codes
 - a. OSS & good documentation!

Higher order methods (*Higher effective resolution*) *DG, WENO, high-order FD* Characteristics of

<u>next-gen NR</u>

Improved grids: Moving mesh, SPH, Non-Cartesian coords *Excellent single-CPU performance, GPU capabilities, Task-based parallelism*

<u>Core need for next-gen NR:</u> Move beyond proof-of-principle simulations & into realm of connecting with observations

Keys to unlocking next-gen NR

- 1. Efficiency, so we can add more physics
- 2. Efficiency, so we can span param space

Interoperability w/other codes

- Efficiency, so that others can afford using & connecting to their own codes
 - a. OSS & good documentation!

Higher order methods (*Higher effective resolution*) *DG, WENO, high-order FD* Characteristics of

<u>next-gen NR</u>

Improved grids: Moving mesh, SPH, Non-Cartesian coords Excellent single-CPU performance, GPU capabilities, Task-based parallelism

<u>Core need for next-gen NR:</u> Move beyond proof-of-principle simulations & into realm of connecting with observations

Keys to unlocking next-gen NR

- 1. Efficiency, so we can add more physics
- 2. Efficiency, so we can span param space

Interoperability w/other codes

3. Efficiency, so that others can afford using & connecting to their own codes

a. OSS & good documentation!

Higher order methods (Higher effective resolution) DG, WENO, high-order FD **Characteristics of**

<u>next-gen NR</u>

Improved grids: Moving mesh, SPH, Non-Cartesian coords *Excellent single-CPU performance, GPU capabilities, Task-based parallelism*

<u>Core need for next-gen NR:</u> Move beyond proof-of-principle simulations & into realm of connecting with observations

Keys to unlocking next-gen NR

- 1. Efficiency, so we can add more physics
- 2. Efficiency, so we can span param space

Interoperability w/other codes

 Efficiency, so that others can afford using & connecting to their own codes

a. OSS & good documentation!

Higher order methods (Higher effective resolution) DG, WENO, high-order FD

AI/ML? Probably next-next-gen NR

Characteristics of

<u>next-gen NR</u>

Improved grids: Moving mesh, SPH, Non-Cartesian coords *Excellent single-CPU performance, GPU capabilities, Task-based parallelism*

Improved post-merger BNS simulations: Inspiral+merger using Cartesian AMR GRMHD Very long post-merger using spherical GRMHD

Lopez Armengol, ZBE, et al. https://arxiv.org/abs/2112.09817

Compact-binaries.org

Trial run: Magnetized BNS: q=1 LS220/SLy4 + postmerger neutrino leakage 18

Trial run: Magnetized BNS: q=1 LS220/SLy4 + postmerger neutrino leakage 19

Conclusion:

Remnant BH accretion disks best simulated on spherical grids.

Conclusion:

Remnant BH accretion disks best simulated on spherical grids.

... but can inspiral/merger be made more efficient as well?

Conclusion:

Remnant BH accretion disks best simulated on spherical grids.

... but can inspiral/merger be made more efficient as well?

Answer:

Yes, BlackHoles@Home grids provide one path forward

https://blackholesathome.net

BlackHoles@Home

- Proposed volunteer computing/citizen science project
 - a. Fit full-NR BBH sims on consumer desktops
 - b. Generate large-scale GW follow-ups & catalogs
- Code behind the volunteer computing project

What is it?

• A NRPy+-based numerical relativity code

NRPy+: Python-based C code generation framework for NR

Tensorial expressions in Einstein-like notation ⇒ Highly optimized C-code kernels (with FDs)

"Nerpy", the NRPy+ mascot. Photo CC2.0 Pacific Environment (modified).

https://nrpyplus.net

What is it?

- A NRPy+-based numerical relativity code
- NRPy+: builds on "NR in spherical coordinates" work

NRPy+: Python-based C code generation framework for NR

Tensorial expressions in Einstein-like notation ⇒ Highly optimized C-code kernels (with FDs)

"Nerpy", the NRPy+ mascot. Photo CC2.0 Pacific Environment (modified)

https://nrpyplus.net

NR in Spherical coordinates

- Brown (PRD 79, 104029, **2009**)
- Baumgarte, Montero, Cordero-Carrión, Müller (PRD 87, 044026, 2012)

NR in spherical-like, cylindrical-like, etc.

Ruchlin, Etienne, Baumgarte (PRD 97, 064036, 2018)

What is it?

- A NRPy+-based numerical relativity code
- NRPy+: builds on "NR in spherical coordinates" work
 - NRPy+: spherical-like, cylindrical-like, & Cartesian-like coordinates/grids

NR in Spherical coordinates

- Brown (PRD 79, 104029, 2009)
- Baumgarte, Montero, Cordero-Carrión, Müller (PRD 87, 044026, 2012)

NR in spherical-like, cylindrical-like, etc.

Ruchlin, Etienne, Baumgarte (PRD 97, 064036, 2018)

What is it?

- A NRPy+-based numerical relativity code
- NRPy+: builds on "NR in spherical coordinates" work
 - NRPy+: spherical-like, cylindrical-like, & Cartesian-like coordinates/grids
- BlackHoles@Home: Multiple overlapping coordinate/grid patches

NR in Spherical coordinates

- Brown (PRD 79, 104029, 2009)
- Baumgarte, Montero, Cordero-Carrión, Müller (PRD 87, 044026, 2012)

NR in spherical-like, cylindrical-like, etc.

Ruchlin, Etienne, Baumgarte (PRD 97, 064036, 2018)

What is it?

- A NRPy+-based numerical relativity code
- NRPy+: builds on "NR in spherical coordinates" work
 - NRPy+: spherical-like, cylindrical-like, & Cartesian-like coordinates/grids
- BlackHoles@Home: Multiple overlapping coordinate/grid patches

Why use it?

- Super efficient: Number of gridpoints: BH@H < <u>~1%</u> Cartesian AMR

 Binary BHs on <u>desktop computers</u>

 Super accurate: better grids -> less

 numerical poise than any other code: failed
 - numerical noise than *any other code*; far cleaner convergence than Cart AMR

BH@H Code Validation against Einstein Toolkit (ET): GW150914 Gallery Example

BH@H Code Validation against Einstein Toolkit (ET): GW150914 Gallery Example

GW noise in AMR references:

- 1. Zlochower, Ponce, & Lousto, PRD 86, 104056 (2012)
- 2. Etienne, Baker, Paschalidis, Kelly, Shapiro, Phys. Rev. D 90, 064032 (2014)

BH@H Code Validation against SpEC: q=6 Example

32

12-month update

- BH@H completely rewritten
 - Can do mergers!
 - New grids: Months \rightarrow *minutes*

Cart-like inside Cyl-like

Cyl-like inside Sph-like

Cartesian AMR: Cart.-like in Cart.-like

"Spherical AMR": Sph-like in Sph-like

New grid structures example q=1 nonspinning, initial sep=8M BBH

New grid structures example q=1 nonspinning, initial sep=8M BBH

q=1 nonspinning, initial separation=8M

36

GW150914 ET Gallery example: BlackHoles@Home convergence study

37

GW150914 ET Gallery example: BlackHoles@Home convergence study

GW150914 ET Gallery example: BlackHoles@Home convergence study

39

Summary

- Code rewritten to handle mergers
- Extracted GWs, constraints look amazing!
- Goal: launch BH@H when it's ready <u>https://blackholesathome.net</u>

To-do List

- Finish tuning grids; q=8 on the desktop seems possible?!
- 2. BOINC server/client (*in progress*)

Schematic Schematic

 MPI parallelize codebase, add IllinoisGRMHD support -> next-gen BNS code *superB*

BlackHoles@Home

Lessons for the multimessenger era

1. <u>Diversity in numerical</u>

techniques is essential

... to building confidence in predictions

Lessons for the multimessenger era

- 1. <u>Diversity in numerical</u> <u>techniques is essential</u> ... to building confidence in predictions
- 2. <u>Diversity in physics means</u> interoperability between codes is essential

Just as no person can be an expert in everything, no code can/should do everything Lessons for the multimessenger era

- 1. <u>Diversity in numerical</u> <u>techniques is essential</u> ... to building confidence in predictions
- 2. <u>Diversity in physics means</u> interoperability between codes is essential

Just as no person can be an expert in everything, no code can/should do everything

NR code with highly efficient grids (NR = the cheap part)

Moving-mesh Voronoi code

- Has been used to study
 - Common envelope evolution
 - Tidal disruptions
- Supports advanced EOSs, radiation hydro, GRHD in progress!

Pros and Cons of Voronoi Hydrodynamics

- Far better advection than Eulerian.
- Superior conservation of momentum and angular momentum compared to Eulerian schemes
- Superior shock capturing compared to SPH.
- Better capture of interface instabilities in principle.
- Continuously varying resolution no factor of 2 or 4 jumps as in AMR.
- Almost anything solvable on Eulerian grids map to Voronoi methods.

- Much more complex combination of SPH and Eulerian + computational geometry
- Have to think about the grid (on top of everything else).
- "slower"
- MHD is divergence cleaning or vector potential based – no "staggered" CT scheme exists.
- Might be overkill for many problems

Slide courtesy Phil Chang, lead author of MANGA

General Relativistic Hydrodynamics on a Moving-mesh I: Static Spacetimes

Chang & ZBE: https://arxiv.org/abs/2002.09613 ; MNRAS 496, 1, 2020

- Code converges as expected with increased number of mesh generating points
 - conv order of ~1.75

Chang & ZBE: <u>https://arxiv.org/abs/2002.09613</u>; MNRAS 496, 1, 2020

- Code converges as expected with increased number of mesh generating points
 - conv order of ~1.75
- Current work:
 - Evolve spacetime with NRPy+
- Future work:
 - Couple to BH@H & perform BNS evolutions on moving mesh!
 - BNS with GRMHD, radiation, & advanced EOS

Chang & ZBE: https://arxiv.org/abs/2002.09613; MNRAS 496, 1, 2020

