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Basic Physics of Compact Binary Coalescences (CBCs)

Keplerian Orbit

General Relativiy
“Larmor formula”
circular orbit :

Post Newtonian Energy Balance

changes flux and orbit’s binding energy

evolution of the orbital 
frequency is directly 
imprinted within GWs

adiabatic tides
deform stars
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Basic Physics of Compact Binary Coalescences (CBCs)

adiabiatic tides

linear tidal resonances
Pratten+ (2021)

nonlinear tidal instabilities
Weinberg (2016)
Abbott+ (2019)

post-merger signals
Most+Raithel (2021)
Weih+ (2020)

orbital energy transferred to 
stellar normal modes

Post Newtonian Energy Balance Orbit

evolution of the orbital 
frequency is directly 
imprinted within GWs
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Why are we concerned with orbital phase?

orbital evolution gives time-domain phase

frequency-domain phase is related to time-domain phase
(saddle point approximation)

likelihood of GW data is an integral over a rapidly oscillating 
function of the difference of freq-domain phases

significant likelihood only when Δψ is small
and/or varies slowly at all frequencies

varies slowly oscillates rapidly
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Current Astrophysical Constraints on the High-Density, Cold Equation of State

J0740
M-R

@MmaxGW170817

sound speed almost certainly exceeds the conformal limit
(suggests strongly-coupled interactions)

@Mmax

Legred+ (2021)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.063003


Current Astrophysical Constraints on the High-Density, Cold Equation of State

GWs

NICER

PSRs

Essick+ (2020)

Astrophysical observations agree with ab initio 
theoretical calculations

Essick+ (2020)
Essick+ (2021), Essick+ (2021)
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There is a limit to the densities we can probe within NSs

Current Astrophysical Constraints on the High-Density, Cold Equation of State

Legred+ (2021)
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Fisher Matrix : simplistic PN phasing, aLIGO design sensitivity, SNR=10, wide priors on spins, mass ratio
→ “best case” scenario (Cramer-Rao bound) that strictly holds only in the high-SNR limit
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Abbott+ (2019)

GW170817
SNR=32.4

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.9.011001


Prospects for Measuring Λ(m)

marginally

detectable 

Uncertainty in leading order tidal term is still broad : Λ1.4 ~ 500 +/- 250 at 90% credibility (Legred+ 2021)
Fisher Matrix may underpredict uncertainty by a factor of O(few)

BNS

BBH

NS-BH
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Prospects for Measuring Λ(m)

NS-BH

Uncertainty in leading order tidal term is still broad : Λ1.4 ~ 500 +/- 250 at 90% credibility (Legred+ 2021)
Fisher Matrix may underpredict uncertainty by a factor of O(few)

relative precision could be 10x worse for 2.0+2.0 compared to 1.4+1.4
  → need ~100x as many events to compensate

2.0+2.0

1.4+1.4

Legred+ (2021)

marginally

detectable 
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Connections to astrophysical mass distribution

Prospects for Measuring Λ(m)

simultaneous inference of mass distribution and 
Equation of State

features in overall mass distribution

mass and/or spin distributions of 
subsets of events

implications for r-process nucleosynthesis

source classification based on masses

Wysoki+ (2020) 

Golomb+ (2021) 

Essick+Landry (2020)

Fishbach+ (2020) 

Farah+ (2021) 

Landry+Read (2021)

Biscoveanu+ (2022)

Chen+ (2021) 28

Ye+Fishbach (2022)
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https://iopscience.iop.org/article/10.3847/2041-8213/aba7b6
https://iopscience.iop.org/article/10.3847/1538-4357/ac5f03
https://arxiv.org/abs/2107.04559
https://arxiv.org/abs/2207.01568
https://iopscience.iop.org/article/10.3847/2041-8213/ac26c6
https://arxiv.org/abs/2202.05164


Farah+ (2021) 

Prospects for Measuring Λ(m)

2M
☉

 NSs 
may be rarer

likely a gap
2.5 ~ 5 M

☉
 

Connections to astrophysical mass distribution

NSBH can have 
heavy primaries

Connections to astrophysical mass distribution
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Prospects for O4
starts March 2023

We will hold a one-hour Zoom meeting on 21 July 2022 at 14:00 UTC (09:00 Central Time). Please register in advance for the Zoom meeting at
https://bit.ly/3PbWa48

The agenda is being developed at
https://wiki.gw-astronomy.org/OpenLVEM/Telecon20220721

Similar to previous calls, the first ~30 minutes will be devoted to updates from LIGO-Virgo-KAGRA relating plans for O4 including the run schedule and 
some planned changes to the public alert infrastructure.

We encourage the OpenLVEM community to use these town hall meetings to share plans and progress with us and each other. In this first call of the O4 series, 
we have assigned 25 minutes for short presentations from the community. If you would like to make a short presentation at this, or a future call, please submit a 
request to

https://forms.gle/tieqoa2xsnm7Sqpr7
We look forward to your participation; feel free to forward this announcement to others who may be interested.

Patrick Brady, Giovanni Losurdo and Jun'ichi Yokoyama
for the LIGO-Virgo-KAGRA Collaboration (LVK)
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https://observing.docs.ligo.org/plan/#timeline
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100% duty cycle at design sensitivity
uniformly distributed in 

co-moving-volume+source-frame time

detected distribution

astrophysical distribution
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Prospects for O4

100% duty cycle at design sensitivity
uniformly distributed in 

co-moving-volume+source-frame time

measurement precision

detected distribution
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1.4+1.4

Legred+ (2021) 32

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.063003


Prospects for O4

Abbott+ (2021)

Expect 3 - 5 times more VT from O4
→ 6 - 10 expected BNS detections in O4

Estimate of rates span 10 - 1700 BNS/Gpc3yr (Abbott+ 2021)
→ 0.12 - 32 expected BNS detections in O4
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https://arxiv.org/abs/2111.03606
https://arxiv.org/abs/2111.03634


What about 3G Detectors?
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At a fixed SNR, measurement of tides is worse

low-freq sensitivity increases more than high-freq 
sensitivity for “nominal” CE (e.g., Essick 2022)

detectors may be tuned to target tidal effects 
Srivastava+ (2022)

What about 3G Detectors?         Cosmic Explorer Horizon Study

Cosmic Explorer
@ SNR=10

aLIGO Design
@ SNR=10

400

400

300 200

200

300

500
600

700

Each individual source will have a higher SNR in 3G 
than in aLIGO.
        → will the proportion of high-SNR signals be

    larger in 3G detectors?

35

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.082002
https://iopscience.iop.org/article/10.3847/1538-4357/ac5f04
https://arxiv.org/abs/2109.09882


Most low-mass events in 3G will still be near the detection threshold (compare to Vitale 2016)

What about 3G Detectors?

Cosmic
Explorer

heavier tail from
cosmological effects

aLIGO+adVirgo
Design Sensitivity

36
For the average event, increased SNR with CE will not overcome

the decreased precision in adiabatic tidal measurements

expected distribution 
in Euclidean universe

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.94.121501


Pain Points
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Pain Points : Gravitational Wave Data Analyses Chatziioannou (2021)

noise
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PSD
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Talbot+Thrane (2020)
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Pain Points : Phenomenological EoS Models and Implicit Assumptions

Legred+ (2022)

Gaussian Processes
nonparametric

Spectral
parametric

Speed-of-Sound
parametric

Piecewise Polytrope
parametric

priors – dashed

astro data – light 

astro + p(2nsat) – dark

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.043016


Pain Points : (X-ray) Data Selection

Essick (2021)

These analyses have a lot of moving parts, and seemingly small choices can have unexpected consequences.
    → NICER’s data selection procedure (for J0740) introduces small biases

44
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1.4+1.4

@
Mm
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Summary

GW 
Observations

Expect 3 - 5 times more VT from O4
→ 6 - 10 expected BNS detections in O4

Estimate of rates span 10 - 1700 BNS/Gpc3yr (Abbott+ 2021)
→ 0.12 - 32 expected BNS detections in O4

detected distribution

relative precision

https://arxiv.org/abs/2111.03634
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