

MAGNETIC FIELDS IN GRMHD SIMULATIONS OF BNS MERGERS

May 2022

Pedro Espino

Penn State

INTRODUCTION

Introduction	Challenges	Recent results	Conclusions
OOO	0000		OO
INTRODUCTION			

- → GW170817 + associated EM counterparts have proven crucial for understanding many phenomena including:
 - → BNS mergers as sites of short gamma-ray bursts (sGRBs)
 - \rightarrow important constraints on the nuclear EOS

→ presently, the best methods for understanding the most extreme parts of the merger (the merger itself and the post-merger environment) reside within numerical relativity

→ the effect of magnetic fields during the different stages of the merger remain poorly understood, with only a handful of studies having been carried out

Introduction	Challenges	Recent results	Conclusions
0000	0000	00000	00

OPEN QUESTIONS: JET FORMATION AND SGRBS

What was the GRB central engine?

BH central engine

Ruiz et al., Astrophys.J.Lett. 824 (2016) 1, L6 Paschalidis et al., Astrophys.J.Lett. 806 (2015) 1, L14

¹Ruiz et al., Phys.Rev.D 104 (2021) 12, 124049

²Ciolfi et al., Mon.Not.Roy.Astron.Soc. 495 (2020) 1, L66-L70

Magnetar central engine

see also: Mosta et al., Astrophys.J.Lett. 901 (2020) L37

Introduction	Challenges	Recent results	Conclusions
	0000	00000	OO
OPEN OUESTIONS: F.	JECTA AND KN		

- → For the typical post-merger magnetic energies, up to 0.1 M_{\odot} of mass outflow at $\sim 300 km$ (even if only a small fraction of this unbound, it can make up the majority of the ejecta)
- → With magnetic fields, ejecta is more collimated (mostly around half-opening angle of $\theta \sim 30^{o}$, and can be boosted to velocities of up to 0.2 *c*

CHALLENGES

Introduction	Challenges	Recent results	Conclusions
0000	⊙●⊙⊙	00000	OO

FIELD AMPLIFICATION

- $\rightarrow\,$ Inspiral fields expected to be $\sim 10^{10}-10^{12}\,G$
- ightarrow Post-merger fields can be amplified as high as $10^{15} 10^{17} G$
- \rightarrow Three relevant mechanisms for field amplification during and after merger include
 - → Magnetic winding: Arises from differential rotation, leads to linear field growth. Most relevant at large scales.
 - → Kelvin-Helmholtz instability (KHI) (exponential field growth): initial small scale amplification at shear layers

→ Magnetorotational instability (MRI) (exponential field growth): relevant for differentially rotating magnetized fluids. Results in large scale field structuring

- $\rightarrow\,$ our simulations can capture only part of this cascade
 - \rightarrow below the length scale set by the computational grid, we cannot resolve the relevant fluid dynamics

Introduction	Challenges	Recent results	Conclusions
0000	0000		OO

SOLUTIONS: USUAL APPROACHES

How do we get strong magnetic fields in the post-merger environment?

Introduction	Challenges	Recent results	Conclusions
0000	0000	00000	00
SOLUTIONS: USUAL A Approximate (most-o	APPROACHES common) solution		
Superimpose unphysically the inspiral	large, simplified (dipole) magnetic $\lambda_{MRI} \approx \frac{2\pi B}{\Omega\sqrt{4\rho}}$	fields on fluid during (1)	

How do we get strong magnetic fields in the post-merger environment?

Introduction 0000	Challenges 0000	Recent results	Conclusions OO
SOLUTIONS: Approximate	USUAL APPROACHES (most-common) solution		
Superimpose ur	Improve accuracy of simulations		
the inspiral	 → Use higher order schemes for fluid evolution → Increase grid resolution. Highest resolution sim with smallest grid spacing Δx_{grid} ~ 12.5m → KHI was at least partially resoluted in these sizes 	ns to date carried out by Kiuchi and Shibata,	
	 → Unphysically large inspiral B-fields still required → Results do not converge! 	at this grid resolution ($10^{13} - 10^{15}$ G)	
How do we	$ \begin{array}{c} 10^{16} \\ \hline \\ $	$\begin{array}{c} 10^{16} \\ \begin{array}{c} 10^{15} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
	^a Kiuchi et al., Phys.Rev.D 92 (2015) 6, 064034 ^b Kiuchi et al., Phys.Rev.D 97 (2018) 12, 124039		

^aRadice, Astrophys.J.Lett. 838 (2017) 1, L2

RECENT RESULTS

Introduction	Challenges	Recent results	Conclusions
0000	0000	0000	00

ightarrow We simulate BNS mergers with strong magnetic fields and finite- temperature equations of state.

EOS	$M_{\rm tot}~(M_{\odot})$	$R_{\rm NS}$ (km)	$B_{\max}(0)$ (G)	$M_{ m supra} \ (M_{\odot})$	h_c
LS220	2.7	10.02	$4.70 imes 10^{15} { m G}$	2.42	0.2025
DD2	2.7	10.50	$3.96 imes 10^{15} { m G}$	2.92	0.1861

- ightarrow Numerical grids identical during inspiral, resolve stars with 64 gridpoints/ $R_{
 m NS}$.
- → At a time close to and before merger, we dynamically activate refined grids near the origin, where merger happens.
- \rightarrow Focus:
 - 1. Field amplification
 - 2. Effects of amplified fields on merger ejecta

Introduction	Challenges	Recent results	Conclusions
0000	0000	00000	00

PLE, Paschalidis (in prep., 2022)

Introduction	Challenges	Recent results	Conclusions
0000	0000	00000	00
			r

EFFECT OF AMPLIFIED MAGNETIC FIELDS ON DYNAMICAL EJECTA

PLE, Paschalidis (in prep., 2022)

CONCLUSIONS

Introduction	Challenges	Recent results	Conclusions
0000	0000		O

CONCLUSIONS

- → Magnetic fields are expected to play a role in both the total amount of ejecta and in changing relevant ejecta properties
- → Dynamically refining simulation grids allows for a *direct comparison* of ejecta properties due to stronger field amplification *during the merger*. Specifically:
 - $\rightarrow~$ outflow is resolved with same resolution in all cases
 - → magnetic fields are identical leading up to merger
- → Ongoing work:
 - $\rightarrow~$ allow MRI to develop (long-term simulations) and consider secular outflow
 - ightarrow consider convergence of magnetic field amplification with larger grid-refinement areas
 - → consider refining larger areas to better resolve KHI (during merger) and MRI (after merger)
 - → consider wider diversity of EOS models