Atomic EDMs and Nuclear Schiff Moments

J. Engel

May 19, 2023

Connection Between EDMs and T Violation

Consider non-degenerate ground state |g.s. : J, M \rangle. Symmetry under rotations $R_{y}(\pi)$ for vector operator like $\vec{d} \equiv \sum_{i} e_{i} \vec{r}_{i}$ implies:

Connection Between EDMs and T Violation

Consider non-degenerate ground state |g.s. : J, M \rangle. Symmetry under rotations $R_{y}(\pi)$ for vector operator like $\vec{d} \equiv \sum_{i} e_{i} \vec{r}_{i}$ implies:

$$
\left.\left.\left\langle\text { g.s. : J, M| } \quad d_{z}\right| \text { g.s. : } J, M\right\rangle=-\langle\mathrm{g} . \mathrm{s.}: J,-M| d_{z} \mid \text { g.s. : } J,-M\right\rangle .
$$

T takes M to $-M$, like $R_{y}(\pi)$. But \vec{d} is odd under $R_{y}(\pi)$ and even under T, so for T conserved

Connection Between EDMs and T Violation

Consider non-degenerate ground state |g.s. : J, M \rangle. Symmetry under rotations $R_{y}(\pi)$ for vector operator like $\vec{d} \equiv \sum_{i} e_{i} \vec{r}_{i}$ implies:

$$
\left.\left.\left\langle\text { g.s. : J, M| } d_{z}\right| \text { g.s. }: J, M\right\rangle=-\langle\text { g.s. : } J,-M| d_{z} \mid \text { g.s. : } J,-M\right\rangle .
$$

T takes M to $-M$, like $R_{y}(\pi)$. But \vec{d} is odd under $R_{y}(\pi)$ and even under T, so for T conserved

$$
\left.\left.\langle\text { g.s. : } J, M| \quad d_{z} \quad \mid \text { g.s. : } J, M\right\rangle=+\langle\text { g.s. : } J,-M| d_{z} \mid \text { g.s. : } J,-M\right\rangle .
$$

Together with the first equation, this implies

$$
\left\langle d_{z}\right\rangle=0 .
$$

If T is violated, argument fails because T takes $|g: J M\rangle$ to states with $J,-M$, but different energy.

Screening of EDMs in Atoms

Theorem (Schiff)

The nuclear dipole moment causes the atomic electrons to rearrange themselves so that they develop a dipole moment opposite that of the nucleus. In the limit of nonrelativistic electrons and a point nucleus the electrons' dipole moment exactly cancels the nuclear moment, so that the net atomic dipole moment vanishes.

Screening of EDMs in Atoms

Proof

Consider atom with non-relativistic constituents (with dipole moments \vec{d}_{k}) held together by electrostatic forces. The atom has a "bare" edm $\vec{d} \equiv \sum_{k} \vec{d}_{k}$ and a Hamiltonian

$$
H=\sum_{k} \frac{p_{k}^{2}}{2 m_{k}}+\sum_{k} V\left(\vec{r}_{k}\right)-\sum_{k} \vec{d}_{k} \cdot \vec{E}_{k}
$$

K.E. + Coulomb

$$
\left.\begin{array}{l}
+\sum_{k}\left(1 / e_{k}\right) \vec{d}_{k} \cdot \vec{\nabla} V\left(\vec{r}_{k}\right) \\
+i \sum_{k}\left(1 / e_{k}\right)\left[\vec{d}_{k} \cdot \vec{p}_{k}, H_{0}\right]
\end{array}\right\}
$$

dipole perturbation

Screening of EDMs in Atoms

The perturbing Hamiltonian

$$
H_{d}=i \sum_{k}\left(1 / e_{k}\right)\left[\vec{d}_{k} \cdot \vec{p}_{k}, H_{0}\right]
$$

shifts the ground state $|0\rangle$ to

$$
\begin{aligned}
|\tilde{O}\rangle & =|0\rangle+\sum_{m} \frac{|m\rangle\langle m| H_{d}|O\rangle}{E_{O}-E_{m}} \\
& =|0\rangle+\sum_{m} \frac{|m\rangle\langle m| i \sum_{k}\left(1 / e_{k}\right) \vec{d}_{k} \cdot \vec{p}_{k}|0\rangle\left(E_{O}-E_{m}\right)}{E_{O}-E_{m}} \\
& =\left(1+i \sum_{k}\left(1 / e_{k}\right) \vec{d}_{k} \cdot \vec{p}_{k}\right)|0\rangle
\end{aligned}
$$

Screening of EDMs in Atoms

The induced dipole moment \vec{d}^{\prime} is

$$
\begin{aligned}
\vec{d}^{\prime}= & \langle\tilde{O}| \sum_{j} e_{j} \vec{r}_{j}|\tilde{O}\rangle \\
= & \langle O|\left(1-i \sum_{k}\left(1 / e_{k}\right) \vec{d}_{k} \cdot \vec{p}_{k}\right)\left(\sum_{j} e_{j} \vec{r}_{j}\right) \\
& \times\left(1+i \sum_{k}\left(1 / e_{k}\right) \vec{d}_{k} \cdot \vec{p}_{k}\right)|O\rangle \\
= & i\langle O|\left[\sum_{j} e_{j} \vec{r}_{j}, \sum_{k}\left(1 / e_{k}\right) \vec{d}_{k} \cdot \vec{p}_{k}\right]|O\rangle \\
= & -\langle O| \sum_{k} \vec{d}_{k}|O\rangle=-\sum_{k} \vec{d}_{k} \\
= & -\vec{d}
\end{aligned}
$$

So the net EDM is zero!

Screening of EDMs in Atoms

The induced dipole moment \vec{d}^{\prime} is

$$
\begin{aligned}
\vec{d}^{\prime} & =\langle\tilde{0}| \sum_{j} e_{j} \vec{r}_{j}|\tilde{0}\rangle \\
& =\langle 0|\left(1-i \sum\left(1 / e_{k}\right) \vec{d}_{k} \cdot \vec{p}_{k}\right)\left(\sum e_{j} \vec{r}_{j}\right)
\end{aligned}
$$

Of course, the nucleus is not a point particle and electrons are not fully nonrelativistic, so the screening is not complete. But it reduces atomic EDMs by a few orders of magnitude.

$$
\begin{aligned}
& =i\langle 0|\left[\sum_{j} e_{i} \vec{j}_{j}, \sum_{k}\left(1 / e_{k}\right) \vec{d}_{k} \cdot \vec{p}_{k}\right]|0\rangle \\
& =-\langle 0| \sum_{k} \vec{d}_{k}|0\rangle=-\sum_{k} \vec{d}_{k} \\
& =-\vec{d}
\end{aligned}
$$

So the net EDM is zero!

How Diamagnetic Atoms Get EDMs, Roughly

Because Standard-Model CP violation is so weak, an additional undiscovered source is required to explain why there is so much more matter than antimatter.

The source can work its way into nuclei through CP-violating $\pi N N$ vertices (in chiral EFT)...

leading, e.g. to a neutron EDM...

How Diamagnetic Atoms Get EDMs, Roughly

... and to a nuclear EDM from the nucleon EDM or a T-violating $N N$ interaction:

$V_{P T} \propto \bar{g} g \times\left(\sigma_{1} \pm \sigma_{2}\right) \cdot\left(\nabla_{1}-\nabla_{2}\right) \frac{\exp \left(-m_{\pi}\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|\right)}{m_{\pi}\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|}+$ contact terms/etc.

$$
F_{P T}
$$

Atoms get EDMs from nuclei. Electronic shielding replaces nuclear dipole operator with "Schiff operator,"

$$
S \propto \sum_{p}\left(r_{p}^{2}-\frac{5}{3} R_{\mathrm{ch}}^{2}\right) z_{p}+\ldots
$$

making relevant nuclear quantity the Schiff moment:

$$
\langle S\rangle=\sum_{m} \frac{\langle\mathrm{O}| S|m\rangle\langle m| V_{P T}|\mathrm{O}\rangle}{E_{O}-E_{m}}+\text { c.c. }
$$

How Diamagnetic Atoms Get EDMs, Roughly

... and to a nuclear EDM from the nucleon EDM or a T-violating $N N$ interaction:

Job of nuclear-structure theory: compute dependence of $\langle S\rangle$ on the three \bar{g} 's (and on the ms/etc.
$V_{P T} \propto \bar{g}$, contact-term coefficients and nucleon EDM).

Atom: It's up to QCD/EFT to compute the dependence of the clear dipole $\quad \bar{g}$ vertices on fundamental sources of $C P$ violation.

$$
S \propto \sum_{p}\left(r_{p}^{2}-\frac{5}{3} R_{\mathrm{ch}}^{2}\right) z_{p}+\ldots
$$

making relevant nuclear quantity the Schiff moment:

$$
\langle S\rangle=\sum_{m} \frac{\langle\mathrm{O}| S|m\rangle\langle m| V_{P T}|\mathrm{O}\rangle}{E_{O}-E_{m}}+c . c .
$$

Traditional Nuclear Models in One Slide

Starting point is always a mean field and potential

Traditional Nuclear Models in One Slide

Starting point is always a mean field and potential

Traditional Nuclear Models in One Slide

Starting point is always a mean field and potential

protons

DFT: Large single-particle spaces in arbitrary single mean field; simple correlations and excitations within the space.
neutrons

Traditional Nuclear Models in One Slide

Starting point is always a mean field and potential

protons

DFT: Large single-particle spaces in arbitrary single mean field; simple correlations and excitations within the space.

Traditional Nuclear Models in One Slide

Starting point is always a mean field and potential

Traditional Nuclear Models in One Slide

Starting point is always a mean field and potential

Generator-Coordinate Method (GCM): extension of DFT that mixes many mean-field states with different collective properties.

Traditional Nuclear Models in One Slide

Starting point is always a mean field and potential

Generator-Coordinate Method (GCM): extension of DFT that mixes many mean-field states with different collective properties.

Ab Initio Nuclear Structure

Nucleons, pions sufficient below chiral-symmetry breaking scale. Expansion of operators in powers of Q / \wedge_{χ}.
$Q=m_{\pi}$ or typical nucleon momentum.

2N Force
3N Force
4N Force

At each "order," only a finite number of operators exist.

Leading-order terms in $V_{P T}$ depend on source of $C P$ violation.

Ab Initio Many-Body Methods

Partition of Full Hilbert Space

$$
\begin{aligned}
& P=\text { "reference" space } \\
& Q=\text { the rest }
\end{aligned}
$$

Task: Find unitary transformation to make H block-diagonal in P and Q, with $H_{\text {eff }}$ in P reproducing most important eigenvalues.

Simpler calculation done here.

Ab Initio Many-Body Methods

Partition of Full Hilbert Space

$P=$ "reference" space
$Q=$ the rest

Task: Find unitary transformation to make H block-diagonal in P and Q, with $H_{\text {eff }}$ in P reproducing most important eigenvalues.

Simpler calculation done here.

Ab Initio Many-Body Methods

Partition of Full Hilbert Space

$P=$ "reference" space
$Q=$ the rest

Task: Find unitary transformation to make H block-diagonal in P and Q, with $H_{\text {eff }}$ in P reproducing most important eigenvalues.

Must must apply same unitary transformation to transition operator.

Simpler calculation done here.

Ab Initio Many-Body Methods

Partition of Full Hilbert Space

$$
P \text { = "reference" space }
$$

$Q=$ the rest
Task: Find unitary transformation to make H block-diagonal in P and Q, with $H_{\text {aff }}$ in P reproducing most
Q As difficult as solving original problem. ivalues.

But many-body effective operators (beyond 2- or 3-body) can be treated approximately.
ly same unitary to transition

Simpler calculation done here.

In-Medium Similarity Renormalization Group

One way to determine the transformation
Flow equation for effective Hamiltonian. Gradually decouples reference space.

$$
\begin{array}{ll}
& \text { from H. Hergert } \\
\frac{d}{d s} H(s)=[\eta(s), H(s)], & \eta(s)=\left[H_{d}(s), H_{o d}(s)\right], \quad H(\infty)=H_{\mathrm{eff}}
\end{array}
$$

Trick is to keep all 1- and 2-body terms in H at each step after normal ordering with respect to states in reference space.

Reference space can be states contained in valence shell, $1 p-1 \mathrm{~h}$ excitations of mean-field state, a single GCM state, etc.

Skyrme DFT

Zr-102: normal density and pairing density HFB, 2-D lattice, SLy4 + volume pairing
Ref: Artur Blazkiewicz, Vanderbilt, Ph.D. thesis (2005)

HFB: $\beta_{2}{ }^{(\mathrm{p})}=0.43$ $\exp : \beta_{2}{ }^{(p)}=0.42(5)$, J.K. Hwang et al., Phys. Rev. C (2006)

Applied Everywhere

> Nuclear ground state deformations (2-D HFB)
> Ref: Dobaczewski, Stoitsov \& Nazarewicz (2004) arXiv:nucl-th/0404077

DFT Technique

With grad student D. Stilwell and J. Dobaczewski

Simply add solve mean-field equations for

$$
\begin{aligned}
H & =H_{\text {Skyrme }}+V_{P T} \\
& =H_{\text {Skyrme }}+\lambda F_{P T},
\end{aligned}
$$

where $\lambda=\bar{g} g$ for some small \bar{g} of your choice. Then compute

$$
a \equiv \frac{\langle S\rangle}{\lambda}
$$

When $\langle S\rangle_{\text {exp. }}$ is measured, you can compute $\bar{g}_{\text {exp. }}$ from

$$
\langle S\rangle_{\text {exp. }}=\bar{g}_{\text {exp. }} g a
$$

Or you can bound $\bar{g}_{\text {exp. }}$. if there is only a limit on $\langle S\rangle_{\text {exp. }}$.

New Nuclei for Us

- ${ }^{205}$ Tl for CENTREX experiment on TIF molecule

Quantum Sci. Technol. 6, 044007 (2021)
${ }^{205} \mathrm{Tl}$ is spherical.

${ }^{235} \mathrm{U}$ for "Ferroaxionic effect"
A. Arvanitaki, JE, A.A. Geraci, A. Madden, K. Van Tilburg, in prep.
${ }^{235} \mathrm{U}$ is almost pear shaped.

${ }^{205} \mathrm{Tl}$

Preliminary calculation with one Skyrme interaction

$$
\langle\mathrm{S}\rangle_{\mathrm{Tl}} \equiv a_{\mathrm{O}} g \bar{g}_{\mathrm{O}}+a_{1} g \bar{g}_{1}+a_{2} g \bar{g}_{2} \quad\left(\mathrm{e} \mathrm{fm}{ }^{3}\right)
$$

	a_{0}	a_{1}	a_{2}
SkM *	0.04	-0.09	0.1
SLy4	0.03	-0.07	0.1
\vdots	\vdots	\vdots	\vdots

A Little on Pear-Shaped Nuclei

Because $V_{P T}$ is so weak:

$$
\begin{aligned}
\langle S\rangle & =\sum_{i \neq 0} \frac{\langle\mathrm{O}| S|i\rangle\langle i| V_{P T}|\mathrm{O}\rangle}{E_{O}-E_{i}}+c . c . \\
& \approx \frac{\langle\mathrm{O}| S|\overline{\mathrm{O}}\rangle\langle\overline{\mathrm{O}}| V_{P T}|\mathrm{O}\rangle}{E_{O}-E_{\bar{O}}}+\text { c.c. }
\end{aligned}
$$

Mixing of the two states in the parity doublet by $V_{P T}$ is the whole story here.

In ${ }^{225} \mathrm{Ra}$:

$$
a_{0} \approx 0.2 \quad a_{1} \approx-5 \quad a_{2} \approx 3.3
$$

almost two orders of magnitude bigger than in ${ }^{205} \mathrm{Tl}$.

This nucleus is symmetric but barely stable against "pear-ness". The result is a low-lying "octupole vibration"

We use our DFT method with symmetric ground state to treat ${ }^{235} \mathrm{U}$.

\[

\]

A few times smaller than in ${ }^{225}$ Ra.

Underway: Ab Initio Shell-Model Calculation

 For nuclei that are not too deformedValence-Space IMSRG: Include $V_{P T}$ as part of the Hamiltonian, so that the flow generator η and the transformed Hamiltonian will have negative-parity parts η^{-}and H^{-}:

$$
H(s)=H_{+}(s)+\lambda H_{-}(s)+O\left(\lambda^{2}\right) \quad \eta=\eta_{+}(s)+\lambda \eta_{-}(s)
$$

with

$$
H_{+}(0)=T+V_{\chi} \quad H_{-}(0)=F_{P T}
$$

Grouping by powers of λ :

$$
\begin{aligned}
\frac{d H_{+}(s)}{d s} & =\left[\eta_{+}(s), H_{+}(s)\right]+O\left(\lambda^{2}\right) \\
\frac{d}{d s} H^{-}(s) & =\left[\eta^{+}(s), H^{-}(s)\right]+\left[\eta^{-}(s), H^{+}(s)\right]+O\left(\lambda^{2}\right)
\end{aligned}
$$

η_{+}and H_{+}are what you get without $V_{P T}$.
You then evolve the Schiff operator, which develops a positive parity part.
Ragnar Stroberg doing this with and UNC postdoc David Kekejian and me.

To Conclude...

Thanks for listening!

