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Connection Between EDMs and T Violation
Consider non-degenerate ground state |g.s. : J,M⟩. Symmetry
under rotations Ry (π) for vector operator like ®d ≡ ∑

i ei®ri implies:

⟨g.s. : J,M| dz |g.s. : J,M⟩ = − ⟨g.s. : J,−M| dz |g.s. : J,−M⟩ .

R−1R R−1R

T takesM to −M, like Ry (π). But ®d is odd under Ry (π) and even
under T, so for T conserved

⟨g.s. : J,M| dz |g.s. : J,M⟩ = + ⟨g.s. : J,−M| dz |g.s. : J,−M⟩ .

T−1T T−1T

Together with the first equation, this implies

⟨dz⟩ = 0 .

If T is violated, argument fails because T takes |g : JM⟩ to states with
J,−M, but different energy.
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Screening of EDMs in Atoms

Theorem (Schiff)
The nuclear dipole moment causes the atomic electrons to rearrange
themselves so that they develop a dipole moment opposite that of the
nucleus. In the limit of nonrelativistic electrons and a point nucleus the
electrons’ dipole moment exactly cancels the nuclear moment, so that
the net atomic dipole moment vanishes.



Screening of EDMs in Atoms
Proof

Consider atom with non-relativistic constituents (with dipole
moments ®dk) held together by electrostatic forces. The atom has a
“bare” edm ®d ≡

∑
k

®dk and a Hamiltonian

H =
∑
k

p2k
2mk

+
∑
k
V (®rk)︸                    ︷︷                    ︸ −

∑
k

®dk · ®Ek

= H0 +
∑
k
(1/ek)®dk · ®+V (®rk)

= H0 + i
∑
k
(1/ek)

[®dk · ®pk,H0]
K.E. + Coulomb dipole perturbation



Screening of EDMs in Atoms

The perturbing Hamiltonian

Hd = i
∑
k
(1/ek)

[®dk · ®pk,H0]
shifts the ground state |0⟩ to

|0̃⟩ = |0⟩ +
∑
m

|m⟩ ⟨m| Hd |0⟩
E0 − Em

= |0⟩ +
∑
m

|m⟩ ⟨m| i∑k (1/ek)®dk · ®pk |0⟩ (E0 − Em)
E0 − Em

=

(
1 + i

∑
k
(1/ek)®dk · ®pk

)
|0⟩



Screening of EDMs in Atoms
The induced dipole moment ®d′ is

®d′ = ⟨0̃|
∑
j
ej®rj |0̃⟩

= ⟨0|
(
1 − i

∑
k
(1/ek)®dk · ®pk

) ©­«
∑
j
ej®rjª®¬

×
(
1 + i

∑
k
(1/ek)®dk · ®pk

)
|0⟩

= i ⟨0|

∑
j
ej®rj,

∑
k
(1/ek)®dk · ®pk

 |0⟩
= − ⟨0|

∑
k

®dk |0⟩ = −
∑
k

®dk

= − ®d
So the net EDM is zero!

Of course, the nucleus is not a point particle and electrons
are not fully nonrelativistic, so the screening is not complete.
But it reduces atomic EDMs by a few orders of magnitude.
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How Diamagnetic Atoms Get EDMs, Roughly

Because Standard-Model CP violation is so weak, an additional
undiscovered source is required to explain why there is so much
more matter than antimatter.

The source can work its way into
nuclei through CP-violating πNN
vertices (in chiral EFT). . .

leading, e.g. to a neutron EDM. . .
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How Diamagnetic Atoms Get EDMs, Roughly

. . . and to a nuclear EDM from the nucleon
EDM or a T-violating NN interaction:

n p n

π−

γ

ḡ g

N

?
π

ḡ

π
ḡ

γ

VPT ∝ ḡg × (σ 1 ± σ2) · (+1 − +2)
exp (−mπ |r1 − r2 |)

mπ |r1 − r2 |︸                                                 ︷︷                                                 ︸
FPT

+contact terms/etc.

Atoms get EDMs from nuclei. Electronic shielding replaces nuclear
dipole operator with “Schiff operator,”

S ∝
∑
p

(
r2p −

5
3R

2
ch

)
zp + . . . ,

making relevant nuclear quantity the Schiff moment:

⟨S⟩ =
∑
m

⟨0| S |m⟩ ⟨m| VPT |0⟩
E0 − Em + c.c.

Job of nuclear-structure theory: compute de-
pendence of ⟨S⟩ on the three ḡ’s (and on the
contact-term coefficients and nucleon EDM).

It’s up to QCD/EFT to compute the dependence of the
ḡ vertices on fundamental sources of CP violation.
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Traditional Nuclear Models in One Slide
Starting point is always a mean field and potential

DFT: Large single-particle spaces in
arbitrary single mean field; simple
correlations and excitations within
the space.

Shell Model: Small single-particle
space in simple spherical mean field;
arbitrarily complex correlations within
the space.

+ + + + + · · ·· · ·+

Generator-Coordinate Method (GCM): extension of DFT that mixes
many mean-field states with different collective properties.

All such models require phenomenological
Hamiltonian/operators, with coefficients fit to
energies/transitions in heavy nuclei.
This is a problem if you’re looking at opera-
tors such as VPT , for which there are no data.
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Ab Initio Nuclear Structure
Starts with chiral effective-field theory useless junk

Nucleons, pions sufficient below chiral-symmetry breaking scale.
Expansion of operators in powers of Q/Λχ .
Q = mπ or typical nucleon momentum.

+... +... +...

+...

2N Force 3N Force 4N Force

LO

(Q/⇤�)
0

NLO

(Q/⇤�)
2

NNLO

(Q/⇤�)
3

N3LO

(Q/⇤�)
4

Figure 1: Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines pions. Small dots, large solid
dots, solid squares, and solid diamonds denote vertices of index � = 0, 1, 2, and 4, respectively. Further explanations are
given in the text.

The reason why we talk of a hierarchy of nuclear forces is that two- and many-nucleon forces are created
on an equal footing and emerge in increasing number as we go to higher and higher orders. At NNLO, the
first set of nonvanishing three-nucleon forces (3NF) occur [70, 71], cf. column ‘3N Force’ of Fig. 1. In fact, at
the previous order, NLO, irreducible 3N graphs appear already, however, it has been shown by Weinberg [52]
and others [70, 127, 128] that these diagrams all cancel. Since nonvanishing 3NF contributions happen first
at order (Q/⇤�)3, they are very weak as compared to 2NF which start at (Q/⇤�)0.

More 2PE is produced at ⌫ = 4, next-to-next-to-next-to-leading order (N3LO), of which we show only
a few symbolic diagrams in Fig. 1. Two-loop 2PE graphs show up for the first time and so does three-pion
exchange (3PE) which necessarily involves two loops. 3PE was found to be negligible at this order [57, 58].
Most importantly, 15 new contact terms ⇠ Q4 arise and are represented by the four-nucleon-leg graph with
a solid diamond. They include a quadratic spin-orbit term and contribute up to D-waves. Mainly due to
the increased number of contact terms, a quantitative description of the two-nucleon interaction up to about
300 MeV lab. energy is possible, at N3LO (for details, see below). Besides further 3NF, four-nucleon forces
(4NF) start at this order. Since the leading 4NF come into existence one order higher than the leading 3NF,
4NF are weaker than 3NF. Thus, ChPT provides a straightforward explanation for the empirically known
fact that 2NF � 3NF � 4NF . . . .

4. Two-nucleon interactions

The last section was just an overview. In this section, we will fill in all the details involved in the ChPT
development of the NN interaction; and 3NF and 4NF will be discussed in Section 5. We start by talking
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At each “order,” only a finite
number of operators exist.

Leading-order terms in
VPT depend on source
of CP violation.



Ab Initio Many-Body Methods

Partition of Full Hilbert Space

P̂HP̂ P̂HQ̂

Q̂HP̂ Q̂HQ̂

P Q

P

Q

Simpler calculation done here.

P = “reference” space
Q = the rest

Task: Find unitary transformation to
make H block-diagonal in P and Q,
with Heff in P reproducing most
important eigenvalues.

Must must apply same unitary
transformation to transition
operator.

As difficult as solving original problem.
But many-body effective operators (beyond
2- or 3-body) can be treated approximately.
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In-Medium Similarity Renormalization Group
One way to determine the transformation

Flow equation for effective Hamiltonian.
Gradually decouples reference space.

V [ MeV fm3]
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5
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-10
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-20

hh pp✛ ✲
hh

pp

❄

✻

s = 0.0 s = 1.2 s = 2.0 s = 18.3

Figure 7: Decoupling for the White generator, Eq. (41), in the Jπ = 0+ neutron-
neutron interaction matrix elements of 40Ca (emax = 8, ~ω = 20 MeV, Entem-Machleidt
N3LO(500) evolved to λ = 2.0 fm−1). Only hhhh, hhpp, pphh, and pppp blocks of the
matrix are shown.

mechanism. A likely explanation is that the truncation of the commutator (49) to one-
and two-body contributions only (Eqs. (50), (51)) causes an imbalance in the infinite-
order re-summation of the many-body perturbation series. For the time being, we have to
advise against the use of the Wegner generator in IM-SRG calculations with (comparably)
“hard” interactions that exhibit poor order-by-order convergence of the perturbation
series.

5.4. Decoupling

As discussed in Sec. 4.1, the IM-SRG is built around the concept of decoupling the
reference state from excitations, and thereby mapping it onto the fully interacting ground
state of the many-body system within truncation errors. Let us now demonstrate that
the decoupling occurs as intended in a sample calculation for 40Ca with our standard
chiral N3LO interaction at λ = 2.0 fm−1. Figure 7 shows the rapid suppression of the
off-diagonal matrix elements in the Jπ = 0+ neutron-neutron matrix elements as we
integrate the IM-SRG(2) flow equations. At s = 2.0, after only 20–30 integration steps
with the White generator, the Γpp′hh′(s) have been weakened significantly, and when we
reach the stopping criterion for the flow at s = 18.3, these matrix elements have vanished
to the desired accuracy. While the details depend on the specific choice of generator, the
decoupling seen in Fig. 7 is representative for other cases.

With the suppression of the off-diagonal matrix elements, the many-body Hamiltonian
is driven to the simplified form first indicated in Fig. 2. The IM-SRG evolution not only
decouples the ground state from excitations, but reduces the coupling between excitations
as well. This coupling is an indicator of strong correlations in the many-body system,
which usually require high- or even infinite-order treatments in approaches based on the
Goldstone expansion. As we have discussed in Sec. 3, the IM-SRG can be understood as
a non-perturbative, infinite-order re-summation of the many-body perturbation series,
which builds the effects of correlations into the flowing Hamiltonian. To illustrate this,
we show results from using the final IM-SRG Hamiltonian H(∞) in Hartree-Fock and
post-HF methods in Fig. 8.

After the same 20–30 integration steps that lead to a strong suppression of the off-
diagonal matrix elements (cf. Fig. 14), the energies of all methods collapse to the same
result, which is the IM-SRG(2) ground-state energy. By construction, this is the result
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from H. Hergert

d
dsH(s) = [η (s),H(s)] , η (s) = [Hd (s),Hod (s)] , H(∞) = Heff

Trick is to keep all 1- and 2-body terms in H at each step after normal
ordering with respect to states in reference space.
Reference space can be states contained in valence shell, 1p-1h
excitations of mean-field state, a single GCM state, etc.



Skyrme DFT

"#"$#%&! '()*+,!-.+,/0*+,1!'/23+,.4)5! F!

Zr-102: normal density and pairing density  

HFB, 2-D lattice, SLy4 + volume pairing 
Ref: Artur Blazkiewicz, Vanderbilt, Ph.D. thesis (2005) 

G=HI!β"
JKLM&N76! +OKI!β"

JKLM&N7"J8L!1!PNQN!G@/2R!+5!/)N1!9AS;N!T+<N!U!J"&&$L!



Applied Everywhere

Nuclear ground state deformations (2-D HFB) 

 Ref: Dobaczewski, Stoitsov & Nazarewicz (2004)    arXiv:nucl-th/0404077 

"#"$#%&! %V!'()*+,!-.+,/0*+,1!'/23+,.4)5!



DFT Technique
With grad student D. Stilwell and J. Dobaczewski

Simply add solve mean-field equations for

H = HSkyrme + VPT
= HSkyrme + λFPT ,

where λ = ḡg for some small ḡ of your choice. Then compute

a ≡ ⟨S⟩
λ
.

When ⟨S⟩exp. is measured, you can compute ḡexp. from

⟨S⟩exp. = ḡexp. g a .

Or you can bound ḡexp. if there is only a limit on ⟨S⟩exp..



New Nuclei for Us
205Tl for CENTREX experiment on TlF molecule
Quantum Sci. Technol. 6, 044007 (2021)

205Tl is spherical.

235U for “Ferroaxionic effect”
A. Arvanitaki, JE, A.A. Geraci, A. Madden, K. Van Tilburg, in prep.

235U is almost pear shaped.



205Tl

Preliminary calculation with one Skyrme interaction

⟨S⟩Tl ≡ a0 gg0 + a1 gg1 + a2 gg2 (e fm3)

a0 a1 a2
SkM* 0.04 −0.09 0.1
SLy4 0.03 −0.07 0.1
...

...
...

...



A Little on Pear-Shaped Nuclei
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Fig. 5. Proposed grcxxping of the low-lying states OF 2zSRa into rotation& bands. T’ke two members of 
tke f? = $- band have been reported in a study of the ‘%?r decay 2oj; they are not observed in the 

present study. 

of the favored K * = z* band. (We have chosen to show in fig. 4 the M 1 multipolarity 
for the 134 keV y so that this apparent con%& in the data will not be overlooked 
by the reader.) 

Definitive I” assignments for the remaining levels above 236 keV are difficult to 
make fram the available data, although the y-ray multipolarities and o-transition 
hindrance factors provide at least some insight. Again, the low value (23) of the 
hindrance factor of the rw-transition to the 394.7 keV Ievel is quite interesting, but 
no definite conclusion can be drawn regarding the I” assignment of this fevei. 

Parity doublet

225Ra

Because VPT is so weak:

⟨S⟩ =
∑
i,0

⟨0|S|i⟩ ⟨i|VPT |0⟩
E0 − Ei

+ c.c.

≈ ⟨0|S|0⟩ ⟨0|VPT |0⟩
E0 − E0

+ c.c.

Mixing of the two states in the
parity doublet by VPT is the whole
story here.

In 225Ra:
a0 ≈ 0.2 a1 ≈ −5 a2 ≈ 3.3,

almost two orders of magnitude
bigger than in 205Tl.



235U

This nucleus is symmetric but barely stable against “pear-ness”. The
result is a low-lying “octupole vibration”

We use our DFTmethod with symmetric ground state to treat 235U.

Preliminary result
a0 a1 a2

SkM⋆ −0.1 −1.1 0.8
SLy4

...
...

...
...

...
...

...

A few times smaller than in 225Ra.



Underway: Ab Initio Shell-Model Calculation
For nuclei that are not too deformed

New!
Valence-Space IMSRG: Include VPT as part of the Hamiltonian, so
that the flow generator η and the transformed Hamiltonian will
have negative-parity parts η− and H− :

H(s) = H+(s) + λH− (s) + O(λ2) η = η+(s) + λη− (s)
with

H+(0) = T + Vχ H− (0) = FPT
Grouping by powers of λ:

dH+(s)
ds = [η+(s),H+(s)] + O(λ2)

d
dsH

− (s) = [η+(s),H− (s)] + [η− (s),H+(s)] + O(λ2)
η+ and H+ are what you get without VPT .
You then evolve the Schiff operator, which develops a positive
parity part.
Ragnar Stroberg doing this with and UNC postdoc David Kekejian and me.



To Conclude. . .

Thanks for listening!


