Institute for Nuclear Theory program" Fundamental Physics with Radioactive Molecules" (INT-24-1), INT, Seattle

Benchmark electronic structures calculations and the periodicity law at the edge of Mendeleev's Table

Benchmarking. General considerations.

- Benchmark precision for atomic (and molecular) energy spectra and other properties calculations, suitable for modern spectroscopy and "new physics" experiments is less then 0.1% (meVs or less for energy)
- Heavy and super-heavy general open shell (neutral or charged) elements and their compounds could exhibit computational challenges due to:
 - 1. A very dense (quasi-degenerate) and complicated electronic spectrum.
 - 2. Relativistic, QED, nuclear and electron correlation
 (dynamic and nondynamic) effects in such systems could be sizeable
 (non-negligible), nonadditive and strongly intertwined.
 - Benchmark "right for the right reason" treatment of *relativity*, QED and correlation
 - 1) simultaneously, and on equal footing, by tunable and controllable fashion
 - 2) efficiently and up to high orders , "multi-referencely" (in a proper consistent relationship) 3) size-intensively (proper size-scaling: E=O(N)) and

size-consistently (proper decomposition: E(A+B)=E(A)+E(B); $\Psi(A+B)=\{\Psi(A) \Psi(B)\}$)

Current best framework for relativity treatment

Dirac-Coulomb-Breit Hamiltonian and "no-virtual-pairs approximation" (NVPA)

NO Retardation and NO virtual pairs. Not covariant, correct to α^2 ; "Mini-Max" SCF; Sucher 1980

$$H_{DCB}^{+}(N) = \sum_{i}^{N} h_{D}(i) + \sum_{i < j}^{N} \Lambda_{i}^{+} \Lambda_{j}^{+}(1/r_{ij} + B_{ij}) \Lambda_{j}^{+} \Lambda_{i}^{+} - \sum_{i}^{N} U_{i}$$

where h_d – single electronic Dirac Hamiltonian

$$h_D = c\vec{\alpha} \cdot \vec{p} + (\beta - \mathbf{1}) + V(\vec{r}) + V^{ext}(\vec{r}) + U(\vec{r})$$

 Λ_i – projection onto the positive energy-spectrum of h_d

U - SCF; V - a finite size nuclear potential; V^{ext} - external fields (including QED and nuclear corrections by using model potentials (MP)). Energy independent Breit interaction, 1932-33

$$B_{12} = -\frac{1}{2r_{12}} \left[\vec{\alpha}_1 \bullet \vec{\alpha}_2 + (\vec{\alpha}_1 \bullet \vec{r}_{12}) (\vec{\alpha}_2 \bullet \vec{r}_{12}) / r_{12}^2 \right]$$

Nuclear corrections: finite volume, hyper-fine and weak interactions effects by MPs; recoil and nuclear polarization effects by perturbation theory.

Benchmark electronic structure method for heavy open shell systems: the cutting-edge approach

Relativistic size-extensive all order method for dynamic correlation (DC) + "size-consistently dressed" valence (CAS) CI for non-dynamic correlation (NDC), in particular: Multi-state multireference coupled cluster (MRCC) approach, based on: Dirac-Coulomb-Breit Hamiltonian + nuclear and QED corrections by model potentials (corrected "no-virtual-pairs-approximation"(CNVPA))

Method of choice: multi-state multi-reference approach

4 Multi-state approach: $H\Psi^a = E^a \Psi^a$; a=1,..,d. *d*-dimensional target space

Here: $H = H_0 + V$, where $H_0 | \mu \rangle = E_{\mu}^0 | \mu \rangle$

- ▲ Multi-reference method: $P^{\mu} = |\mu\rangle\langle\mu|$; $P = \sum_{\mu} P^{\mu}$ model space ($D \ge d$ dimensional) $P = P_m + P_i$ (P_m -main (d-dim); P_i -intermediate); Q = 1 - P - reciprocal space
- **4** Wave operator: $\Omega \Psi_0^a = \Psi^a$ <u>BLOCH EQUATION (BE)</u>: $H\Omega = \Omega H_{eff}$

Normalization condition

- Intermediate normalization (INN) $P=P\Omega P \Rightarrow$ *Effective Hamiltonian:* $H_{eff}=PH\Omega P$; *Bloch Equation :* $QH\Omega P=Q\Omega PH\Omega P$
- Isometric normalization (ISN) $P = P\Omega^+\Omega P \Rightarrow$ Effective Hamiltonian: $H_{eff} = P \Omega^+ H\Omega P$ (suitable for quantum algorithms)
 - Bloch Equation : $QH\Omega P = Q\Omega P \Omega^+ H\Omega P$

Multi-state (Effective or Intermediate Hamiltonian) multi-reference relativistic coupled cluster approaches

- Fock-space (FS) (Lindgren ansatz) : Ω=∑exp{S_l^(m,n)}P EE, Kaldor (1992); Visscher, EE (2001); Mukherjee, Das et al (2005); Approximations to Relativistic "Valence Universal" or FS Coupled Cluster:
 - Relativistic EOM-CC : Sahoo et al (2014); Shee at al (2018)
 - Relativistic "all-order-CI" : Safronova, Kozlov, Johnson (2009)
 - Relativistic Linear Response CC : Chaudhuri at al(2013)
- 2. Hilbert-space (HS) (Jeziorski-Monkhorst): $\Omega = \sum \{exp(S_l^{(\mu)}) P^{(\mu)}\}$

EE, Borshevsky, Shamasundar, Pal, Kaldor (2009).

Approximations to Relativistic "State Universal" or HS Coupled Cluster:

- State selective MRCC: Fleig, Sorensen, Olsen (2007)

- State specific MRCC: Ghosh, Chaudhuri, Chattopadhyay (2016)
- 3. Mixed-sector (MS): Ω like in FS, H_{eff} like in HS

Landau, EE, Kaldor (2004)

Advantages of Fock-space and Mixed-sectors MRCC

$$\Omega = \exp\{\sum_{n,m} \sum_{l} S_{l}^{(n,m)}\}P$$

common Fermi vacuum (P – closed shell single reference state); and a unique set of excitation operators $S_l^{(n,m)}$ (n,m) – Fock-space sector with n – holes, m - particles)

 $H\Omega = \Omega H_{eff} \implies \text{CCE: } Q \Big[S_l^{(n,m)}, H_0 \Big] P = Q \Big\{ V\Omega - \Omega P H_{eff} \Big\}_{l,conn}^{(n,m)} P; \ H_{eff} = P^{(n,m)} \Omega H P^{(n,m)}$

- FSCC: Solved using subsystem embedding condition (SEC): "sector-by-sector"
- ▲ Mixed sectors CC (MSCC): solved simultaneously for the (m,n), (m+1,n+1), ... (m+k,n+k) sectors (no SEC !) ⇒ RELAXATION in low lying sectors.

 H_{eff} is non-diagonal relative to FS sectors: $H_{eff} = P^{(k,m)}(H\Omega)_{conn} P^{(k+i,m+i)}$: few sectors, belonging to the same Hilbert-space are coupled and diagonalized simultaneously \Rightarrow efficient inclusion of non-dynamic correlation

Quasi-closed configurations $(p_{1/2}^2, d_{3/2}^4, f_{5/2}^6)$ could be used as reference *P*.

Both Methods: - Symmetry adaptation (JJ or LS) is automatic;

- Size-extensivity: is supported separately for core and valence electrons.
- Intermediate Hamiltonian: Efficient solution of the intruder states problem.
- Easy implementable on a base of existing single reference CC codes.

Covariant MRCC: Double Fock-space CC

FS: natural framework for development of the correlation methods based on Lagrangians with variable number of particles (QED: $\bar{e} \& \Im | QCD: N \& \pi$); (appropriate tool – covariant-evolution-operator (CEO) method of Lindgren leads to "double" Fock-space approach: ${}^{[k]}S_{l}^{(n,m)}$ k- number of uncontracted exchange transverse photons; theory: EE & Uzi Kaldor (2010))

$${}^{(0)}S = {}^{(0)}G_{Q}({}^{(0)}V{}^{(0)}\Omega + \overline{{}^{(1)}V{}^{(1)}\Omega} + \overline{{}^{(2)}V{}^{(2)}\Omega} - {}^{(0)}\Omega{}^{(0)}H_{eff} - \overline{{}^{(1)}\Omega{}^{(1)}H_{eff}} - \overline{{}^{(2)}\Omega{}^{(2)}H_{eff}})_{conn}P$$

$${}^{(1)}S = {}^{(1)}G_{Q}({}^{(1)}V{}^{(0)}\Omega + {}^{(0)}V{}^{(1)}\Omega + \overline{{}^{(1)}V{}^{(2)}\Omega} + \overline{{}^{(2)}V{}^{(1)}\Omega} - {}^{(1)}\Omega{}^{(0)}H_{eff} - {}^{(0)}\Omega{}^{(1)}H_{eff} - \overline{{}^{(1)}\Omega{}^{(2)}H_{eff}} - \overline{{}^{(2)}\Omega{}^{(1)}H_{eff}} - \overline{{}^{(2)}\Omega{}^{(1)}H_{eff}} - \overline{{}^{(2)}\Omega{}^{(1)}H_{eff}} - {}^{(2)}\Omega{}^{(1)}H_{eff} - {}^{(2)}\Omega{}^{(2)}H_{eff} - {}^{(2)}\Omega{}^{(2)}H_{eff}$$

The hook represents integration over the photon momentum k and summation over the angular momentum l, according to the single- and the double- photon expressions derived from CEO method.

The hierarchy of approximations:

- Using different approximation schemes for the excitation amplitudes calculations (like CCSD(T), popular in the single-reference CC case).
 Using approximate subsystem embedding condition.
- Solution of the Fock-space sectors, belonging only to the particular Hilbert-space (amplitudes from low lying sectors are not iterated; similar to the Hilbert-space CC).
- Using the intermediate Hamiltonian (IH) method for solution of the intruder states problem inside different blocks of H_{eff} and for the appropriate and balanced approximations of the less important blocks of the H_{eff}

 $P = P_m + P_i \quad Q = Q_m + P_i \quad P_i \cap Q_i \neq 0$

IH: H_I - successful modeling of $Q_i SP_i$ PIH: $Q_i \Omega P_m H \Omega P_i = Q_i H \Omega P_i$ IH-n: PT-n order -based; 0- order: $Q_i SP_i = 0$ XIH: $Q_i [S, H_0 + P_i \Delta] P_i = Q_i (H \Omega - \Omega H \Omega) P_i$

a-posteriori extrapolation: $\Delta \rightarrow 0$; then $H_I \rightarrow H_{eff}$

The recent IH-FSCC developments: (*in collaboration with A. Zaitsevskii*)

- Using incomplete main model space P_m
 - A. Zaitsevskii, N. Mosyagin, A. Oleynichenko, E. Eliav, ArXiv:2208.12296v1 (2022)
- Particular determinant's (instead of orbital energies) shifts A. Oleynichenko, A. Zaitsevskii, L. Scripnikov, E. Eliav, Symmetry, 12, 1101 (2020)
- Complex shifts' values

A. Zaitsevskii, N. Mosyagin, A. Stolyarov, E. Eliav, PRA, 96,022516 (2017)

- Pade extrapolation procedure towards zero shift value A. Zaitsevskii, E. Eliav, IJQC, 118(23):e25772 (2018)
- New form of the Mixed-sector approach for the non-diagonal properties

A. Zaitsevskii, A. Oleynichenko, E. Eliav, Symmetry, 12(11):1845, (2020)

Software for low sectors ((k,n), where {k,n}≤2) FS CC

- Atomic:FSCCSD, Mix-sectors CCSD(T)**TRAFS-3C, Tel Aviv atomic computational package**Tel-Aviv Relativistic Atomic Fock-Space coupled cluster code, written by E.Eliav andU.Kaldor, with contributions from Y. Ishikawa, A. Landau, A. Borschevsky
- Molecular: FSCCSD

DIRAC, a relativistic ab initio electronic structure program, release 2024, written by L. Visscher, H. J. Aa. Jensen, R. Bast, A. S. P. Gomes and T. Saue, with contributions from I. A. Aucar, V. Bakken, J. Brandejs, C. Chibueze, J. Creutzberg, K. G. Dyall, S. Dubillard, U. Ekström, E. Eliav, T. Enevoldsen, E. Faßhauer, T. Fleig, O. Fossgaard, L. Halbert, E. D. Hedegård, T. Helgaker, B. Helmich-Paris, J. Henriksson, M. van Horn, M. Iliaš, Ch. R. Jacob, S. Knecht, S. Komorovský, O. Kullie, J. K. Lærdahl, C. V. Larsen, Y. S. Lee, N. H. List, H. S. Nataraj, M. K. Nayak, P. Norman, A. Nyvang, M. Olejniczak, J. Olsen, J. M. H. Olsen, A. Papadopoulos, Y. C. Park, J. K. Pedersen, M. Pernpointner, J. V. Pototschnig, R. Di Remigio, M. Repisky, K. Ruud, P. Sałek, B. Schimmelpfennig, B. Senjean, A. Shee, J. Sikkema, A. Sunaga, A. J. Thorvaldsen, J. Thyssen, J. van Stralen, M. L. Vidal, S. Villaume, O. Visser, T. Winther, S. Yamamoto and X. Yuan (available at <u>http://dx.doi.org/10.5281/zenodo.6010450</u>, see also <u>http://www.diracprogram.org</u>).

High FS sectors: the novel EXP-T program

A. Oleynichenko, A. Zaitsevskii, E. Eliav, Program Package Communications in Computer and Information Science 1331:375-386 (2020) [http://qchem.pnpi.spb.ru/expt]

First tests of the FS RCCSDT model

Ionization potentials and excitation energies of TI and Pb atoms

A. Oleynichenko, A. Zaitsevskii, L. V. Skripnikov, E. Eliav, Symmetry, 12(7), 1101 (2020)

Table 1. Deviations of the calculated ionization potentials (IP) and excitation energies (EE) of neutral thallium and lead and lead cation (cm⁻¹) from the experimental values. FS-RCCSD/LB+T/SB stands for the combined scheme (8).

	Sta	te	Exptl	IH-FS-	FS-		FS-RCC	SD/LB +	T/SB				
			[84]	RCCSD [47]	RCCSD/LB	SDT-1	SDT-1'	SDT-2	SDT-3	SDT			
				Tl, grour	ıd state 6s ² 6p	$^{2}P_{1/2}$							
IP			49,266		-56	-38	-38	-204	-151	-32			
EE	$6s^26p$	$^{2}P_{3/2}$	7793		-112	23	23	1	9	-31			
Ph ⁺ ground state 6e ² 6n ² P.													
				ro-, giou	nu suite os op	1/2							
IP			121,245	-168	-143	-28	-28	-190	-158	-59			
EE	6s ² 6p	$^{2}P_{3/2}$	14,081	-196	-136	25	25	12	14	-42			
				Ph. grou	nd state 6s ² 6n ²	3 p.		N					
				10, giou	na state os op	10				_			
IP			59,819	-543	364	- CC	CSD → C	CSDT	-336	7			
EE	$6s^26p^2$	${}^{3}P_{1}$	7819	-288	-302	76			-3	-28			
		${}^{3}P_{2}$	10,650	-343	-235	few	meV acc	curacy	102	13			
		$^{1}D_{2}$	21,458	-605	-394	215	achieve	d 158	167	5			
		${}^{1}S_{0}$	29,467	-208	414	170	248	291	302	173			

the most precise calculations of non-alkali atoms?

A. Landau, E. Eliav, Y. Ishikawa, U. Kaldor, J. Chem. Phys. 114, 2977 (2001)

J. E. Sansonetti, W. C. Martin, J. Phys. Chem. Ref. Data, 34, 1559 (2005)

Courtesy of A. Oleynichenko, PNPI

Pilot application of the sector (0,3) FSCCSDT

Scripnikov, et al, PRC, 104, 034316 (2021): Bi atom p³ states

TABLE I. The calculated values of the electric field gradient in a.u.($= E_H/a_B^2$) for the ground ${}^4S^o_{3/2}$ and excited ${}^2P^o_{3/2}$ electronic states of neutral bismuth and the deduced values of the NQM of 209 Bi.

	$6p^3 \ ^4S^o_{3/2}$	$6p^{3} {}^{2}P^{o}_{3/2}$
	E	FG:
FS-CCSD	2.983	-10.292
basis set correction	0.055	-0.050
FS-CCSDT – FS-CCSD	0.117	0.276
Breit contribution	-0.058	0.088
Total	3.097	-9.978
B, MHz [36]	-305.067(2)	978.638(10)
$Q(^{209}{ m Bi}),{ m mb}$	-419	-417

• Molecular results : -420(8) [Teodoro et al(2013)], -415 [Shee et al(2016)]

• Muonic atoms : -320(26) [Lee et al(1972)], -500(80) [Raghavan (1989]

Electronic states of the diatomic ThO molecule

Potential energy curves and excitation energies

- Relativistic Hamiltonian: GRPP accounting for Breit and QED
- Ground state calculations: single-reference coupled cluster CCSD(T)
- Excited states: Fock space coupled cluster FS-CCSD

¹ A. Zaitsevskii, A. V. Oleynichenko, E. Eliav, *Mol. Phys.*, e2236246 (2023);

² P. Tecmer, C. E. González-Espinoza, Phys. Chem. Chem. Phys. 20, 23424 (2018)

GRPP: summary

Deviation from the 4-component Dirac-Coulomb-Gaunt model:

		GRPP	semilocal	DC	Ret.+QED
ThO	max abs	46	335	802	212
	rms	29	181	341	151
UO ₂	max abs	110	345	767	142
	rms	51	128	316	112

- the error of GRPP is balanced for all electronic states
- the Dirac-Coulomb Hamiltonian is inherently less accurate than even a semi-local potential
- contributions of retardation and QED effects are greater than the error of GRPP
- our future: pseudopotentials accounting for QED

GRPP seems to be the most precise Hamiltonian for real-life molecular calculations?

Applications to SHEs (Z > 100) with experimentally known properties ("atom-at-time" technique)

doi:10.1038/nature14342

Measurement of the first ionization potential of lawrencium, element 103

T. K. Sato¹, M. Asai¹, A. Borschevsky^{2,3}, T. Stora⁴, N. Sato¹, Y. Kaneya^{1,5}, K. Tsukada¹, Ch. E. Düllmann^{3,6,7}, K. Eberhardt^{3,7}, E. Eliav⁸, S. Ichikawa^{1,9}, U. Kaldor⁸, J. V. Kratz⁷, S. Miyashita¹⁰, Y. Nagame^{1,5}, K. Ooe¹¹, A. Osa¹, D. Renisch⁷, J. Runke⁶, M. Schädel¹, P. Thörle–Pospiech^{3,7}, A. Toyoshima¹ & N. Trautmann⁷

The first ever measured IP for superheavy (Z> 100) element, produced by "atom-at-time" technology. The GS of Lr has been confirmed to be 7s²p_{1/2}

Table 1 | Theoretical and experimental IP₁ values of Lr

Reference	Year	IP ₁ (eV)	Method
Ref. 16	1995	4.887	DCB+FSCC*
Ref. 27	1998	5.28	RECP+CASSCF+ACPF+ Δ_{SO}^{\dagger}
Ref. 28	2003	4.80	RECP+CASSCF+ACPF+ Δ_{SO}^{\dagger}
Ref. 18	2007	4.893	DCB+FSCC*
Ref. 19	2014	4.934	CI+all-order‡
This work		4.963(15)	DC CCSD(T)+Breit+Lamb shifts
This work		4.96+0.08	Experimental

Predicted spectrum of atomic No

Borschevsky, A., EE, Kaldor U., et al, Phys. Rev. A 75 (2007), 042514

State	IHFSCC	+QED	Experiment
$5f^{14}7s^2$ ¹ S ₀ (IP), ev	6.646	6.635	$6.63 \pm 0.08^{(1)}$, $6.635 \pm 0.030^{(2)}$
$5f^{14}7s7p^{-3}P_0$ (EE), cm ⁻¹	19028	18879	
$5f^{14}7s7p^{-3}P_1$	20605	20454	
$5f^{14}7s7p^{-3}P_2$	25527	25374	
$5f^{14}7s7p^{-1}P_1$	30224	30056	29961 ⁽²⁾
$5f^{14}7s6d^{-3}D_1$	28496	28338	
$5f^{14}7s6d^{-3}D_2$	28935	28778	
$5f^{14}7s6d^{-3}D_3$	30040	29897	
$5f^{14}7s6d^{-1}D_2$	33071	32892	

Experiments on atomic No spectra measurements ("atom-at-time" technology)
(1) JAEA labs; [an efficient surface ion-source and a radioisotope detection system coupled to amass separator], T.Sato et al., JACS, 140, 14609, 2018
(2) GSI, [Laser resonance ionization spectr.], M. Laatiaoui, et al, Nature 538, 495, 2016

	Cal	culated s	pectra	of Yb ato W A 75, 0425	om (cm ⁻	⁻¹)	
Method		Expt.	IHFSCC	+QED	FSCC	FSCC	MCDF
Ref.		[16]	Pre	sent	[23]	[22]	[18]
		\bigcirc	Ioniza	tion potential	l		
$6s^2$	${}^{1}S_{0}$	50 443	50 463	50430	50 552	51 109	
	-		Excita	ation energies			
6 <i>s</i> 6 <i>p</i>	${}^{3}P_{0}$	17 288	17 011	16 969	17 576	17 359	15 826
	${}^{3}P_{1}$	17 992	17 719	17 674	18 424	18 089	16 563
	${}^{3}P_{2}$	19710	19 442	19 399	20 218	19 836	18 167
5d6s	${}^{3}D_{1}$	24 489	24 770	24 723	25 865	24 936	
	${}^{3}D_{2}$	24 752	24 981	24 935	25 966	25 180	
	${}^{3}D_{3}$	25 271	25 422	25 379	26 125	25 676	
6 <i>s</i> 6 <i>p</i>	${}^{1}P_{1}$	25 068	25 777	25 724		27 271	27 838
5d6s	${}^{1}D_{2}$	27 678	27 512	27 456		28 587	
6 <i>s</i> 7 <i>s</i>	${}^{3}S_{1}$	32 695	32 543	32 495	32 967		
6 <i>s</i> 7 <i>s</i>	${}^{1}S_{0}$	34 351	33 900	33 851	34 932		
6s7p	${}^{3}P_{0}$	38 091	38 293	38 238			
	${}^{3}P_{1}$	38 174	38 373	38 318			
	${}^{3}P_{2}$	38 552	38 707	38 648			
Average absolute err	ors of exc	itation energ	zies				
Six lowest levels			246	245	779	262	1 800
All 20 levels			320	300			

Applications to SHEs with experimentally unknown properties. **Theoretical predictions of** extended Periodic Table.

Ea of Oganesson: recent developments

EA is the consequence of a tiny interplay between relativity and electron correlation. Nonrelativistic or uncorrelated calculations give no electron affinity for Oganesson. QED contribution large (about 3-5%)

Reference	Method	EA, eV
Eliav, et al, PRL, 77,5350 (1996)	FSCCSD+Breit	0.056(10)
Goidenko, et al, PRA,67,020102 (2003)	FSCCSD+Breit+QED	0.058(3)
Lackenby, et al, PRA, 98, 042512 (2018)	CI+MBPT (+Breit?+QED?)	0.096
Guo, et al, ACQ, 83, 107(2021)	SR-CCSDT(Q)+Breit+QED	0.080(5)
Kaygorodov, et al,PRA,104,012819(2021)	$FSCCSDT+Breit(\omega)+QED$	0.076(4)

IPs and EA of Nh: Kaygorodov, et al, PRA, 105,062805 (2022)

• FSCC scheme:

 $\mathrm{Nh}^{3+}(2h0p) \leftarrow \mathrm{Nh}^{2+}(1h0p) \leftarrow \mathrm{Nh}^+(0h0p) \rightarrow$

\rightarrow	Nł	1(C	h	(p)	$) \rightarrow$	Nh ⁻	⁻ (0)	h2p)),
---------------	----	-----	---	-----	-----------------	-----------------	------------------	------	----

Contribution	$\begin{array}{c}I_3(\mathrm{Nh})\\6d^{10}\end{array}$	$I_2(Nh) = 6d^{10}7s^1$	$I_1(Nh) = 6d^{10}7s^2$	$\frac{\epsilon(\mathrm{Nh})}{6d^{10}7s^27p^2}$		
FS-CCSD	33.52(6)	24.00(5)	7.49(4)	0.71(3)		
Triples	-0.01(3)	-0.03(3)	0.04(2)	0.03(2)		
Gaunt	-0.054	-0.053	-0.043	-0.017		
Retardation	0.004	0.003	0.004	0.003		
Freqdep. Breit	-0.005	-0.005	-0.003	-0.002		
QED	-0.088	-0.078	-0.001	0.002		
Total	33.37(7)	23.84(6)	7.49(5)	0.73(4)		
Eliav et al. [14]	33.47	23.96	7.306	0.68(5)		
Pershina et al. [65]			7.420			
Hangele et al. [62]		23.627	7.278			
Demidov and						
Zaitsevkii [66]			7.44			
Dzuba and						
Flambaum [20]	33.5	23.6	7.37			
Guo et al. [67] SR-0	CCSDT(Q)	+B+QED	7.569(48)	0.776(30)		

Spectra of Ra and element E120

cm ⁻¹		R	Ra	E120 [cm ⁻¹]
		IHFSCC	Exp.	IHFSCC
IP		42608	42573	47191
nsnp	${}^{3}P_{0}$	13093	13078	15648
	${}^{3}P_{1}$	14017	13999	17587
	${}^{3}P_{2}$	16675	16689	25192
	${}^{1}P_{1}$	20792	20716	27513
(<i>n</i>-1)dns	${}^{3}D_{1}$	13827	13716	22903
	${}^{3}D_{2}$	14021	13994	23034
	${}^{3}D_{3}$	14839	14707	23782
	${}^{1}D_{2}$	17159	17081	27247
ns(n+1)s	${}^{3}S_{1}$	26762	26754	30862
ΔΕ		139		

Spectra of Ra and element E120

cm ⁻¹		R	E120 [cm ⁻¹]		
		IHFSCC	Exp.	IHFSCC	
IP		42608	42573	47191	
nsnp	${}^{3}P_{0}$	13093	13078	15648	
	${}^{3}P_{1}$	14017	13999	17587	
	$^{3}P_{2}$	16675	16689	25192	

PHYSICAL REVIEW A 87, 022502 (2013)

Ab initio predictions of atomic properties of element 120 and its lighter group-2 homologues

A. Borschevsky Helmholtz Institute Mainz, Mainz D-55128, Germany

V. Pershina GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Planckstrasse 1, D-64291, Germany

> E. Eliav and U. Kaldor School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel (Received 20 November 2012; published 4 February 2013)

The recent decade most referenced extended PTE

Period	Period 1 Periodic Table 1-172													18	Orbi	itals				
1	1 H	2					D	D]-]- o	20	11		13	14	15	16	17	2 He	1s	
2	3 Li	4 Be]	F. FYYKKO, 2011 5 6 7 8 9 B C N O F										10 Ne	252	p				
з	11 Na	12 Mg	3	4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 CI	18 Ar	3s3	p
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	4s3(d4p
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe	5s4	d5p
6	55 Cs	56 Ba	57- 71	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn	6s5	d6p
7	87 Fr	88 Ra	89- 103	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og	756	d7p
8	119	120	121-	156	157	158	159	160	161	162	163	164	139	140	169	170	171	172	8s7	d8p
9	165	166	167 168										959	ρ						
			-																	
		6	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		4f	
		7	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr		5f	
		8	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155		6f	
		8	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138

5g

119 1 120 2	
120 2	
125 2 1 2 1 1	
126 2 2 2 1 1	
125 2 4 5 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
132 2 7 3 2	
133 2 8 3 2	
139 2 8 5 3 1 2	
140 2 8 6 3 1 2	
143 2 8 9 3 2 2	
146 2 8 10 4 2 2	
147 2 8 10 5 2 2	
152 2 8 10 6 4 2 2	
153 2 8 10 6 5 2 2	
154 2 8 10 6 6 2 2	
155 2 8 10 6 8 2 1	
158 2 8 10 6 8 4 2	
159 2 8 10 6 8 4 2 1	
160 2 8 10 6 8 4 1 2 1	
161 2 8 10 6 8 4 2 2 1 160 0 8 10 6 8 4 2 2 1	
164 2 8 10 6 8 4 6 2	
165 2 8 10 6 8 4 6 2 1	
166 2 8 10 6 8 4 6 2 2	
167 2 8 10 6 8 4 6 2 1 2	
168 2 8 10 6 8 4 6 2 1 2 160 2 8 10 6 8 4 6 2 1 2	1
170 2 8 10 6 8 4 6 2 2 2	2

Ground state configuration of SHEs (Z>119): systematic study of the electron-correlation (DC &NDC), Breit, and QED effects.

- DCBQ CI approach: NDC good, but DC – relatively poor; non-size-extensive Savelyev I.M. Kaygorodov M.Y., KozhedubY.S., Malyshev A.V., Tupitsyn, I.I., ShabaevV.M, PRA, 107, 042803, 2023
- Occupied shells by blue; partially filled by yellow; bold borders – around symmetry blocks. The red boxes - elements, which cannot be placed unambiguously in the PTE (based on DCBQ-CI2 from *Smits*, *O.R.*, Düllmann, C.E., Indelicato, P. NazarewiczW, Schwerdtfeger P., The quest for superheavy elements and the limit of the periodic table. Nature Rev Phys (2023))

Breakdown of periodicity in the PTE (Smith, et. Al.), based on DCBQ-CI2 (Savelyev, et. Al.)

- Z = 145 is placed twice.
- Z = 121, 122, 123, 124 and 168 cannot be placed unambiguously.
- 8th period: a few entries are doubly occupied, whereas others remain vacant.

Extended Periodic Table of Elements & the 8th p – block structure														de specificanes: ne en specificanes: ne manues. Dans pers. de site: 1.4450 Statisticanes: 1.4450			
H	2	2												15	16	17	He
3 Li	4 Be						5 B	6 C	7 N	8 0	9 F	10 Ne					
11 Na	12 Mg	3	4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	1 22 23 24 25 26 27 28 29 30 c Ti V Cr Mn Fe Co Ni Cu Zn									31 Ga	32 Ge	33 As	34 Se	35 br	36 kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Aq	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57 La →	72 Hf	73 Ta	74 W	75 Re	76 Os	77 r	78 Pt	79 Au	80 Ha	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac ்	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 FI	115 Мс	116 Lv	117 Ts	118 Og
Fricke 156 164									164	167	′ 168	169	170	171	172		
Seaborg 154 162								162	163	164	165	166	16	168			
Ρ	yykł	٢Ö	156 164								139 167	140 168) 169 3 - 9 th	170 period	171 1	172	
Smith 156 164											??? 169	??? 170	? 167 - 9 th	???? perio	??? d	???	

IH-FSCC electronic configurations and properties of SHE with $164 \le Z \le 174$ (unpublished)

Z	Configuration	Possible group	Period	Propert IP	ies (eV) EA
164	$[Og]8s^{2}5g^{18}6f^{14}7d^{10}8p_{1/2}^{2}$	12, 14	8	7.513	0.071
165	$[Og]8s^{2}5g^{18}6f^{14}7d^{10}8p_{1/2}^{2}9s$	1	9	5.652	0.987
166	$[Og]8s^{2}5g^{18}6f^{14}7d^{10}8p_{1/2}^{2}9s^{2}$	2	9	7.345	0.518
167	$[Og]8s^{2}5g^{18}6f^{14}7d^{10}8p_{1/2}{}^{2}9s^{2}8p_{3/2}$	15	8	6.639	1.290
168	$[Og]8s^{2}5g^{18}6f^{14}7d^{10}8p_{1/2}^{2}9s^{2}8p_{3/2}^{2}$	16	8	8.055	
169	$[Og]8s^{2}5g^{18}6f^{14}7d^{10}8p_{1/2}^{2}9s^{2}9p_{1/2}^{2}8p_{3/2}$	15	8	8.968	2.518
170	$[Og]8s^{2}5g^{18}6f^{14}7d^{10}8p_{1/2}^{2}9s^{2}9p_{1/2}^{2}8p_{3/2}^{2}$	16	8	9.975	
171	$[Og]8s^{2}5g^{18}6f^{14}7d^{10}8p_{1/2}{}^{2}9s^{2}9p_{1/2}{}^{2}8p_{3/2}{}^{3}$	17	8	10.917	3.922
172	$[Og]8s^{2}5g^{18}6f^{14}7d^{10}8p^{6} 9s^{2}9p_{1/2}^{2}$	18	8	11.967	<0
173	$[Og]8s^{2}5g^{18}6f^{14}7d^{10}8p^{6}9s^{2}9p_{1/2}{}^{2}10s$	1	10	3.070	0.478
174	$[Og]8s^{2}5g^{18}6f^{14}7d^{10}8p^{6}9s^{2}9p_{1/2}{}^{2}10s8d$	4	9	3.614	

Possible variant of 8th p-block of EPT (unpublished)

																	10
1 H	2											13	14	15	16	17	2 He
3	4 Bo											5 B	6	7 N	8	9	10 No
		-															
11	12	2	4	F	c	7	0	0	10	44	40	13	14	15	10	17	18
Na	IVIg	3	4	5	0	1	8	9	10	11	ΠZ	AI	SI	Р	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	br	kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La →	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	ΤI	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac‡	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Мс	Lv	Ts	Og
(119	$(119) (120 121-163 [(2)p_{1/2}+(14)f+(18)g+(10)d)]$										164	??	164	167 169	168 170	171	172
165	166	???	? 174														
173			90	91	92	93	94	95	96	97	98	99	100	101	102	103	
	Actinic	ies 🚄	Th	Pa	Ű	Nn	Pu	Am	Cm	Bk	Cf	Fs	Fm	Md	No	Ir	
Suna	rootini		(100	155		יי		,	0.11	5.	•						
SUDE	acuille		- (1//	- 100	1 ((

Closed shell GS configurations: E164, E165⁺, E166²⁺ ([Og]8s²5g¹⁸6f¹⁴7d¹⁰8p_{1/2}²) E166, E167⁺, E168²⁺ ([Og]8s²5g¹⁸6f¹⁴7d¹⁰8p_{1/2}²9s²) E172, E171⁻, E173⁺, E174²⁺ ([Og]8s²5g¹⁸6f¹⁴7d¹⁰8p⁶9p_{1/2}²9s²)

Closed shell lower lying ES configurations: E168 ($[Og]8s^25g^{18}6f^{14}7d^{10}8p^6$) E170 ($[Og]8s^25g^{18}6f^{14}7d^{10}8p^{6}9s^2$)

Conclusions

- FS-RCC is powerful and flexible computational approaches suitable for precise calculation of properties of heavy and SHE open shell systems.
- Excellent agreement with experiment where data are available and reliable predictions of spectra and other properties.
- Successful collaborations with experiment
- The periodic Table concept on it's SHE edge should be changed and reformulated:
 - Simple Madelung rules do not work!
 - JJ coupling instead of LS should be used. Many super-actinides SHEs will have combinations of multiple LS-configurations with compatible weighs.
 - The "one-to-one" relationship: single LS configuration shell corresponds to single cell of Periodic Table does not work! (multiply filled and empty cells could exist).
 - Jumps to the next period and back could happen.
 - End of Periodic Table:
 - <u>Nuclear stability perspective</u>: minimal time of isotope survival 10^{-14} sec needed for element formation could limit Z<170
 - Atomic structure stability perspective: elements with Z > 173 (supercritical atoms) will be still stable