PROBING ULTRA-LIGHT BOSONS WITH STELLAR TIDAL DISRUPTIONS

Daniel Egana-Ugrinovic
Simons Fellow
Perimeter Institute

Nature Communications, 13 (2022) 1, 4626
arXiv:2202.01215

In collaboration with
Peizhi Du (Rutgers), Rouven Essig (Stony Brook),
Giacomo Fragione (Northwestern) and Rosalba Perna (Stony Brook)
STELLAR TIDAL DISRUPTION EVENTS

Stars passing close to SMBH can be tidally disrupted by strong tidal forces

Credits: DESY, Science Communication Lab
Stellar TDE’s
Stellar TDE’s

\[\vec{S} \]

Light bosons and black hole superradiance
Stellar TDE’s

\vec{S}

Light bosons and black hole superradiance
Stellar TDE’s

Light bosons and black hole superradiance
STELLAR TIDAL DISRUPTION EVENTS

- Stars passing close to SMBH’s in the center of galaxies can be disrupted by strong tidal forces

\[r_t = \frac{R_\star}{\left(\frac{M_{\text{BH}}}{M_\star}\right)^{1/3}} \approx 10^{-6} \text{ pc} \]

- The disruption is followed by a bright flare due to subsequent accretion of the stellar gas into the black hole
THIS BEHAVIOR WAS PREDICTED
(Martin Rees, Nature 333 91988)

$L_{bb} = 10^{43}$ erg/s (peak)

Current status: ~50 optically/UV selected
BASICS OF EVENT SELECTION

• TDE colors are quite constant in time, differently from SN’s.

Zabludoff et. Al. 2021
BASICS OF EVENT SELECTION

- TDE light curves are smoothly falling, with power-like law behavior.
BASICS OF EVENT SELECTION

- TDE’s are ultra-bright transient events, with close to or sometimes super-eddington luminosity.
- TDE light curves must be smoothly falling, with power-like law behavior.
- The light-curve fall timescale is of the order of months.
- TDE’s are selected only in -quiescent galaxies-. No AGN’s in them, and no previous history of accretion.
- TDE colors are quite constant in time, differently from SN’s.
 - TDE’s are quite “blue”.
 - TDE’s spectra are black-body, differently from power-law AGN’s.
 - TDE’s are non-recurrent phenomena, differently from AGN flares.
 - TDE’s come with some specific atomic emission lines, which were actually predicted!
TDE RATES

Observed and predicted TDE rates:
\(\sim 10^{-4} / \text{galaxy/year} \)

Sharp cutoff at high masses

Van Velzen 1707.03458
(see Stone, Metzger 1410.7772 for details)
THE HILLS MASS: NON-SPINNING BH

• For heavy BH’s, the tidal radius falls within the BH horizon, and TDE’s become unobservable.

\[r_t = R_\star \left(\frac{M_{BH}}{M_\star} \right)^{1/3} \]

\[r_{SS} = 2GM_{BH} \]
For $r_t > r_{SS}$,

$$M_{BH} \lesssim 10^8 M_\odot \left(\frac{R_*}{R_\odot} \right)^{3/2} \left(\frac{M_*}{M_\odot} \right)^{-1/2} \equiv M_{Hills}$$
• The Hills mass depends on BH spin, which modifies the near-horizon geometry.

\[M_{\text{Hills}}(a) < M_{\text{BH}} \]

Hills mass grows with BH spin

\[M_{\text{Hills}}(a \to 1) \sim 10^9 M_\odot \]

Hills mass for a main-sequence star
THE HILLS MASS

• TDE rates for galaxies with BH’s above the Hills mass are strongly suppressed, with a spin-dependent cutoff

[Adapted from Kesden 1109.6329]

TDE rate -per galaxy-
Stellar TDE's

Light bosons and black hole superradiance
If ultra-light bosons exist, SMBH spins are affected by the *superradiant instability*

This would leave very unique imprints on the observed TDE rates
BLACK HOLE SUPERRADIANCE

\[\frac{\mu}{m} \lesssim \Omega_{\text{BH}} \]

\[\mu : \text{Boson mass} \]

\[m = -l \ldots l \]

Zeldovich JETP Lett. 14 180, 1971
Arvanitaki et. Al. 0905.4720, 1004.3558
BLACK HOLE SUPERRADIANCE

\[\frac{\mu}{m} \lesssim \Omega_{\text{BH}} \]

Gravitational coupling

\[\alpha = G M_{\text{BH}} \mu \]
BLACK HOLE SUPERRADIANCE

\[\frac{\mu}{m} \lesssim \Omega_{\text{BH}} \]

Gravitational coupling

\[\alpha = G\mu M_{\text{BH}} \]

Cloud radius

\[r_{\text{cloud}} \sim \frac{n^2}{\mu \alpha} \]
BLACK HOLE SUPERRADIANCE

For maximally spinning black holes

$$\frac{\alpha}{m} \leq 0.5$$
The SR rates are strongly suppressed at small α

$$\tau_{SR} \sim 100 \text{ years} \left(\frac{\alpha}{0.1} \right)^{-6} \left[\frac{M_{BH}}{10^8 M_\odot} \right]$$

Vectors (dark photons)

$$\tau_{SR} \sim 10^6 \text{ years} \left(\frac{\alpha}{0.1} \right)^{-8} \left[\frac{M_{BH}}{10^8 M_\odot} \right]$$

Scalars (axions)

As a consequence, SR is most effective for $\alpha \sim 0.1 - 1$, or

$$\mu \sim \frac{1}{GM_{BH}} = \frac{1}{r_g} \sim 10^{-18} \text{ eV} \left[\frac{10^8 M_\odot}{M_{BH}} \right]$$
SUPERRADIANT SPIN EXTRACTION

Spin-0 boson

Note: if your BH has a low spin to start with, SR is not an observable effect

$\mu = 10^{-18} \text{ eV}$
$\mu = 5 \cdot 10^{-19} \text{ eV}$
$\mu = 10^{-19} \text{ eV}$

small α \hspace{1cm} large α
The effect of light bosons on TDE event rates
BOSONS DECREASE THE EFFECTIVE HILLS MASS

Ultra-light bosons decrease the “effective Hills mass”
THE EFFECTIVE HILLS MASS

$M_H(a = 0.998) < M_{BH}$

$M_{BH} [10^8 M_\odot]$ vs $\mu [10^{-19} \text{eV}]$

Scalars

$M_{BH} [10^8 M_\odot]$ vs $\mu [10^{-19} \text{eV}]$

Vectors
TDE RATES IN THE PRESENCE OF ULTRA-LIGHT BOSONS

Spin-0 boson

TDE rate -per galaxy-
Testing axions and dark photons with LSST measurements of TDE rates
TDE RATE ESTIMATES IN LSST

Scalars

(Our rate estimates in the absence of ultra-light bosons roughly agree with Bricman, Gomboc 1906.08235)
Include (arbitrary) 50% systematic on rate

Scalars

Vectors

LIMIT PROJECTIONS
SMEARING DUE TO MBH MEASUREMENT UNCERTAINTIES

Spin 1

Current

Optimistic? improvements

N_{TDE} vs. M_{BH}/M_\odot for different values of μ.
CONCLUSIONS

• TDE’s rate measurements are a fascinating new probe of BSM physics.

• Ultra-light bosons leave unique imprints in the TDE rate distribution function, at high BH masses.

• In principle, this can be used to either discover or set limits on these BSM theories, but work is required to understand systematics.

• The prospects are encouraging: LSST will select somewhere between 10K-100K TDE’s.