PROBING ULTRA-LIGHT BOSONS WITH STELLAR TIDAL DISRUPTIONS

Daniel Egana-Ugrinovic Simons Fellow Perimeter Institute

Nature Communications, 13 (2022) 1, 4626 arXiv:2202.01215

In collaboration with Peizhi Du (Rutgers), Rouven Essig (Stony Brook), Giacomo Fragione (Northwestern) and Rosalba Perna (Stony Brook)

STELLAR TIDAL DISRUPTION EVENTS

Stars passing close to SMBH can be tidally disrupted by strong tidal forces

STELLAR TIDAL DISRUPTION EVENTS

 Stars passing close to SMBH's in the center of galaxies can be disrupted by strong tidal forces

• The disruption is followed by a bright flare due to subsequent accretion of the stellar gas into the black hole

STELLAR TIDAL DISRUPTION EVENTS

Hayasaki et al. 1501.05207

van Velzen et al. 2001.01409 ZTF survey

This behavior was predicted (Martin Rees, Nature 333 91988)

 $L_{bb} = 10^{43}$ erg/s (peak)

Current status: ~50 optically/UV selected

BASICS OF EVENT SELECTION

• TDE colors are quite constant in time, differently from SN's.

BASICS OF EVENT SELECTION

• TDE light curves are smoothly falling, with power-like law behavior.

Auchetll et. Al. 2018

BASICS OF EVENT SELECTION

- TDE's are ultra-bright transient events, with close to or sometimes super-eddington luminosity.
- TDE light curves must be smoothly falling, with power-like law behavior.
- The light-curve fall timescale is of the order of months.
- TDE's are selected only in -quiescent galaxies-. No AGN's in them, and no previous history of accretion.
- TDE colors are quite constant in time, differently from SN's.
- TDE's are quite "blue".
- TDE's spectra are black-body, differently from power-law AGN's.
- TDE's are non-recurrent phenomena, differently from AGN flares.
- TDE's come with some specific atomic emission lines, which were actually predicted!

TDE RATES

Observed <u>and</u> predicted TDE rates: $\sim 10^{-4}$ /galaxy/year

THE HILLS MASS: NON-SPINNING BH

• For heavy BH's, the tidal radius falls within the BH horizon, and TDE's become unobservable.

THE HILLS MASS: NON-SPINNING BH

For
$$r_t > r_{SS}$$
,

$$M_{\rm BH} \lesssim 10^8 M_{\odot} \left[\frac{R_{\star}}{R_{\odot}} \right]^{3/2} \left[\frac{M_{\star}}{M_{\odot}} \right]^{-1/2} \equiv M_{\rm Hills}$$

THE HILLS MASS: SPINNING BH

• The Hills mass depends on BH spin, which modifies the nearhorizon geometry.

THE HILLS MASS

• TDE rates for galaxies with BH's above the Hills mass are strongly suppressed, with a spin-dependent cutoff

If ultra-light bosons exist, SMBH spins are affected by the **superradiant instability**

This would leave very unique imprints on the observed TDE rates

 $\frac{\mu}{-} \lesssim \Omega_{\rm BH}$ m

 μ : Boson mass

$$m = -l \dots l$$

Zeldovich JETP Lett. 14 180, 1971 Arvanitaki et. Al. 0905.4720,1004.3558

 $\frac{\mu}{\Delta} \lesssim \Omega_{\rm BH}$ M

Gravitational coupling

$$\alpha = GM_{\rm BH}\mu$$

$$\frac{\mu}{m} \lesssim \Omega_{\rm BH}$$

Gravitational coupling

 $\alpha = G \mu M_{\rm BH}$

Cloud radius
$$r_{cloud} \sim \frac{n^2}{\mu \alpha}$$

$$\frac{\mu}{m} \lesssim \Omega_{\rm BH}$$

Gravitational coupling

 $\alpha = G \mu M_{\rm BH}$

For maximally spinning black holes $\frac{\alpha}{m} \leq 0.5$

- The SR rates are strongly suppressed at small lpha

$$\tau_{\rm SR} \sim 100 \, \text{years} \left[\frac{\alpha}{0.1} \right]^{-6} \left[\frac{M_{\rm BH}}{10^8 M_{\odot}} \right] \qquad \text{Vectors (dark photons)}$$
$$\tau_{\rm SR} \sim 10^6 \, \text{years} \left[\frac{\alpha}{0.1} \right]^{-8} \left[\frac{M_{\rm BH}}{10^8 M_{\odot}} \right] \qquad \text{Scalars (axions)}$$

• As a consequence, SR is most effective for $lpha \sim 0.1 - 1$, or

$$\mu \sim \frac{1}{GM_{\rm BH}} = \frac{1}{r_g} \sim 10^{-18} \text{eV} \left[\frac{10^8 M_{\odot}}{M_{\rm BH}} \right]$$

SUPERRADIANT SPIN EXTRACTION

Spin-O boson

Note: if your BH has a low spin to start with, SR is not an observable effect

The effect of light bosons on TDE event rates

BOSONS DECREASE THE EFFECTIVE HILLS MASS

Ultra-light bosons decrease the "effective Hills mass"

THE EFFECTIVE HILLS MASS

TDE RATES IN THE PRESENCE OF ULTRA-LIGHT BOSONS

Testing axions and dark photons with LSST measurements of TDE rates

(Our rate estimates in the absence of ultra-light bosons roughly agree with Bricman, Gomboc 1906.08235)

LIMIT PROJECTIONS

Include (arbitrary) 50% systematic on rate

SMEARING DUE TO MBH MEASUREMENT UNCERTAINTIES

32

CONCLUSIONS

- TDE's rate measurements are a fascinating new probe of BSM physics.
- Ultra-light bosons leave unique imprints in the TDE rate distribution function, at high BH masses.
- In principle, this can be used to either discover or set limits on these BSM theories, but work is required to understand systematics.
- The prospects are encouraging: LSST will select somewhere between 10K-100KTDE's.