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STELLAR TIDAL DISRUPTION EVENTS

Stars passing close to SMBH can
be tidally disrupted by strong tidal forces

Credits: DESY, Science Communication Lab
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STELLAR TIDAL DISRUPTION EVENTS

Stars passing close to SMBH's in the center of galaxies can be
disrupted by strong tidal forces
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\:/t/da rad ius . R*<MBH> 1076 pe
he disruption is followed by a bright flare due to subsequent
accretion of the stellar gas into the black hole




STELLAR TIDAL DISRUPTION EVENTS

Hayasaki et al. 1501.05207

van Velzen et al. 2001.01409
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This behavior was predicted

(Martin Rees, Nature 333 91988)

L,, = 10% erg/s (peak)

Current status: ~50 optically/UV selected



BASICS OF EVENT SELECTION

* TDE colors are quite constant in time, differently from SN's.
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BASICS OF EVENT SELECTION

* TDE light curves are smoothly falling, with power-like law behavior.
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BASICS OF EVENT SELECTION

TDE's are ultra-bright transient events, with close to or sometimes super-eddington luminosity.
TDE light curves must be smoothly falling, with power-like law behavior.
The light-curve fall timescale is of the order of months.

TDE's are selected only in -quiescent galaxies-. No AGN's in them, and no previous history of
accretion.,

TDE colors are quite constant in time, differently from SN's.

TDE's are quite “blue”.
TDE's spectra are black-body, differently from power-law AGN's.
TDE's are non-recurrent phenomena, differently from AGN flares.

TDE's come with some specific atomic emission lines, which were actually predicted!



Volumetric rate (Mpc= yr~' dex™)
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TDE RATES

Observed and predicted TDE rates:
~ 10™*/galaxy/year
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N Van Velzen 1707.03458
(see Stone, Metzger
[410.7772 for details)

— Fiducial TDF model
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Black hole mass (logoM;)

Sharp cutoff at high masses



THE HILLS MASS: NON-SPINNING BH

For heavy BH's, the tidal radius falls within the BH horizon, and
TDE's become unobservable.
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THE HILLS MASS: NON-SPINNING BH

For 1, > Fyg,

Mgy S 10°M
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THE HILLS MASS: SPINNING BH

* The Hills mass depends on BH spin, which modifies the near-
horizon geometry.
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THE HILLS MASS

TDE rates for galaxies with BH's above the Hills mass are strongly
suppressed, with a spin-dependent cutoff
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If ultra-light bosons exist,
SMBH spins are affected by

the superradiant instability

I'his would leave very unigue imprints
on the observed [DE rates



BLACK HOLE SUPERRADIANCE
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Zeldovich JETP Lett. [4 180, 1971
Arvanitaki et. Al. 0905.4720,1004.3558



BLACK HOLE SUPERRADIANCE
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. 2p {3d ... Gravitational coupling
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BLACK HOLE SUPERRADIANCE
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BLACK HOLE SUPERRADIANCE
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BLACK HOLE SUPERRADIANCE

* The SR rates are strongly suppressed at small a

a1 M
BH
sr ~ 100 years [O_1] [1 0" M, Vectors (dark photons)
tgr ~ 100 years | — [ Mo Scalars (axions)
o 0.1 |108M,

* As a consequence, SR is most effective fora ~ 0.1 — 1, or

1 1 10°M
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SUPERRADIANT SPIN EXTRACTION

5pin-0 boson

Note: if your BH has a low
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The effect of light bosons
on [DE event rates
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BOSONS DECREASE THE EFFECTIVE RHILLS MASS
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Ultra-light bosons decrease the
“effective Hills mass”
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TDE RATES IN THE PRESENCE OF ULTRA-LIGHT BOSONS

103

DEU, Du,Essig,Fragione,Perna.
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lesting axions and dark photons
with LSST measurements of TDE rates
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TDE RATE ESTIMATES IN LSST
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(Our rate estimates in the absence of ultra-light bosons roughly agree with Bricman, Gomboc | 906.08235)



LIMIT PROJECTIONS

Include (arbitrary) S0 % systematic on rate
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SMEARING DUE TO MBH MEASUREMENT UNCERTAINTIES
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CONCLUSIONS

TDE's rate measurements are a fascinating new probe of BSM
physics.

Ultra-light bosons leave unigue imprints in the TDE rate distribution
function, at high BH masses.

In principle, this can be used to erther discover or set limits on

these BSM theories, but work s required to understand
systematics.

The prospects are encouraging: LSST will select somewhere
between |0K-100K TDE'.
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