

Ab initio PGCM and applications to light nuclei

Jean-Paul EBRAN CEA, DAM, DIF

DE LA RECHERCHE À L'INDUSTRIE

PAN@CEA	Students	Collaborators
T. DUGUET	A. PORRO	B. BALLY
JP. EBRAN	A. ROUX	H. HERGERT
M. FROSINI	A. SCALESI	T.R. RODRIGUEZ
V. SOMA	G. STELLIN	R. ROTH
		J.M. YAO

INT PROGRAM INT-23-1A Intersection of nuclear structure and high-energy nuclear collisions

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Outline

Theoretical description of nuclear systems

2 PGCM

How to best account for nucleons correlations

Context : General goal of nuclear structure theory

• Starting from the hadronic level of organization (nucleons + interactions), what novel structures emerge and how they evolve with E_{ex}, N, Z, ...

Commissariat à l'énergie atomique et aux énergies alternatives

Cea 1 Context : General goal of nuclear structure theory

Yannouleas & Landman, 2017

Context : General goal of nuclear structure theory

Lack of control ×

 \Rightarrow double counting issues, error compensation, no error assessment

cea

Context : Nuclear structure from a microscopic viewpoint

- 1) Nucleus: *A* interacting, structure-less nucleons
- 2) Structure & dynamic encoded in Hamiltonian, Functional, ...
- 3) Solve A-nucleon Schrödinger/Dirac equation to desired accuracy

 $H(\mathcal{M},\mathcal{M},\ldots)|\Psi_{\mu,\sigma}\rangle = E_{\mu\tilde{\sigma}} |\Psi_{\mu,\sigma}\rangle$ Strongly correlated WF $\bigvee |\Psi_{gs}\rangle = \sum_{i_1 < \cdots < i_A}^{L} C_{i_1 \cdots i_A} |\phi_{i_1} \cdots \phi_{i_A}\rangle \equiv \sum_{I}^{N_{FCI}} C_{I} |\Phi_{I}\rangle$

Rationale for grasping nucleon correlations

Commissariat à l'énergie atomique et aux énergies alternatives

Outline

Theoretical description of nuclear systems

2 PGCM

How to best account for nucleons correlations

2 Expansion Method

Tichai, Langhammer, Binder, Roth PLB(2016)

Commissariat à l'énergie atomique et aux énergies alternatives

J.-P. EBRAN

Commissariat à l'énergie atomique et aux énergies alternatives

17 février 2023 1

Tichai, Gebrerufael, Vobig, Roth, PLB (2018)

dHFB constrained calculations

dHFB treatment

Correlated Anucleon WF

Symmetry-breaking A independent quasinucleons WF

Post-HFB treatment : PGCM

--> Symmetry-conserving (non orthogonal) mixture of symmetry-breaking HFB vacua

--> Problème à A nucléons \rightarrow A problèmes à 1 nucléon

 $(|q_0|, \varphi_0) \qquad Calculs HFB$

- Post-HFB treatment : PGCM
- --> Symmetry-conserving (non orthogonal) mixture of symmetry-breaking HFB vacua

--> Problème à A nucléons \rightarrow A problèmes à 1 nucléon

 $\underbrace{\overset{\mathsf{HF}(\mathsf{B})}{\longleftarrow}}_{\mu, \sigma} \underbrace{\overset{\mathsf{HF}(\mathsf{B})}{\longleftarrow}}_{\mu, \sigma} \underbrace{\overset{\mathsf{HF}(\mathsf{B})}{\longleftarrow}}_{\mu, \sigma} \underbrace{\overset{\mathsf{HF}(\mathsf{B})}{\longleftarrow}}_{\mu, \sigma} \underbrace{\overset{\mathsf{HF}(\mathsf{B})}{\longleftarrow}}_{\mu, \sigma} \underbrace{\mathsf{Calculs} \, \mathsf{HFB} \, \mathsf{contraints}}_{\mathcal{Calculs}} \underbrace{\mathsf{Calculs} \, \mathsf{HFB} \, \mathsf{contraints}}_{\mathcal{Calculs}} \underbrace{\mathsf{HFB} \, \mathsf{contraints}}_{\mathcal{Calculs}} \underbrace{\mathsf{H$

- Post-HFB treatment : PGCM
- --> Symmetry-conserving (non orthogonal) mixture of symmetry-breaking HFB vacua

--> Problème à A nucléons \rightarrow A problèmes à 1 nucléon

 $\begin{array}{c} & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ &$

- Post-HFB treatment : PGCM
- --> Symmetry-conserving (non orthogonal) mixture of symmetry-breaking HFB vacua

cea

3 Développements au niveau post-HFB : PGCM, généralités

• Traitement HF(B)

--> Problème à A nucléons \rightarrow A problèmes à 1 nucléon

 $(|q_0|, \varphi_0) \qquad Calce$

Post-HFB treatment : PGCM

--> Symmetry-conserving (non orthogonal) mixture of symmetry-breaking HFB vacua

--> Problème à A nucléons --> A problèmes à 1 nucléon

 $(|q_0|, \varphi_0)$ $(|q_0|, \varphi_0)$ Calculs HFB contraints

Post-HFB treatment : PGCM

--> Symmetry-conserving (non orthogonal) mixture of symmetry-breaking HFB vacua

Commissariat à l'énergie atomique et aux énergies alternatives

Outline

Theoretical description of nuclear systems

2 PGCM

How to best account for nucleons correlations

Application of PGCM-PT 3

 $h_{ac}^{q} \equiv \sum_{bd} V_{abcd}^{(a)} \rho_{db}^{q}$ $\Delta^{\boldsymbol{q}}_{ac} \equiv \sum_{i} V^{(a)}_{acbd} \kappa^{\boldsymbol{q}}_{bd}$ $\rho_{ij}^{\boldsymbol{q}} = \left\langle \Phi(\boldsymbol{q}) \left| c_j^{\dagger} c_i \right| \Phi(\boldsymbol{q}) \right\rangle$ $\kappa_{ii}^{\boldsymbol{q}} = \left\langle \Phi(\boldsymbol{q}) \middle| c_j c_i \middle| \Phi(\boldsymbol{q}) \right\rangle$

cea

3 Application of PGCM-PT

Commissariat à l'énergie atomique et aux énergies alternatives

Commissariat à l'énergie atomique et aux énergies alternatives

17 février 2023

J.-P. EBRAN

3 Application of PGCM-PT

$$\begin{split} \label{eq:GCM treatment} & \left|\Theta_{\mu\sigma}\right\rangle = \sum_{q}\sum_{K}f_{\mu K}^{\tilde{\sigma}}(q)P_{MK}^{\tilde{\sigma}}(q)\left|\Phi(q)\right\rangle \\ & \sum_{q'K'}\left[\mathcal{H}_{qKq'K'}^{JN_{0}Z_{0}} - E_{\mu;JN_{0}Z_{0}}\mathcal{N}_{qKq'K'}^{JN_{0}Z_{0}}\right]f_{\mu q'K'}^{JN_{0}Z_{0}} = 0. \end{split}$$

$$\mathcal{T}^{\lambda\mu}_{\theta q q'} = \langle \Phi(\mathbf{q}) | \mathsf{T}^{\lambda\mu} \mathsf{R}(\theta) | \Phi(\mathbf{q'}) \rangle$$

Frosini, Duguet, Ebran, Bally, Mongelli, Rodríguez, Roth, Somà EPJA (2022)

Commissariat à l'énergie atomique et aux énergies alternatives

cea

3 Application of PGCM-PT

Commissariat à l'énergie atomique et aux énergies alternatives

J.-P. EBRAN

cea

3 Application of PGCM-PT

$$\sum_{\mathbf{q'}\mathbf{K'}} \left[\mathfrak{H}^{J\mathbf{N}_{0}Z_{0}}_{\mathbf{q}\mathbf{K}\mathbf{q'}\mathbf{K'}} - \mathsf{E}_{\mu;J\mathbf{N}_{0}Z_{0}} \mathfrak{N}^{J\mathbf{N}_{0}Z_{0}}_{\mathbf{q}\mathbf{K}\mathbf{q'}\mathbf{K'}} \right] \mathbf{f}^{J\mathbf{N}_{0}Z_{0}}_{\mu\mathbf{q'}\mathbf{K'}} = \mathbf{0}.$$

Frosini, Duguet, Ebran, Bally, Mongelli, Rodríguez, Roth, Somà EPJA (2022)

Frosini, Duguet, Ebran, Bally, Mongelli, Rodríguez, Roth, Somà EPJA (2022)

• PGCM : relevant ab initio tool for spectroscopy

• PGCM-PT : eventually needed for absolute energies + accuracy

Frosini, Duguet, Ebran, Bally, Hergert, Rodríguez, Roth, Yao, Somà, EPJA (2022)

3 Application of PGCM-PT

3 Application of PGCM-PT

cea

J.-P. EBRAN

