Searching for "heavy light": what can electron scattering tell us about the ATOMKI X(17) anomaly.

Workshop (Interplay of Nuclear, Neutrino and BSM Physics at Low-Energies)

Dipangkar Dutta

April 17-21, 2023

Outline

A recent anomalous nuclear physics observation: X(17) A new electron scattering experiment to probe it **Other experiments and possibilities**

- **Summary**

D. Dutta

The ATOMKI anomaly published in ~2016 created quite a stir in the media

ATOMKI slides adapted from talks at a recent workshop on the X17 anomaly

Shedding light on X17

6-8 September 2021 Centro Ricerche Enrico Fermi

D. Dutta

https://agenda.infn.it/event/26303/

Pair production & internal pair production: a quick primer

D. Dutta

internal pair production decay		E_{i}, I_{i}, Π_{i} $E_{\gamma}=\hbar\omega=E_{i}-E_{f}$ $\Pi_{\gamma}=\Pi_{i}\Pi_{f}$ L_{γ} E_{f}, I_{f}, Π_{f}		
	Radiation Type	Name	/ = ∆I	
High-energy	E1	electric dipole	1	
emitted	M1	magnetic dipole	1	
\	E2	electric quadrupole	2	
12 0	M2	magnetic quadrupole	2	
$\sim \frac{1}{6}C + \gamma$	E3	electric octupole		
	M3	magnetic octupole	3	
	E4	electric hexadecapole	4	
	M4	magnetic hexadecapole	4	

In 2016 the ATOMKI collaboration reported on the angular correlation for pair production in ⁸Be de-excitation

N_{*}	E _{beam} [MeV]	⁸ Be → 2α ≈ 100%
⁸ Be(18.15) ⁸ Be(17.64)	1.03 0.45	$\longrightarrow B(^{8}Be + \gamma) \approx 1.5 \times 10^{10}$ $\longrightarrow B(^{8}Be + \gamma) \approx 1.5 \times 10^{10}$

INT Workshop (25-83W), April 17-21, 2023

 7 Li

In 2016 the ATOMKI collaboration reported on the angular correlation for pair production in ⁸Be de-excitation

 $^{8}Be(18.15)$

D. Dutta

Internal pair creation has a branching ratio B(⁸Be + e⁺ e⁻) ≈ 5.5 x 10⁻⁸

images courtesy of ATOMKI collaboration

The ATOMKI collaboration reported an anomalous (> 5σ) excess in the internal pair production in ⁸Be de-excitation at large angles.

D. Dutta

A. J. Krasznahorkay et al., PRL 116, 042501 (2016)

The ATOMKI collaboration has since confirmed their results in a new improved setup

kshop (25-83W), April 17-21, 2023

Nuclear Physics possibilities such as kinematic interference between E1 and M1 transitions have been ruled out.

images courtesy of X. Zhang

D. Dutta

Nuclear Physics possibilities such as kinematic interference between E1 and M1 transitions would produce peak at all energies.

images courtesy of ATOMKI Collaboration

D. Dutta

The ATOMKI collaboration has reported a > 6.5 σ anomaly in ³H(p,e⁺e⁻)⁴He in the new improved setup

The ATOMKI anomaly introduced the possibility of a new 17 MeV weakly interacting particle

The ATOMKI anomaly introduced the possibility of a new 17 MeV weakly interacting particle

D. Dutta

The spin and parity of the nuclear decays favor a vector X particle.

For ground state = 0 ⁺ Final state OAM							
	$J_* = L \oplus J_X P_* = (-1)^L P_X$						
		Scalar	Pseudoscalar	Vector	Axialvect		
	X N_*	0^+	0-	1-	1^{+}		
	$^{4}\mathrm{He}~0^{+}$		S		P		
	$^{4}\mathrm{He}~0^{-}$	S		P			
	$^{12}C \ 1^{-}$	P		S, D	P		
	$^{8}\mathrm{Be}\ 1^{+}$		P	P	S, L		

D. Dutta

Assuming parity conserving interaction **EFT calculations of decay widths** (new force with range of 12 fm) J. Feng et al. PRD 95, 035017 (2017)

tor

Nuclear couplings from rate: $\sigma(^{8}\text{Be}^{*} \rightarrow {}^{8}\text{Be} X) BR(X \rightarrow e^{+}e^{-})$

Electron couplings: from limit on decay length (< 1 cm)

For Pseudoscalar X

 $\frac{\Gamma_P^{^8\mathrm{Be}}}{\Gamma_P^{^4\mathrm{He}}} \approx 1.7 \times 10^{-6}$ experiment ~ 1 (assuming nuclear effects ~ 1)

For Axialvector X

 $\frac{\Gamma_P^{^8\mathrm{Be}}}{\Gamma_P^{^4\mathrm{He}}} \approx 1.8 \times 10^{-2}$ experiment ~ 1 (assuming nuclear effects ~ 1)

For Vector X

consistent with experiment from inelastic e-He scattering

from photon decay

INT Workshop (25-83W), April 17-21, 2023

15/42

The ATOMKI collaboration recently reported a 6 - 11 σ anomaly in 700

D. Dutta

INT Workshop (25-83W), April 17-21, 2023

16/42

The ATOMKI anomaly introduces the possibility of a new 17 MeV vector Boson.

$$N_* \longrightarrow N_0 + X \longrightarrow$$

p + A	\rightarrow	N_*	$E_{\rm beam}$ (MeV)	$m_A ~({ m MeV})$	$m_{N_*}~({ m MeV})$	v_{N_*}/c	v_X/c	$ heta_{e}^{\mathrm{m}}$
$p + {}^{7}\text{Li}$	\rightarrow	$^{8}\text{Be}(18.15)$	1.03	6533.83	7473.01	0.0059	0.350	13
$p + {}^{7}\text{Li}$	\rightarrow	$^{8}\text{Be}(17.64)$	0.45	6533.83	7472.50	0.0039	0.267	14
$p + {}^{11}B$	\rightarrow	$^{12}\mathrm{C}(17.23)$	1.40	10252.54	11192.09	0.0046	0.163	16
$p + {}^{3}H$	\rightarrow	$^{4}\text{He}(21.01)$	1.59	2808.92	3748.39	0.0146	0.587	10
$p + {}^{3}H$	\rightarrow	$^{4}\text{He}(20.49)$	0.90	2808.92	3747.87	0.0110	0.557	11
$p + {}^{3}\mathrm{H}$	\rightarrow	${}^{4}\text{He}(20.21)$	0.52	2808.92	3747.59	0.0084	0.540	11

D. Dutta

from talk by T. Tait

A protophobic 17 MeV gauge boson is consistent with all three results.

Exotic pions decay $\pi^0 \rightarrow X \gamma \rightarrow e^+e^-\gamma$ searches by NA48/2 constrains proton coupling

eliminated if $Q_u X_u - Q_d X_d \approx 0$ or $2X_u + X_d \approx 0$ or $X_p \approx 0$.

$$\varepsilon_d$$

$$|\varepsilon_p| < 1.2 \times 10^{-3}$$

Weaker neutron constrained from Lead-neutron scattering

$$|\varepsilon_n| < 2 \times 10^{-2}$$

$$10^{-5} < \varepsilon_e$$
 for X decay length < 1 cm

-10⁻²

D. Dutta

Hidden sector dark matter (interacts with SM only through subtle mixing)

The 17 MeV gauge boson could be a "heavy light" (dark photons)

photon - dark photon mixing is equivalent to ordinary matter acquiring a milli-charge ϵe

Images courtesy of HPS collaboration

D. Dutta

Hidden sector dark matter (interacts with SM only through subtle mixing)

 ϵ and $M_{A'}$ are parameters

of the theory

in "visible decay" searches

A' will produce pairs : e⁺e⁻, μ⁺μ⁻, π⁺π⁻, ...

They have been proposed as a possible source of the anomalous muon g-2 observations!

field

They can explain some other recent anomalous observations!

D. Dutta

Dark matter annihilation is most likely source of excess gamma rays from the galactic center of the milky way

See also Yen-Hsun Lin's talk from yesterday

Image courtesy of Fermi-LAT

D. Dutta

Dark photons may even explain mass extinctions on earth!

FIG. 2: Our Solar System orbits around the Milky Way's center, completing a revolution every 250 million years. Along this path, it oscillates up and down, crossing the galactic plane about every 32 million years. If a dark matter disk were concentrated along the galactic plane, as shown here, it might tidally disrupt the motion of comets in the Oort cloud at the outer edge of our Solar System. This could explain possible periodic fluctuations in the rate of impacts on Earth. (APS/Alan Stonebraker)

L. Randall and M. Reece, PRL 112 (2014) 161301; J. I. Read et al, Mon. Not. Roy. Astro. Soc 389 (2008) 1041

D. Dutta

Image courtesy of R. Holt (ANL)

The estimated quark couplings rule out dark photons (A') as possible source of X17.

A': spin-1 gauge Bosons with photon like coupling suppressed by a factor ε

$$\varepsilon_f = \varepsilon Q_f \tag{10}$$

Atomki experiment gives

$$|\varepsilon_u + \varepsilon_d| \approx 3.7 \times 10^{-3}$$

from talk by J. Feng

D. Dutta

A' search experiments are also sensitive to the X17 via the electron/positron coupling. 10^{-5}

$$10^{-5} < \varepsilon_e$$

for X decay length < 1 cm

D. Dutta

A new electron scattering experiment is being put together at Jefferson Lab.

Jefferson Lab (JLab), is the most intense electron accelerator in the world

The only CW polarized electron accelerator in the US (1 – 12 GeV energy, 80% polarization) recently upgraded from 6 to 12 GeV

Highest luminosity in the world by several orders of magnitude (10^{38} cm⁻²/s)

A JLab electron scattering based X(17) search is the only experiment where all three final state particles are detected.

Signal: Bremsstrahlung production of X

D. Dutta

Forward angle electroproduction on a heavy nucleus

- e^- + Ta $\rightarrow e' + \gamma^*$ + Ta $\rightarrow e' + X + Ta$, with $X \rightarrow e^+e^-$
- All 3 final state particles will be detected in this experiment:
- The scattered electron and the pair produced e⁺e- will be detected using a pair of coordinate detectors and high resolution calorimeter

As the only magnetic spectrometer free experiments the JLab experiment has an unique technique for background suppression

Background: radiative pair production (Trident) and Bethe-Heitler process

A. Ahmidouch et al., arXiv: 2108.13276

Spokespersons:

A. Gasparian, T. Hague, DD, C. Peng, N. Layanage, H. Gao, R. Paremuzyan

A JLab X(17) search will use the well established apparatus that was used for PRad -the recent proton charge radius experiment

D. Dutta

The only experiment to use a magnetic spectrometer free method, successfully demonstrated PRad. **Reused PRad Hybrid Calorimeter**

- PbWO₄ and Pb-glass calorimeter (118x118 cm²)
- 34x34 matrix of 2.05 x 2.05 cm² x18 cm PbWO₄
- 576 Pb-glass detectors (3.82x3.82 cm² x45 cm)
- 7.5 m from the target,
- 0.5 sr acceptance

Allows coverage of extreme forward angle (0.7° - 7.5°) in a single setting and complete azimuthal angle coverage

Only the inner PbWO₄ part of calorimeter will be used

Convert to FADC based readout of HyCal

PbWO₄ resolution: $\sigma_{\rm E}/{\rm E} = 2.6\%/\sqrt{{\rm E}}$ $\sigma_{xy} = 2.5 \text{ mm}/\sqrt{E}$

> **Pb-glass:** 2.5 times worse

D. Dutta

Target to detector enclosed in one large vacuum chamber with one thin window

two stage, 5 m long vacuum chamber

Reducer flange (1.7 m dia.)

1.7 m dia, 2 mm thick **Al window**

Two planes of large area GEM coordinate detectors for tracking

Two large GEM based X and Y- coordinate detectors with 100 µm position resolution

The GEM detectors provided: >factor of >20 improvements in coordinate resolutions

Add a second GEM plane between HyCal and vacuum chamber to further reduce the backgrounds and improve vertex resolution.

Allows reduction of backgrounds contribution from vacuum chamber window.

Designed and built at **University of Virginia (UVa)**

Sensitivity estimates for the JLab X(17) search is based on well established simulation package for PRad

D. Dutta

Sensitivity estimates for the JLab X(17) search is based on well established simulation package for PRad

There are other efforts such as the DarkLight experiment at TRIUMF

And the MAGIX experiment at Mainz

MAinz Gas Injection Target Experiment search for A' \rightarrow e⁺e⁻ in M_{A'} = [8 - 70] MeV; magnetic spectrometer method; only e⁺e⁻ detected, $\epsilon^2 \approx [2x10^{-7} - 8x10^{-9}]$

MAGIX (proposed experiment with MESA at Mainz)

Another new effort is an ATOMKI like experiment at Montreal

Uses the University of Montreal 6 MV tandem

will measure internal pair creation from the decay of nuclear excited states

a cylindrical multiwire proportional chamber (MWPC) and surrounded by 16 scintillator bars of length

D. Dutta

predicted opening angle distribution

G. Azuelos et al, J. Phys.: Conf. Ser. 2391 012008 (2022)

The ATOMKI anomaly can also be explained by a 17 MeV QCD Axion.

Emission possible in *magnetic* nuclear transitions with $\Delta E > m_a$

Yet another possibility is QED mesons, should be accessible at JLab

There is extensive experimental evidence that ASP - anomalous soft photons (excess e⁺e⁻) are produced whenever hadrons are produced. ASP yield is $\sim 1/100$ the hadron yield.

ASP could be the QED excitations of the color singlet subgroup, unlike the QCD excitations of the color octet subgroup (π^0 , η , n', K, ρ)

It has been shown that light quark-antiquark as massless fermions can be confined in QED (Schwinger, 1962 (1+1D) and Gribov, 1982 (3+1D))

D. Dutta

INT Workshop (25-83W), April 17-21, 2023

DarkQuest one of the few hadronic experiments to cover some of the remaining phase space.

D. Dutta

The ATOMKI ⁸Be results, a tantalizing anomaly from about 6 years ago has been confirmed and supplemented with ⁴He and ¹²C results.

Beyond Standard Model explanations require a weakly interacting light ~17 MeV particle which has implications for dark matter.

Several interesting ideas have been put forward to explain these results and a number of new experiments are underway or are approved to run.

The upcoming JLab experiment has a unique role to play in the search for the X17 and testing a number of proposed explanations.

This work was supported by US DOE grant DE-FG02-07ER41528

D. Dutta

N _*	$m{J}_*^{P_*}$	T_*	Γ_{N_*} [keV]	$B(N_* \rightarrow I)$
⁸ Be(18.15)	1^{+}	0	138	1.4×10^{-1}
⁸ Be(17.64)	1^+	1	10.7	1.4×10^{-1}
$^{12}C(17.23)$	1-	1	1150	3.8×10^{-3}
4 He(21.01)	0^{-}	0	840	0
⁴ He(20.21)	0+	0	500	6.6×10^{-10}

