Modeling astrophysical turbulence

recommended review articles: Reports on Progress in Physics 74:046901 (2011)

Matthew Duez, WSU, support from NSF, NASA **INT "Compressible Turbulence"**, June 25, 2025

"Astrophysical turbulence modeling" by Brandenburg & Nordlund, "Turbulence modelling in neutron star merger simulations" by Radice & Hawke, Living Reviews in Computational Astrophysics 10:1 (2024)

Astro turbulence: distinctive features

- very high Re
- relativity
- high temp \Rightarrow high conductivity $\sigma \Rightarrow$ MHD

• background variation (e.g. solar convective zone: $\rho_h/\rho_t \sim 10^6$, $T_h/T_t \sim 10^2$)

Magnetohydrodynamics

- magnetic field lines advect with fluid
- exert $\mathbf{J} \times \mathbf{B}$ force on fluid: field lines have tension, pressure
- new instabilities
- magnetosphere/jet regions where $P_B/P_{gas} \gg 1$
- conserved magnetic helicity: $\mathbf{A} \cdot \mathbf{B} dV$

Cases: interstellar medium

- stirred by supernovae
- supersonic turbulence
- trigger for star formation

Cases: convection in stars

- e.g. granular suface of sun:
- energy transfers from high-temp core
- If high opacity, convective instability (dS/dr < 0)
- transfers energy, evens composition in convective regions
- ſ

Cases: stellar dynamo

- e.g. 22 year solar cycle:
- large scale **B** generated by differential rotation and convection
- small scale \rightarrow large scale

Cases: accretion disks

- gas orbiting compact object
- magnetorotational instability (MRI): high σ + weak **B** + $d\Omega^2/dr < 0$ \Rightarrow unstable \Rightarrow turbulence
- turbulent angular momentum transport makes accretion possible

Cases: hot, differentially rotating neutron stars

- protoneutron star formed from supernova or accretion-induced collapse
- remnant from binary neutron star merger
- subject to convection, MRI, Kelvin-Helmhotz instability (KHI), Tayler-Spruit instability (TSI) ⇒ turbulence

General setup

- A slowly varying axisymmetric background \mathscr{B} + 3D, rapidly varying turbulence \mathcal{T} .
- only care about \mathscr{B} , but \mathscr{T} affects \mathscr{B} :
 - dynamo, jet (cf. 2D anti-dynamo theorem)
 - transport of energy, momentum, composition
 - enables heating 0
 - turbulent pressure
- goal of model: evolve only \mathscr{B} in 1D or 2D with \mathscr{T} effects \bullet

Subtleties

- How to separate \mathscr{B} from \mathscr{T} ?
 - o average: azimuthal, time, high-k
- Modeling all turbulence or only sub grid turbulence (MFT vs LES)? ° e.g. should $\nu_{\rm turb} \propto \Delta x$?
- What do fields on 2D grids represent?
 - az. averages or representative cuts? 0
 - Ο like \mathbf{u}^2 , \mathbf{B}^2 to capture turbulent effects?

az. averaging tends to filter out most of **u**, **B**. Do we need new variables

The closure problem

• $f = \overline{f} + \Delta f$, $\overline{\Delta f} = 0$, $f \in \{\rho, \mathbf{B}, \mathbf{u}, Y, \dots\}$

•
$$\partial_t(\rho u_i) = -\partial_j \left[\rho u_i u^j + \delta_i^j (P + \sum_{i=1}^{n} e_i) \right]$$

•
$$\Rightarrow \partial_t(\overline{\rho u_i}) = -\partial_j \left[\rho u_i u^j + \delta_i^j (\overline{P} + \delta_i^j) \right]$$

- $\overline{\rho f} = \overline{\rho} \overline{f}$ (Favre average, or ignoring compressibility in turbulence)
- $\overline{\rho u_i u_j} = \overline{\rho} \overline{u_i} \overline{u_j} + \overline{\rho} \overline{\Delta u_i} \overline{\Delta u_j}$
- (need to supply 2nd-order correlation term, a turbulent stress)

•
$$\overline{T}^{\mu\nu}(g_{\mu\nu} + \overline{u}_{\mu}\overline{u}_{\nu}) \neq 3P(\overline{\rho},\overline{T}) \ (\mathcal{T} \text{ pressure}) \ [Also, \overline{\gamma} \neq 1/\sqrt{1 - \mathbf{u}^2}.$$

 $\mathbf{B}, \mathbf{u}, Y, \dots \}$ $+ B^2/2) - B_i B^j \Big]$ $+ \overline{B^2} - \overline{B_i B^j} \Big]$

The closure problem

- $f = \overline{f} + \Delta f$, $\overline{\Delta f} = 0$, $f \in \{\rho, \mathbf{B}, \mathbf{u}, Y, \dots\}$
- similarly
- $\partial_t \mathbf{B} = \nabla \times (\mathbf{u} \times \mathbf{B})$
- $\Rightarrow \partial_t \overline{\mathbf{B}} = \nabla \times (\overline{\mathbf{u} \times \mathbf{B}}) = \nabla \times (\overline{\mathbf{u}} \times \overline{\mathbf{B}} + \overline{\Delta \mathbf{u} \times \Delta \mathbf{B}})$
- $\partial_t(\rho Y) + \nabla \cdot (\rho Y \mathbf{u}) = 0$
- $\Rightarrow \partial_t(\overline{\rho}\overline{Y}) + \nabla \cdot (\overline{\rho}\overline{Y}\overline{u} + \overline{\rho}\overline{\Delta}Y\Delta u) = 0$
- must specify $\Delta T (\Delta u \otimes \Delta u$ for pure hydro), $\Delta u \times \Delta B$, $\Delta Y \Delta u$

2nd-correlation closures

•
$$\Delta T_{ij} = -2\bar{\rho}\nu_T\sigma_{ij}(\mathbf{\bar{u}})$$

"turbulent viscosity"

•
$$\left(\overline{\Delta u \times \Delta B}\right)_i = \alpha_i^j \overline{B}_j + \eta_i^{jk} \partial_j \overline{B}_k$$

• "turbulent EMF" = "alpha effect" + "turbulent diffusivity"

- $\overline{\Delta Y \Delta u_i} = D_T \partial_i Y$
 - "turbulent particle diffusion"

3rd-correlation closures

- can find evolution equations for the 2nd-order correlations, e.g.
- $\partial_t (\overline{\Delta u \times \Delta B}) = \overline{\partial_t \Delta u \times \Delta B} + \overline{\Delta u \times \partial_t \Delta B}$ $= \cdots + \text{triple correlations} \ \overline{u, B_3}$
- must specify u, B_3
- e.g. τ approximation: $\overline{u, B_3} = -\overline{\Delta u \times \Delta B}/\tau$ (damping)
- $k \epsilon$ models: $\nu_T \propto k^2$ where k = specific turbulent kinetic energy

+ evolution equation for k

Inferring coefficients: test field method

- use 3D turbulent MHD simulations
- test field method idea:
 - ^o redo evolution with different specified $\overline{\mathbf{B}}$, same \mathbf{u} , evolve $\Delta \mathbf{B}$
 - average over results
 - get α_{ij} , η_{ijk}
- lack of $\Delta B \rightarrow \Delta u$ feedback lacksquare

Inferring coefficients: SVD method

- i.e. least squares fitting
- one evolution of **u**, **B**
- average to get $\overline{\mathbf{u}}$, $\overline{\mathbf{B}}$, $\overline{\mathbf{u} \times \mathbf{B}} \overline{\mathbf{u}} \times \overline{\mathbf{B}}$
- fit for α_{ij} , η_{ijk}
- can check for quality of fit
- for EMF) (Dhang et al 2020, Duez et al 2025)

• inside accretion disks, it's not good (${f B}$ is a small residual, not a good source

Challenges in binary neutron stars: relevant MHD instabilities

- MRI: $\ell \sim v_A / \Omega$, difficult but possible. Central region is MRI stable ($d\Omega/dr > 0$)
- KH: **B** grows in vortices, faster for higher k, growth cannot be resolved even for $\Delta x \approx 17 \text{ m}$ (Kiuchi et al 2015) unless LES subgrid closure terms are added (Palenzuela et al 2022) (LES terms calibrated to separate MHD turbulence simulations, but still uncertain).
- Tayler-Spruit instability (TSI): predicted for $N \gg \Omega \gg v_A/r$, $\ell_r \sim v_A/N$
 - stress uncertain by orders of magnitude, might be very fast (Margalit et al 2022)
 - o not clear what to do in transition to weak stratification

Challenges in binary neutron stars: coefficient fitting

- A couple of high resolution simulations with SACRA code have been used to extract effective viscous stress, dynamo alpha coefficients (e.g. Kiuchi et al 2018). Effective mixing length fit as a function of density by Radice (2020). (Accounts for MRI stable center via density dependence.)
- Problem: fitting might not be general enough for other systems or other parts of evolution
- TSI expected to be present (Reboul-Salze et al 2024) but effects cannot yet be resolved.
- High resolution MHD simulations often lack detailed microphysics.
- How to do relativistic momentum transport? 3D? Israel-Stewart? BDNK?