Search for the tetra-neutron:

A four-neutron system probed via α -knockout from ⁸He

Meytal Duer July 19th, INT

"Observation of a correlated free four-neutron system" MD et al., Nature 606, 678 (2022)

Tetra-neutron: Why ?

Figure from Marqués, EPJP 136 (2021)

- NN, NNN, NNNN interactions
 - → neutron-neutron interaction
 - → 3-body force
- Fundamental test for ab initio type calculations
- Implications for neutron-rich matter neutron stars

A 60-year quest

XX century:

- fission of uranium e.g. Schiffer & Vandenbosch, Phys. Lett. 5 (1963)
- transfer reactions e.g. Cerny et al., Phys. Lett. 53B (1974)
- double-charge-exchange ⁴He(π⁻,π⁺) reaction
 e.g. Ungar et al., Phys. Lett. B 144 (1984)

XXI century:

- radioactive-ion beams
 - > 3 positive signals:
 - ★ GANIL 2002, RIKEN 2016, Munich 2022*
 - * stable beam

Indications for a tetra-neutron

GANIL 2002

Breakup on a C target: ${}^{14}\text{Be} \rightarrow {}^{10}\text{Be} + {}^{4}\text{n}$

RIKEN 2016

Double-charge-exchange: ⁸He(⁴He,⁸Be)⁴n

4 candidates for ⁴n resonance: $E_r=0.8\pm1.4$ MeV, $\Gamma<2.6$ MeV

4.9σ significance

Munich 2022

~10 candidates for bound ⁴n: BE=0.42±0.16 MeV

 3σ significance

3/6

6 candidates: bound 4^{n} or low-energy resonance (Er<2 MeV)

 2σ significance

Marqués et al., PRC 65 (2002) Marqués et al., arXiv:nucl-ex/0504009 (2005)

Indications for a tetra-neutron

GANIL 2002

Breakup on a C target: ${}^{14}\text{Be} \rightarrow {}^{10}\text{Be} + {}^{4}\text{n}$

RIKEN 2016

Double-charge-exchange: ⁸He(⁴He,⁸Be)⁴n

6 candidates: bound ${}^{4}n$ or low-energy resonance (Er<2 MeV)

 2σ significance

Marqués et al., PRC 65 (2002) Marqués et al., arXiv:nucl-ex/0504009 (2005) 4 candidates for ⁴n resonance: $E_r=0.8\pm1.4$ MeV, Γ <2.6 MeV

 4.9σ significance

Kisamori et al., PRL 116 (2016)

Munich 2022

~10 candidates for bound ⁴n: BE=0.42±0.16 MeV

 3σ significance

Indications for a tetra-neutron

GANIL 2002

Breakup on a C target: ${}^{14}\text{Be} \rightarrow {}^{10}\text{Be} + {}^{4}\text{n}$

RIKEN 2016

Double-charge-exchange: ⁸He(⁴He,⁸Be)⁴n

6 candidates: bound 4^{n} or low-energy resonance (Er<2 MeV)

 2σ significance

Marqués et al., PRC 65 (2002) Marqués et al., arXiv:nucl-ex/0504009 (2005) 4 candidates for ⁴n resonance: $E_r=0.8\pm1.4$ MeV, Γ <2.6 MeV

 4.9σ significance

Munich 2022

~10 candidates for bound ⁴n: BE=0.42±0.16 MeV

 3σ significance

Present experimental work

Method: ⁸He(p,p⁴He) quasi-elastic knockout

- High-energy 156 MeV/nucleon
- ⁸He is a good starting point:
 - \succ pronounced α -core structure
 - > large overlap <⁸He|α⊗4n>
- Large momentum transfer
 - "recoil-less" production

Results: energy spectra

benchmark reaction - ⁶He(p,p⁴He) - ⁶He(p, p⁴He) - Theory - Background

Confirms the expected di-neutron low-energy peak ~100 keV

0

20

 E_{2n} (MeV)

40

60

Ο

-20

Results: energy spectra

benchmark reaction - 6He(p,p4He)

Confirms the expected di-neutron low-energy peak ~100 keV

MD et al., Nature 606, 678 (2022)

⁸He(p,p⁴He) – four neutron system

Resonance like-structure:

 $E_r = 2.37 \pm 0.38(stat.) \pm 0.44(sys.) MeV$

 $\Gamma = 1.75 \pm 0.22$ (stat.) ± 0.30 (sys.) MeV

Overall consensus: no bound tetra-neutron

What about a resonance?

"there might be a ⁴n resonance near 2 MeV, ... must be very broad"

MD et al., Nature 606, 678 (2022)

Predictions for a resonance:

★ NCSM: Shirokov PRL 117 (2016);
 MC: Gandolfi PRL 118 (2017);
 小 NCGSM: Fossez PRL 119 (2017);
 ☆ NCGSM: Li PRC 100 (2019);

Predictions for a resonance:

★ NCSM: Shirokov PRL 117 (2016);
 QMC: Gandolfi PRL 118 (2017);
 小 NCGSM: Fossez PRL 119 (2017);
 ☆ NCGSM: Li PRC 100 (2019);

No resonant state:

Sofianos JPG 23 (1997); Deltuva PRL 123 (2019); Hiyama PRC 93 (2016); Lazauskas PTEP 073 (2017); Lazauskas PRC 72 (2005); Deltuva PLB 782 (2018); Higgins PRL 125 (2020); ...

- huge strength parameter of T = 3/2 3BF
- 15 times larger than for T = 1/2
- inconsistent with data of light nuclei

Predictions for a resonance:

★ NCSM: Shirokov PRL 117 (2016);
 QMC: Gandolfi PRL 118 (2017);
 小 NCGSM: Fossez PRL 119 (2017);
 ☆ NCGSM: Li PRC 100 (2019);

No resonant state:

Sofianos JPG 23 (1997); Deltuva PRL 123 (2019); Hiyama PRC 93 (2016); Lazauskas PTEP 073 (2017); Lazauskas PRC 72 (2005); Deltuva PLB 782 (2018); Higgins PRL 125 (2020); ...

- huge strength parameter of T = 3/2 3BF
- 15 times larger than for T = 1/2
- inconsistent with data of light nuclei

- Low-energy enhancement of some transition operators
- Explain signal in ⁸He(⁴He,⁸Be)⁴n reaction? (RIKEN 2016)
- Has to be combined with reaction mechanism

- Quasi-elastic ⁸He(p,pα) reaction at large momentum transfer to probe a 4n system in a recoil-less condition
- An experimental observation of a resonance-like structure
- Further calculations are needed to understand the low-energy peak observed and its origin
- Possible implications on the EOS at low-density

Thank you!

Article

Observation of a correlated free four-neutron system

M. Duer^{1⊠}, T. Aumann^{1,2,3}, R. Gernhäuser⁴, V. Panin^{2,5}, S. Paschalis^{1,6}, D. M. Rossi¹,
N. L. Achouri⁷, D. Ahn^{5,16}, H. Baba⁵, C. A. Bertulani⁸, M. Böhmer⁴, K. Boretzky², C. Caesar^{1,2,5},
N. Chiga⁵, A. Corsi⁹, D. Cortina-Gil¹⁰, C. A. Douma¹¹, F. Dufter⁴, Z. Elekes¹², J. Feng¹³, B. Fernánd
ez-Domínguez¹⁰, U. Forsberg⁶, N. Fukuda⁵, I. Gasparic^{1,5,14}, Z. Ge⁵, J. M. Gheller⁹, J. Gibelin⁷,
A. Gillibert⁹, K. I. Hahn^{15,16}, Z. Halász¹², M. N. Harakeh¹¹, A. Hirayama¹⁷, M. Holl¹, N. Inabe⁵,
T. Isobe⁵, J. Kahlbow¹, N. Kalantar-Nayestanaki¹¹, D. Kim¹⁶, S. Kim^{1,16}, T. Kobayashi¹⁸, Y. Kondo¹⁷,
D. Körper², P. Koseoglou¹, Y. Kubota⁵, I. Kuti¹², P. J. Li¹⁹, C. Lehr¹, S. Lindberg²⁰, Y. Liu¹³,
F. M. Marqués⁷, S. Masuoka²¹, M. Matsumoto¹⁷, J. Mayer²², K. Miki^{1,18}, B. Monteagudo⁷,
T. Nakamura¹⁷, T. Nilsson²⁰, A. Obertelli^{1,9}, N. A. Orr⁷, H. Otsu⁵, S. Y. Park^{15,16}, M. Parlog⁷,
P. M. Potlog²³, S. Reichert⁴, A. Revel^{7,9,24}, A. T. Saito¹⁷, M. Sasano⁵, H. Scheit¹, F. Schindler¹,
S. Shimoura²¹, H. Simon², L. Stuhl^{16,21}, H. Suzuki⁵, D. Symochko¹, H. Takeda⁵, J. Tanaka^{1,5},
Y. Togano¹⁷, T. Tomai¹⁷, H. T. Törnqvist^{1,2}, J. Tscheuschner¹, T. Uesaka⁵, V. Wagner¹, H. Yamada¹⁷,
B. Yang¹³, L. Yang²¹, Z. H. Yang⁵, M. Yasuda¹⁷, K. Yoneda⁵, L. Zanetti¹, J. Zenihiro^{5,25} &

678 | Nature | Vol 606 | 23 June 2022