
Argonne National Laboratory

Portability of Composable
Multiphysics Applications
Anshu Dubey

Contributors: Klaus Weide, Jared O’Neal, Fromm, Mohamed Wahib, Tom Klosterman,

Youngjun Lee, Wesley kweinciski

q June 27, 2024

acknowledgements
qThis work was partly supported by the U.S. Department of Energy

Office of Science, Office of Advanced Scientific Computing Research
(ASCR), and by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of the U.S. Department of Energy Office of
Science and the National Nuclear Security Administration.

2

Cosmological
cluster formation

Type Ia SN

Rayleigh-Taylor
instability

Ram pressure stripping

Rigid body structure

Accretion torus

Gravity impact on boiling

Core Collapse Supernova

Flash-X: A composable Multiphysics Software

3

Flash-X fundamentals

qBase discretization is Eulerian, using finite volume methods
qFundamental abstraction is a block with surrounding halo of ghost

cells
qAdaptive mesh refinement is used to reduce both memory footprint

and computations
qLagrangian framework super-imposed on Eulerian discretization

qUsed as tracers, N-body problems, fluid-structure interactions

4

Extensible Software Architecture

qBuilding blocks of code
qHierarchy of granularity
qUnits, subunits, components

qMultiple alternative implementations
qNull implementations of API
qHigh degree of composability
qHigh degree of customizability

qA tool that can arbitrate on what to include when
qSelf describing code components

5

Flash-X Configuration

Evolution
(time

stepping)

Hydro/MHD
Explicit
StencilsEOS

Pointwise
Table lookup

Burn
Pointwise

ODE

Cellular

6

Evolution
(time

stepping)

Hydro/MHD
Explicit
Stencils

Self Gravity
Semi-implicit

Stencils, FFT etc

EOS
Pointwise

Table lookup

Burn
Pointwise

ODE

Particles
Lagrangian

Supernova

Flash-X Configuration

7

Evolution
(time

stepping)

Levelset

INS

Boiling

Flash-X Configuration

8

Evolution
(time

stepping)

Levelset

INS

Anshu Dubey, Katie
Antypas, Murali K.
Ganapathy, Lynn B. Reid,
Katherine Riley, Dan
Sheeler, Andrew Siegel,
Klaus Weide,
Extensible component-
based architecture for
FLASH, a massively
parallel, multiphysics
simulation code,
Parallel Computing,
Volume 35, Issues 10–11,
2009, Pages 512-522,
https://doi.org/10.1016/j.
parco.2009.08.001.

Hydro/MHD
Explicit
Stencils

EOS
Pointwise

Particles
Lagrangian

Self Gravity
Semi-implicit

Stencils, FFT etc

Burn
Pointwise

ODE

Flash-X Configuration

9

The Key to Composability

setup

Alternative
Implementations

Config files

Sub components

10

Encoded metadata
Units I need

Units I don’t work with
State variables I need
AMR specific needs

Runtime parameters I want …

Config file for the gravity module. Available sub-modules:

Constant Spatially/temporally constant gravitational field
PlanePar 1/r^2 field for a distant point source
PointMass 1/r^2 field for an arbitrarily placed point source
Poisson Field for a self-gravitating matter distribution
UserDefined A user-defined field

REQUIRES Driver
DEFAULT Constant
PPDEFINE GRAVITY
EXCLUSIVE Constant PlanePar PointMass Poisson UserDefined
PARAMETER useGravity BOOLEAN TRUE

Rearchitect for heterogeneity
qSwitching over to C++ short-sighted

qPopular performance portability solutions are useful for this generation
qPlatforms appear poised for more heterogeneity

qTiles, specialized accelerators etc
qEven three GPU variants require huge teams to maintain abstraction
qOn-ramping possibilities are nearly non-existent

qNewer languages hold more promise
qMore robust abstractions for expressing data locality => more portability
qScientific software needs are first class objects
qNot all perform as well, but they likely will

qOpportunity to devise solutions that work and don’t preclude
transition to other languages

12

Philosophy of Design
qLet the code developer decide what should be done for

optimization on a platform
qMake it easy to have that happen without coding to metal
qKeep language specific features to a minimum

qTools are execution engines – little to no inferencing
qSimple and easy to maintain by non-experts
qHuman-in-the-loop handles inferencing and corner cases
qLeave open possibility of plugging in third party inferencing engines

13

Mechanisms Needed by the Code

Mechanisms to map work to
computational targets
• Figuring out the map

• Expression of dependencies
• Cost models

• Expressing the map

Mechanisms to move work and data
to computational targets
• Moving between devices

• Launching work at the destination
• Hiding latency of movement

• Moving data offnode

Mechanisms to unify expression of
computation
• Minimize maintained variants of source

suitable for all computational devices
• Reconcile differences in data structures

So what do we need?

• Abstractions layers
• Code transformation tools
• Data movement orchestrators

Mechanisms Needed by the Code

Express code with embedded macros
• Let macros have multiple alternative definitions
• Implement mechanism to select specific macro definition
• Implement mechanism to safely include more than one definition
• Allow inline, recursion and arguments in macros

Mechanisms to unify expression of
computation
• Minimize maintained variants of source

suitable for all computational devices
• Reconcile differences in data structures

Mechanisms Needed by the Code

Version 1

 integer,parameter:: N=10, M=12
 integer:: i,j
 real,dimension(N,M) :: A,B
 real,dimension(N) :: temp

 do j=1,n
 do i=1,m
 temp(i)=A(i,j)*0.5
 A(i,j) = A(i,j)*B(i,j)
 end do
 do i=1,m
 B(i,j)=temp(i)+A(i,j)
 end do
 end do

Version 2

 integer,parameter:: N=10, M=12
 integer:: i,j
 real,dimension(N,M) :: A,B
 real :: temp

 do j=1,n
 do i=1,m
 temp=A(i,j)*0.5
 A(i,j) = A(i,j)*B(i,j)
 B(i,j)=temp+A(i,j)
 end do
 end do

Unified Code

integer,parameter:: N=10, M=12
 integer:: i,j
 real,dimension(N,M) :: A,B
 @M declare

 do j=1,n
 do i=1,m
 @M tmp =A(i,j)*0.5
 A(i,j) = A(i,j)*B(i,j)
 @M break_loop
 B(i,j) = @M tmp +A(i,j)
 end do
 end do

Mechanisms Needed by the Code

Version 1

 integer,parameter:: N=10, M=12
 integer:: i,j
 real,dimension(N,M) :: A,B
 real,dimension(N) :: temp

 do j=1,n
 do i=1,m
 temp(i)=A(i,j)*0.5
 A(i,j) = A(i,j)*B(i,j)
 end do
 do i=1,m
 B(i,j)=temp(i)+A(i,j)
 end do
 end do

Unified Code

integer,parameter:: N=10, M=12
 integer:: i,j
 real,dimension(N,M) :: A,B
 @M declare

 do j=1,n
 do i=1,m
 @M tmp =A(i,j)*0.5
 A(i,j) = A(i,j)*B(i,j)
 @M break_loop
 B(i,j) = @M tmp +A(i,j)
 end do
 end do

[declare]
definition =
 real,dimension(N) :: temp

[tmp]
definition =
 temp(i)

[break_loop]
definition =
 end do
 do i=1,m

Mechanisms Needed by the Code

Unified Code

integer,parameter:: N=10, M=12
 integer:: i,j
 real,dimension(N,M) :: A,B
 @M declare

 do j=1,n
 do i=1,m
 @M tmp =A(i,j)*0.5
 A(i,j) = A(i,j)*B(i,j)
 @M break_loop
 B(i,j) = @M tmp +A(i,j)
 end do
 end do

[declare]
definition =
 real :: temp

[tmp]
definition =
 temp

[break_loop]
definition =

Version 2

 integer,parameter:: N=10, M=12
 integer:: i,j
 real,dimension(N,M) :: A,B
 real :: temp

 do j=1,n
 do i=1,m
 temp=A(i,j)*0.5
 A(i,j) = A(i,j)*B(i,j)
 B(i,j)=temp+A(i,j)
 end do
 end do

The Key to Composability

setup

Alternative
Implementations

Config files

Sub components

19

Lowest granularity -- subroutine

Express code with embedded macros
• Let macros have multiple alternative

definitions
• Implement mechanism to select

specific macro definition
• Implement mechanism to safely

include more than one definition
• Allow inline, recursion and arguments

in macros

Encoded metadata
Units I need

Units I don’t work with
State variables I need
AMR specific needs

Runtime parameters I want …

CPU Specific Definitions

[indices] [loop] [loop_end]
definition = definition = definition =

GPU Specific Definitions

[indices]
definition =
 ,i1,i2,i3

[loop]
definition=
 do i3 = i3LOW, i3HIGH
 do i2 = i2LOW,i2HIGH
 do i1 = i1LOW,i1HIGH

[loop_end]
definition =
 enddo
 enddo
 enddo

Common Definition
[hy_fluxes]
definition =
@M loop
 if (flux(1@M indices) > 0.) then
 flux(:@M indices) = XL(:@M indices)
 else
 flux(:@M indices) = XR(:@M indices)
 end if
 @M loop_end

Source code using macro
 @M hy_fluxes

Translated Code for GPU

do i3 = i3LOW, i3HIGH
 do i2 = i2LOW,i2HIGH
 do i1 = i1LOW,i1HIGH
 if (flux(1 ,i1,i2,i3) > 0.) then
 flux(: ,i1,i2,i3) = uPlus(: ,i1,i2,i3)
 else
 flux(: ,i1,i2,i3) = uMinus(: ,i1,i2,i3)
 end if
 enddo
 enddo
 enddo

Translated Code for CPU

if (flux(1) > 0.) then
 flux(:) = uPlus(:)
 else
 flux(:) = uMinus(:)
 end if

21

Mechanisms Needed by the Code
Mechanisms to map work to
computational targets
• Figuring out the map

• Expression of dependencies
• Cost models

• Expressing the map

CGKit : Generating Code from
Recipes and code Templates

1) Physics 1
 1-a) Physics 3
2) Physics 2

* Physics 3 depends on
Physics 1
* Physics 2 depends on
Physics 1

User-written Simulation “Recipe”
subroutine A(…)
 implicit none
 …
end subroutine A

subroutine B(…)
 implicit none
 …
end subroutine B

Source codes

User inspect

CG-Kit

Flash-X: Multiphysics simulation code

1) Physics 1
 1-a) Physics 3
2) Physics 2

* Physics 3 depends on
Physics 1
* Physics 2 depends on
Physics 1

User-written Simulation “Recipe”
subroutine A(…)
 implicit none
 …
end subroutine A

subroutine B(…)
 implicit none
 …
end subroutine B

Source codes

User inspect

CG-Kit

24

CG-Kit

CG-Kit Recipes &
Control Flow Graph Nodes

CG-Kit tool:
Control Flow Graph

CG-Kit
Control Flow Graph

CG-Kit tools:
Control Flow Graph & PST

generated source code
(C/C++/Fortran)

CG-Kit PST Templates

platform-specific
knowledge

static source code
(C/C++/Fortran)

fully assembled
source code

Compiler

platform-specific
executable

25

Control Flow Graph

qCG-Kit generates Control Flow Graph by reading user input
(recipe).
qRepresented as a directed acyclic graph (DAG)
qEach node represents user-defined code generation operations.

qPST
qEach edge describes dependencies between nodes.

26

Variants For Hydrodynamics

qFlash-X supports two block-structured AMR grid backends
qParamesh: Octree-based
qAMReX: Level-based

qEach has different preferences for flux correction at fine-coarse
boundaries

Paramesh AMReX

27

Spark Variants (RK Modes)

qThe performance trade-offs from Telescoping mode can be varying
depending on the simulation size, computation intensity, and
hardware

qThe best practice would be to conduct the performance analysis
ahead of production simulations

Non-telescoping (traditional) Telescoping

28

Spark Variants (RK Modes)

0

2

4

6

8

10

12

14

16

18

20

8 32 128 512

Ti
m

e

Number of Nodes

Hydro NT
Hydro T
gcfill NT
gcfill T

Performance comparisons on
the CPU-only machine (Fugaku)

Performance comparisons on
the GPU

(Nvidia RTX 3080)

29

Spark Variants

30

Mechanisms Needed by the Code

Mechanisms to move work and data
to computational targets
• Moving between devices

• Launching work at the destination
• Hiding latency of movement

• Moving data offnode
Data type

Milhoja: An extended finite state machine to move
data and computation

q A mechanism to move data and computation between devices

Milhoja

32

R S

Task Fcn B
(GPU)

X Y

Task Fcn A
(CPU)

T

Task Fcn C
(CPU)

ZCPU CPU

Distributor

DM/Unpack

Da
ta

 P
ac

ke
t

ConcurrentDataBegin ConcurrentDataEnd

Control flow graph (With Milhoja)

Distributors
• Use block iterator
• Aggregate blocks if necessary
• Initiate asynchronous

transfers if necessary
• Push blocks to other elements

Helpers
• Initiate asynchronous

transfers if necessary
• Translate data types

Computation to
apply to each data
item

Data type

Number of threads in team
activated to apply action to
data items

Thread Teams

33

Single data-parallel pipeline configuration
CPU/GPU Data Parallel

Two-pipeline configuration

Milhoja - An extended finite state machine to move data and computation

Code Generators

qTwo Classes
qData packet generators

qParse the interface files
qCollect all data to be put into a data packet
qGenerate code that will flatten all data into data packets

qTask function generators
qConsolidate functions to be invoked
qBookended by internode communication
qUnpack data packets

qDecorate interface definitions with needed metadata
Example

34

https://github.com/Flash-X/Flash-X/blob/ylee/try_pushTile_spark/source/physics/Hydro/HydroMain/Spark/Hydro_interface.ini

Code generation

35

CG-Kit PST Templates

CG-Kit Recipe

Platform-specific
knowledge

Control Flow Graph Control Flow Graph &
PST

JSON generator Milhoja
(code generator)

Generated Source code
(Data Packets &
Taskfunctions)

Generated Source code
(Time Stepper)

Static source codes
(Fortran or C/C++) Macroprocessor Fully assembled source

code

Compiler

Platform-specific
executable

Milhoja
(runtime)

(Numerics & Macros)

Library of templates for time-
stepping

Se
tu

p
to

ol
 (a

rb
itr

at
e)

code for
target
device

Static physics code
• Componentized
• Encoded with macros

Platform specific information

Recipe for
control flow

in time
stepping

CG
Ki

t

Source code
for time
stepping

and
Interface to

MilhojaLibrary of runtime pipelines
M

ac
ro

pr
oc

es
so

r

Source code
for physics
operators

Hu
m

an
 in

 th
e

lo
op

Se
tu

p
to

ol
 (c

od
e

as
se

m
bl

ey
) Fully assembled

and configured
source code

Compiler
Llinker

Executable

Code Assembly

Library of templates for time-
stepping

Se
tu

p
to

ol
 (a

rb
itr

at
e)

code for
target
device

Static physics code
• Componentized
• Encoded with macros

Platform specific information

Recipe for
control flow

in time
stepping

CG
Ki

t

Source code
for time
stepping

and
Interface to

MilhojaLibrary of runtime pipelines
M

ac
ro

pr
oc

es
so

r

Source code
for physics
operators

Hu
m

an
 in

 th
e

lo
op

Se
tu

p
to

ol
 (c

od
e

as
se

m
bl

ey
) Fully assembled

and configured
source code

Compiler
Llinker

Executable

Unify expression of computation, setup tool and macroprocessor
• Alternative defnitions/implementations
• Arbitration on which one to pick

Library of templates for time-
stepping

Se
tu

p
to

ol
 (a

rb
itr

at
e)

code for
target
device

Static physics code
• Componentized
• Encoded with macros

Platform specific information

Recipe for
control flow

in time
stepping

CG
Ki

t

Source code
for time
stepping

and
Interface to

MilhojaLibrary of runtime pipelines
M

ac
ro

pr
oc

es
so

r

Source code
for physics
operators

Hu
m

an
 in

 th
e

lo
op

Se
tu

p
to

ol
 (c

od
e

as
se

m
bl

ey
) Fully assembled

and configured
source code

Compiler
Llinker

Executable

Unify expression of computation, setup tool and macroprocessor
• Alternative defnitions/implementations
• Arbitration on which one to pick

Mechanism to map work to computational targets
• Figuring out the map
• Expressing the map

Library of templates for time-
stepping

Se
tu

p
to

ol
 (a

rb
itr

at
e)

code for
target
device

Static physics code
• Componentized
• Encoded with macros

Platform specific information

Recipe for
control flow

in time
stepping

CG
Ki

t

Source code
for time
stepping

and
Interface to

MilhojaLibrary of runtime pipelines
M

ac
ro

pr
oc

es
so

r

Source code
for physics
operators

Hu
m

an
 in

 th
e

lo
op

Se
tu

p
to

ol
 (c

od
e

as
se

m
bl

ey
) Fully assembled

and configured
source code

Compiler
Llinker

Executable

Unify expression of computation, setup tool and macroprocessor
• Alternative definitions/implementations
• Arbitration on which one to pick

Mechanism to map work to computational targets
• Figuring out the map
• Expressing the map

Mechanism to move work and data to targets
• Moving between devices
• Hiding latency of movement

Milhoja
(runtime
library)

Porting to a new platform
qIn an ideal world

qAdd to the library of runtime pipelines
qAdd to the library of recipes templates
qAdd to the knowledge base of the performance model

qIn real world
qAdd variants for some solvers with alternative definitions of keys

qIn the worst case
qDevelop new algorithms and add whole alternative implementation for some

solvers

40

Questions …..

41

