

Ab initio nuclear correction to the Lamb shift

Testing fundamental physics with light muonic atoms

Collaborators: Petr Navratil, Michael Gennari

Mehdi Drissi TRIUMF - Theory department

Fundamental Physics with Radioactive Molecules

INT Seattle - 15th of March 2023

The muonic Lamb Shift as a precision probe

A key probe to develop the Standard Model...

... and pushing the precision frontier further

- Muonic atom spectroscopy
 - X-ray spectroscopy
 - On-going experimental efforts

Theoretical modeling

- Lamb-shift to atomic energy levels
- Two-photon exchange corrections
- Numerical implementation
 - No-Core Shell Model
 - Nuclear polarizability of ⁷Li

Observing muonic atoms with X-rays

Muonic X-ray achievements

- Precise spectroscopy of almost all stable elements
- Specific transition targeted with low-latency lasers
- Absolute charge radii extracted ⇒ highest accuracy
- → Higher sensitivity due to higher overlap $\sim \left(\frac{m_{\mu}}{m_{e}}\right)^{3} \sim 10^{7}$

Observing characteristic X-rays

Practical limitations

- × <u>In general</u>: limitations are very experiment dependent
- × Never observe a **unique** muonic atom in the **vacuum**
- × Never with a perfect energy resolution
- Many experimental challenges !

Real life X-ray measurements

Cascade modelling

- Many possible processes after a muon reaches the g.s.
 - Radiative transitions
 - External Auger effect
 - Stark mixing 0
 - **o** ...

Competition: radiative vs collisional processes Similar issue for metastable 2S used with lasers

Mechanism	Example
Radiative	$(\mu p)_i \rightarrow (\mu p)_f + \gamma$
External Auger effect	$(\mu p)_i + \mathrm{H}_2 \rightarrow (\mu p)_f + e^- + \mathrm{H}_2$
Stark mixing	$(\mu p)_{nl} + H \rightarrow (\mu p)_{nl'} + H$
Elastic scattering	$(\mu p)_n + H \rightarrow (\mu p)_n + H$
Coulomb transitions	$(\mu p)_{n_i} + p \rightarrow (\mu p)_{n_f} + p, n_f$
Transfer (isotope exchange)	$(\mu p)_n + d \rightarrow (\mu d)_n + p$
Absorption	$(\pi^- p)_{n\mathrm{S}} \to \pi^0 + n, \ \gamma + n$

[Markushin, Hyperfine Interactions (1999)]

Standard Cascade Model

 H_{2}^{+}

 $< n_i$

In general many requirement on experiments

- High-precision laser spectroscopy measurements \Rightarrow requirement on density of gaseous target
- Radioactive nuclei \Rightarrow difficult to build thick target
- High precision \Rightarrow good energy resolution

- Muonic atom spectroscopy
 - X-ray spectroscopy
 - On-going experimental efforts

Theoretical modeling

- Lamb-shift to atomic energy levels
- Two-photon exchange corrections
- Numerical implementation
 - No-Core Shell Model
 - Nuclear polarizability of ⁷Li

Reaching high resolution for light nuclei

NuPECC Long Range Plan 2024

Energy resolution issue

- Intrinsic energy resolution of semi-conductor
 - Not great for $E \leq 200 \text{ keV}$
 - Limits their usage to $Z \ge 10$ 0
- Light nuclei radii measurements
 - e-scattering data \Rightarrow low precision 0
 - Crystal spectrometer \Rightarrow low efficiency 0
- New collaboration QUARTET
 - Aim to develop a quantum sensor to reach low-Z nuclei 0
- Idea: X-ray \Rightarrow heat \Rightarrow magnetization \Rightarrow SQUID detector 0
- **On-going work at PSI** 0

Even more promising: muonic laser experiments !

Laser spectroscopy for light atoms

[Antognini, Kottman ent Pohl, SciPost (2021)]

Laser spectroscopy for light muonic atoms

- General idea
 - Muon detected via electron emission in coincidence
 - \rightarrow triggers laser pumping on $2S \rightarrow 2P$
- Laser pumping
 - muon decays to 2S state \Rightarrow driven by E1 (~ 100 ns)
 - decay to 1S limited (2-photon decay) $\Rightarrow 2S \sim 1\mu s$ lifetime 0
 - long enough for pulsed laser
- **CREMA** collaboration
 - Already developed for μ H, μ D and μ He 0
 - Main goal: develop a target made of dense cloud of Li
 - On-going work at PSI

X-ray spectroscopy for radioactive target

Reducing the required size of the target

General idea

- Muons are captured by protons
- (ii) In $\sim 100 \text{ ns}$, muon transfers to D with 45 keV kinetic gain
- μD slows down to 4 eV where cross-section is low \Rightarrow high mobility
- (iv) Muons transfer to high-Z atoms

muX collaboration

- Optimized the H/D gas mix to get best performance ($\sim 0.25\%$) 0
- Tested on $5\mu g$ Au target instead of standard amount of ~ 100 mg 0
- Preliminary results on radioactive ^{248}Cm and ^{226}Ra targets 0
- End goal: search **parity violating E1** in 2S 1S transition 0

- Muonic atom spectroscopy
 - X-ray spectroscopy
 - On-going experimental efforts

Theoretical modeling

- Lamb-shift to atomic energy levels
- Two-photon exchange corrections
- Numerical implementation
 - No-Core Shell Model
 - Nuclear polarizability of ⁷Li

From energy levels to nuclear structure

Converting experimental data

- What to do once precise value of energy levels is known?
 - Can be used to **test fundamental constants** like $R_{\infty}, \alpha, m_{e}$
 - Can be used to extract **nuclear structure information** like r_c
 - Can be used to test validity of many-body calculations 0
- Example in practice: Lamb shift in meV $2S_{1/2} 2P_{1/2}$ (r_x in fm) [Antognini et al, SciPost (2021)]

 $\Delta E(\mu H) = 206.0336(15) - 5.2275(10) \times r_p^2 + 0.0332(20)$ $\Delta E(\mu D) = 228.7767(10) - 6.1103(3) \times r_D^2 + 1.7449(200)$ $\Delta E(\mu^{4}\text{He}) = 1668.489(14) - 106.220(8) \times r_{\alpha}^{2} + 9.201(291)$

General many-body problem

Degrees of freedom

• Muon $\rightarrow \psi_{\mu}$; Nucleons $\rightarrow N$; photon $\rightarrow A$

Hamiltonian

• For simplicity assume non-relativistic nucleons of equal mass

$$\begin{split} H &= H_{Nucl} + e \int d^3x \ J_{\mu}(x) A^{\mu}(x) \ [\text{Friar, Rosen, Annals of Physics (1)} \\ &+ \frac{e^2}{2m} \int d^3x d^3y \ f_{SG}(x,y) \ \vec{A}(x).\vec{A}(y) \\ &+ H_{QED} \end{split}$$

<u>General approach to compute bound state of H</u>

In principle use Bethe-Salpeter \Rightarrow bound states $\equiv G_2$ poles Х

✓ In practice use effective instantaneous potential

DWB correction up to $(Z\alpha)^5$ to match exp accuracy

Bound states QED contributions

Bound muon within potential

Zero-order: one-body Coulomb interaction

• Solve exactly for
$$H_0 = \frac{\vec{p}^2}{2m_r} - \frac{Z\alpha}{r}$$

•
$$E_{nl} = -\frac{(Z\alpha)^2 m_r}{2n^2} \equiv E^{(0)}$$

- Effective potential applied on muon
 - What is relativistic extension to Coulomb ?
 - Define effective potential to reproduce E_{nl} at a given order
 - Power-counting \Rightarrow DWB on H_0

Main type of contributions

- Electron vacuum polarization: $a_{\mu} \sim \lambda_e \Rightarrow$ main correction!
- Finite nuclear mass ⇒ recoil and relativistic corrections
- muon self-energy terms

Example: electron vacuum polarization corrections

where $\bar{\omega} \equiv 1$ PI expanded in powers of α

$$-\frac{g^{\mu\nu}}{q^2} \to \frac{g^{\mu\nu}}{q^2} (1+\rho^{(1)}+\rho^{(2)}+\dots)$$

$$V^{(i)}(r) = -(Z\alpha) \int \frac{\mathrm{d}^3 \vec{q}}{(2\pi)^3} \frac{4\pi}{\vec{q}^2} \ \rho^{(i)}(-\vec{q}^2) \ e^{i\vec{q}\cdot\vec{r}}$$

$$\Rightarrow E_{nl} = E^{(0)} + \langle V^{(1)} \rangle + \langle V^{(2)} \rangle + \langle V^{(1)} \frac{1}{(E_0 - H_0)'} V^{(1)}$$

[Pachucki et al. Review of Modern Physics (2024)]

Bound states QED contributions

Section	Order	Correction	μH	μD	μ^{3} He ⁺	$\mu^4 \mathrm{He^+}$
III.A	$\alpha(Z\alpha)^2$	$eVP^{(1)}$	205.007 38	227.63470	1641.8862	1665.773 1
III.A	$\alpha^2 (Z\alpha)^2$	$eVP^{(2)}$	1.658 85	1.838 04	13.0843	13.2769
III.A	$\alpha^3 (Z\alpha)^2$	$eVP^{(3)}$	0.007 52	0.008 42(7)	0.073 0(30)	0.074 0(3
III.B	$(Z, Z^2, Z^3)\alpha^5$	Light-by-light eVP	-0.00089(2)	-0.00096(2)	-0.0134(6)	-0.0136(0
III.C	$(Z\alpha)^4$	Recoil	0.057 47	0.067 22	0.1265	0.295 2
III.D	$\alpha(Z\alpha)^4$	Relativistic with eVP ⁽¹⁾	0.018 76	0.021 78	0.509 3	0.5211
III.E	$\alpha^2 (Z\alpha)^4$	Relativistic with eVP ⁽²⁾	0.000 17	0.000 20	0.005 6	0.005 7
III.F	$\alpha(Z\alpha)^4$	$\mu SE^{(1)} + \mu VP^{(1)}$, LO	-0.663 45	-0.769 43	-10.6525	-10.9260
III.G	$\alpha(Z\alpha)^5$	$\mu SE^{(1)} + \mu VP^{(1)}$, NLO	-0.00443	-0.005 18	-0.1749	-0.1797
III.H	$\alpha^2 (Z\alpha)^4$	$\mu VP^{(1)}$ with $eVP^{(1)}$	0.000 13	0.000 15	0.003 8	0.003 9
III.I	$\alpha^2(Z\alpha)^4$	μ SE ⁽¹⁾ with eVP ⁽¹⁾	-0.00254	-0.00306	-0.0627	-0.0646
III.J	$(Z\alpha)^{5}$	Recoil	-0.04497	-0.026 60	-0.5581	-0.4330
III.K	$\alpha(Z\alpha)^5$	Recoil with eVP ⁽¹⁾	0.000 14(14)	0.000 09(9)	0.004 9(49)	0.003 9(3
III.L	$Z^{2}\alpha(Z\alpha)^{4}$	$nSE^{(1)}$	-0.009 92	-0.003 10	-0.0840	-0.0505
III.M	$\alpha^2 (Z\alpha)^4$	$\mu F_1^{(2)}, \ \mu F_2^{(2)}, \ \mu VP^{(2)}$	-0.001 58	-0.001 84	-0.0311	-0.0319
III.N	$(Z\alpha)^6$	Pure recoil	0.000 09	0.000 04	0.001 9	0.0014
III.O	$\alpha(Z\alpha)^5$	Radiative recoil	0.000 22	0.000 13	0.0029	0.0023
III.P	$\alpha (Z\alpha)^4$	hVP	0.011 36(27)	0.013 28(32)	0.224 1(53)	0.230 3(
III.Q	$\alpha^2 (Z \alpha)^4$	hVP with eVP ⁽¹⁾	0.000 09	0.000 10	0.002 6(1)	0.002 7(1

[Pachucki et al. Review of Modern Physics (2024)]

Finite size nuclear contributions

Finite nuclear size contribution

- Correction to account for non-point like nucleus
 - Similar approach as pure QED contributions
 - Multipole expansion of charge distribution

 \blacksquare Main contributions $\propto r_c^2$

- Beyond charge radius contributions
 - $^{\rm o}$ In principle higher order terms leads to multipoles of ρ
 - Experiments not precise enough for now
 - CREMA = on-going attempt to measure **HFS for proton!**

Section	Order	Correction	μH	μD	$\mu^3 \text{He}^+$	$\mu^4 \text{He}^+$
IV.A	$(Z\alpha)^4$	r_C^2	$-5.1975r_p^2$	$-6.073 2r_d^2$	$-102.523r_h^2$	$-105.322r_{\alpha}^{2}$
IV.B	$lpha(Zlpha)^4$	$eVP^{(1)}$ with r_C^2	$-0.028 2r_p^2$	$-0.0340r_d^2$	$-0.851r_{h}^{2}$	$-0.878r_{\alpha}^{2}$
IV.C	$lpha^2(Zlpha)^4$	$eVP^{(2)}$ with r_C^2	$-0.000 2r_p^2$	$-0.000 2r_d^2$	$-0.009(1)r_h^2$	$-0.009(1)r_{\alpha}^{2}$

Examples taking into account electron vacuum polarization

[Pachucki et al. Review of Modern Physics (2024)]

Nuclear structure dependent corrections

Nuclear structure effects

<u>Corrections accounting for non static effects</u>

- The nucleus is no longer treated as an external potential
- Main contribution comes from two-photon exchange δ_{TPE}
- Nuclear excited states become necessary to be accounted for
- $\rightarrow \delta_{TPE}$ contributes at $(Z\alpha)^5$

Beyond TPE

- Further corrections three-, four-, ... photon exchange
- can also be combined with vacuum polarization, ...

Two photon exchanges contributions μ μ μ Ν Ν $\frac{(4\pi Z\alpha)}{|\phi_{nl}(0)|^2} \mathrm{Im}$ $\frac{\mathrm{d}^{4}q}{\sqrt{2}} D^{\mu\rho}(q) D^{\nu\tau}(-q) t_{\mu\nu}(q,k) T_{\rho\tau}(q,-q)$ $\Delta E_{nl} = -$

with:

- $D^{\mu\nu}(q) \equiv$ the photon propagator
- $t_{\mu\nu} \equiv$ the lepton tensor
- $T_{\mu\nu} \equiv$ the hadronic tensor
- $k \equiv (m_r, 0)$

[Bernabeu et al, Nuclear Physics A (1974)] [Rosenfelder Nuclear Physics A (1983)] [Hernandez et al. Physical Review C (2019)]

- Muonic atom spectroscopy
 - X-ray spectroscopy
 - On-going experimental efforts

Theoretical modeling

- Lamb-shift to atomic energy levels
- Two-photon exchange corrections
- Numerical implementation
 - No-Core Shell Model
 - Nuclear polarizability of ⁷Li

Nuclear Compton Tensor

Pure electromagnetic part

Leptonic tensor:

• Wave-function approximation

Free muon propagator + $\phi_{1s}(0)$ decoupled from nuclear currents

$$t_{\mu\nu}(q,k) = \frac{\frac{1}{4} \text{Tr} \left[\gamma_{\mu} (\not{k} - \not{q} + m_{r}) \gamma_{\nu} (\not{k} + m_{r}) \right]}{(k-q)^{2} - m_{r}^{2} + i\epsilon}$$

- Photon propagator:
 - Use Coulomb gauge
 - Convenient to split charge and transverse contributions

$$D^{\mu\nu}(q) = \begin{pmatrix} \frac{1}{\vec{q}^{\,2}} & 0\\ 0 & \frac{1}{q^2} \left(\delta_{ij} - \frac{q_i q_j}{\vec{q}^{\,2}}\right) \end{pmatrix}$$

Overall relatively well under-controlled

Hadronic part

Hadronic tensor:

• Approximations: no recoil $+ p_{\mu} \ll m_{\mu}$

[Bernabeu et al, Nuclear Physics A (1974)]

[Friar, Annals of Physics (1976)]

<u>Seagull</u>: necessary to cancel divergence + use dispersion relation

Decomposition of two-photon exchange

• <u>Nucleon/Nucleus decomposition</u>: (in the end use DR to model $T_{\mu\nu}$)

$$\delta_{TPE} = (\delta_{el}^{N} + \delta_{pol}^{N}) + (\delta_{el}^{A} + \delta_{pol}^{A})$$

Nuclear modeling

Model used of nuclear currents

<u>Multipole decomposition of nuclear currents</u>

[Donnelly, Haxton, Atomic and Nuclear Data Tables (1979)]

• $M_{JM_J;TM_T}(q) \equiv \int d^3x \mathbf{M}_J^{M_J}(qx) J_0(x)_{TM_T}$ • $T^{E}_{JM_{J};TM_{T}}(q) \equiv \int d^{3}x \left[\frac{1}{q}\nabla \times \vec{\mathbf{M}}^{M_{J}}_{JJ}(qx)\right] . \vec{J}(x)_{TM_{T}}$

•
$$T^M_{JM_J;TM_T}(q) \equiv \int d^3x \vec{\mathbf{M}}^{M_J}_{JJ}(qx) \cdot \vec{J}(x)_{TM_T}$$

 \blacksquare Truncation at J = 1

- <u>Electromagnetic current modeling</u>
 - Decomposed within the seven operator basis
 - Form factors given by the isovector dipole model

•
$$f_{SN}(q) = \left(1 + \frac{q^2}{M_V^2}\right)^{-2}$$
, $F_{1,2}^{(T)}(q) = F_{1,2}^{(T)}(0) f_{SN}(q)$

where $F_{1,2}^{(T)}(0)$ based on $\mu^{S,V}$ (nucleon magnetic moments)

Model used of nuclear many-body state

- Ab initio nuclear interaction [Entem et al. (2017)] [Somà et al. (2020)]
 - Chiral interaction: 2N-N4LO(500) + 3N(lnl)-N2LO
 - Eventually will have to be varied
- Model space
 - Harmonic oscillator Slater determinant

 \blacksquare Sub-space truncation: $\hbar\Omega = 18$ MeV, $N_{max} = 7$

- Many-body approximation
 - No-Core Shell Model
 - More details in next section

Need expression of δ^A_{pol} in terms of multipole currents !

Master formula

Inputs to evaluate nuclear polarizability

Charge spectral function

$$S_{C,J}(\omega,q) \equiv \sum_{N \neq 0} |\langle N | M_{J0}(q) | \Psi \rangle|^2 \delta(E_N - E_0 - \omega)$$

Transverse electric spectral function

$$S_{T,J}^E(\omega,q) \equiv \sum_{N \neq 0} |\langle N | T_{J0}^E(q) | \Psi \rangle |^2 \delta(E_N - E_0 - \omega)$$

Transverse magnetic spectral function

$$S_{T,J}^{M}(\omega,q) \equiv \sum_{N \neq 0} |\langle N | T_{J0}^{M}(q) | \Psi \rangle|^{2} \delta(E_{N} - E_{0} - \omega)$$

Non-relativistic reduction

• Limit: $q \ll m_r$

→ Only charge kernel remains \Rightarrow simpler + consistency check

$$K_C(\omega, q) \to K_{NR}(\omega, q) = \frac{1}{q^2 \left(\frac{q^2}{2m_r} + \omega\right)}$$
$$K_L(\omega, q) \to 0$$
$$K_S(\omega, q) \to 0$$

Relativistic formulation

[Rosenfelder Nuclear Physics A (1983)]

- Decomposition of nuclear polarizability: [Hernandez et al. Physical Review C (2019)]
 - Contribution from **charge**, **transverse electric** and **magnetic**

$$\delta_{pol}^{A} = \Delta_{C} + \Delta_{T,E} + \Delta_{T,M}$$

$$\Delta_{C} = -8(Z\alpha)^{2} |\phi_{2S}(0)|^{2} \int dq \int d\omega \ K_{C}(\omega,q) S_{C}(\omega,q) ,$$

$$\Delta_{T,E} = -8(Z\alpha)^{2} |\phi_{2S}(0)|^{2} \int dq \int d\omega \ K_{T}(\omega,q) S_{T}^{E}(\omega,q) + K_{S}(\omega,q) S_{T}^{E}(\omega,q)$$

$$\Delta_{T,M} = -8(Z\alpha)^{2} |\phi_{2S}(0)|^{2} \int dq \int d\omega \ K_{T}(\omega,q) S_{T}^{M}(\omega,q)$$

• Kernels in the integrals:

$$K_C(\omega,q) = \frac{1}{E_q} \left[\frac{1}{(E_q - m_r)(\omega + E_q - m_r)} - \frac{1}{(E_q + m_r)(\omega + E_q + m_r)} - \frac{1}{(E_q + m_r)(\omega + E_q + m_r)} \right]$$
$$K_L(\omega,q) = \frac{q^2}{4m_r^2} K_C(\omega,q) - \frac{1}{4m_r q} \frac{\omega + 2q}{(\omega + q)^2}$$
$$K_S(\omega,q) = \frac{1}{4m_r \omega} \left[\frac{1}{q} - \frac{1}{E_q} \right]$$

- Muonic atom spectroscopy
 - X-ray spectroscopy
 - On-going experimental efforts

Theoretical modeling

- Lamb-shift to atomic energy levels
- Two-photon exchange corrections
- Numerical implementation
 - No-Core Shell Model
 - Nuclear polarizability of ⁷Li

20

The No-Core Shell Model

Lanczos tridiagonalization algorithm [Lanczos (1950)]

Initialization: normalized pivot |\$\phi_1\$
Recursion: \$\alpha_i\$, \$\beta_i\$ and \$|\$\phi_i\$
\$\beta_{i+1} |\$\phi_{i+1}\$ \rangle = \$H |\$\phi_i\$ \rangle - \$\beta_i\$ |\$\phi_{i-1}\$ \rangle\$
\$\beta_{i+1} |\$\phi_{i+1}\$ \rangle = \$H |\$\phi_i\$ \rangle - \$\beta_i\$ |\$\phi_{i-1}\$ \rangle\$
\$\beta_{i} = \$\langle \phi_i\$ |\$H |\$\phi_i\$ \rangle\$ and \$\beta_{i+1}\$ ist \$\langle \phi_{i+1}\$ |\$\phi_{i+1}\$ = 1
Output:

Lanczos basis and coefficients \$\$|\$\phi_i\$, \$\alpha_i\$, \$\alpha_i\$, \$\beta_i\$, \$\beta_i

Application to nuclear structure

- Extraction of spectra
 - Selection rules sparsity ⇒ Fast matrix-vector multiplication
 - In practice: $N_L \sim 100 200$ is sufficient to converge low-lying states
 - Cost of diagonalization of the tridiagonal matrix is negligible

Anti-symmetrized products of many-body HO states

Application to ⁷Li

- <u>Parameters of many-body calculation</u> • $N_L = 250$ for $N_{max} = 7$ and $\hbar\Omega = 18$ MeV
- <u>Results</u>
 - Ground-state of ⁷Li $|\Psi\rangle \Rightarrow$ **Used as a test for** δ_{LS}

We need to compute

- Lanczos strength algorithm

- Muonic atom spectroscopy
 - X-ray spectroscopy
 - On-going experimental efforts

Theoretical modeling

- Lamb-shift to atomic energy levels
- Two-photon exchange corrections
- Numerical implementation
 - No-Core Shell Model
 - Nuclear polarizability of ⁷Li

23

Testing convergence of sum rules for δ^A_{pol}

First tests of sum rule convergence

- Before running expansive q-dependent
 - Test convergence of strength integrals 0
 - Cases tested based on **electric dipole operator** 0

Test convergence sum rules

Next step: q-dependent calculations of δ_{pol}^A !

(Very) preliminary results

Conclusion

Summary

- Promising muonic spectroscopy are on the way!
 - Laser spectroscopy of muonic atoms
 - \Rightarrow an order of magnitude more precise than before
 - Other experimental projects enlarge the nuclei reachable
 - \Rightarrow Low-Z with quantum sensor
 - ⇒ Radioactive nuclei with new target technology
- Involved theoretical calculations
 - Pure particle physics \Rightarrow bound state QED
 - Nuclear structure corrections \Rightarrow **dominant uncertainty**
- Output initio nuclear calculations of two-photon exchange
 - Critical to reduce uncertainty in radii extraction
 - Proof-of-principle for ⁷Li within NCSM

Outlook

- Completing ab initio calculation
 - Convergence studies (in dq, in J_{max} , in N_{max})

Essential for uncertainty estimation

- Including nucleon contribution
 - Similar to super allowed beta decay
 - Combine nucleon/nucleus models using dispersion relation
 - Expect reduction of uncertainty
- Controlling theoretical uncertainty
- Necessary to combine multiple scales
- Critical to have reliable uncertainty estimations
- Developing a complete network of EFTs

Thank you Merci

www.triumf.ca Follow us @TRIUMFLab

