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The muonic Lamb Shift as a precision probe

A key probe to develop the Standard Model...
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And much more !!

... and pushing the precision frontier further
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O Precise measurement of proton radius:

r, = 8.414(19) X 10~°m

0 Rydberg constant re-evaluation:

[CODATA 2018]

[CODATA 2018]

R = 10973 731.568160(21) m™!
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Observing muonic atoms with X-rays

How to make muonic atom Observing characteristic X-rays

H

>

(i) Pion decay: (ii) High intensity beam: (ii) Thick target:

muon source momentum filtering, ... capture muons

Typically muons captured on orbitals with n ~

Muonic X-ray achievements Practical limitations

® Precise spectroscopy of almost all stable elements x In general: limitations are very experiment dependent

® Specific transition targeted with low-latency lasers

X Never observe a unique muonic atom in the vacuum
® Absolute charge radii extracted = highest accuracy

- 3 X Never with a perfect energy resolution
: . : Z 7
= Higher sensitivity due to higher overlap ~ | — | ~ 10 :
5 y 5 P m = Many experimental challenges !



Real life X-ray measurements

| 10° 10 10° (can)
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O 0.8- " =" Anderhub-84
>.
® Many possible processes after a muon reaches the g.s. e
o Radiative transitions 0.6-
o External Auger effect  |Standard Cascade Model
o Stark mixing 0-4f
0.2-
= Competition: radiative vs collisional processes
= Similar issue for metastable 2S used with lasers 0 === .
B, 5 4. B 3 "
10 10 10 10 10 10 1
DENSITY/LHD
Mechanism Example [Markushin, Jensen, Hyperfine Interactions (2001)]
Radiative (up)i = (up)s +v N In general many requirement on experiments
External Auger effect (up); +Hy — (up)s + e~ + H)
Stark. RS (pp)ni + H = (up)n + H ® High-precision laser spectroscopy measurements
Elastic scattering (up)n, + H — (up)n + H _ .
Transfer (1sotope exchange) (up)n + d — (ud)n, + p _ | _ o . _
Absorption (T~ P)ns — 70+ 1, v+ 7 ® Radioactive nuclei = difficult to build thick target

[Markushin, Hyperfine Interactions (1999)] ® High precision = good energy resolution
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Reaching high resolution for light nuclel

el | | | | | ' | | Energy resolution issue
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3He o | o © © o ©  Aim to develop a quantum sensor to reach low-Z nuclei
_ ® 126 V¢ v o © -
He ©, w ¢ - ° |dea: X-ray = heat = magnetization = SQUID detector
@
= D -
| | | | | | | | | | ° On-going work at PSI
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[Antognini et al, arXiv:2210.16929]
NuPECC Long Range Plan 2024

Even more promising: muonic laser experiments !



Normalized signal (a.u.)

Laser spectroscopy for light atoms

B=5 Tesl
esa) Collimator

[Antognini, Kottman ent Pohl, SciPost (2021)]
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Laser spectroscopy for light muonic atoms

® General idea

° Muon detected via electron emission in coincidence

= triggers laser pumping on 25 — 2P

® Laser pumping

° muon decays to 2S state = driven by E1 ( ~ 100 ns)

° decay to 1S limited (2-photon decay) = 25 ~ 1us lifetime

° long enough for pulsed laser

® CREMA collaboration

© Already developed for uH, uD and uHe
°© Main goal: develop a target made of dense cloud of Li

° On-going work at PSI




X-ray spectroscopy for radioactive target

Hz2/D2 gas @ 100 bar 9
muon entrance [ ug target
detector M
- |
-
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(a) Energy [keV] Reducing the required size of the target
® General idea
§ 1600 _ § (i) Muons are captured by protons
S 15005 = é & (i) In ~ 100 ns, muon transfers to D with 45 keV kinetic gain
2 e s |3 | T o L . .
§ 1400E- 2 I3 g ‘% 3 @ (iii) uD slows down to 4 eV where cross-section is low = high mobility
s & 2 & N A . .
© : g b3 S sl a (iv) Muons transfer to high-Z atoms
1300 — N © N N N
: o = < =3 I .
1200 ® muX collaboration
1100 4+ ll_qu Optimized the H/D gas mix to get best performance ( ~ 0.25%)

1000 Tested on Sug Au target instead of standard amount of ~ 100 mg

Preliminary results on radioactive 2**Cm and ?*°Ra targets

5400 5450 5500 5550 5600 5650 5700 5750 5800
(Adamczak et al, EPJA (2023)] Energy [keV] End goal: search parity violating E1 in 25 — 1§ transition
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From energy levels to nuclear structure

Converting experimental data General many-body problem 11

® Degrees of freedom

® What to do once precise value of energy levels is known 7

| © Muon — v, ; Nucleons - N ; photon — A
© Can be used to test fundamental constants like R_, a, m,

© Can be used to extract nuclear structure information like r, ® Hamiltonian

° Can be used to test validity of many-body calculations © For simplicity assume non-relativistic nucleons of equal mass
@ Example in practice: Lamb shift in meV 2S,, — 2P, (r, in fm) H = Hnycl + € / 4’ Jyu(x) AH () [Friar, Rosen, Annals of Physics (1974)]
[Antognini et al, SciPost (2021)] o2
| d3zd? A(x).A
AE(uH) = 206.0336(15) — 5.2275(10) x r2 + 0.0332(20) om / rd%y fsa(z.y) Alx)-Aly)
AE(uD) = 228.7767(10) — 6.1103(3) X I’Iz) + 1.7449(200) + HoED

AE(u*He) = 1668.489(14) — 106.220(8) X 2 + 9.201(291)

® General approach to compute bound state of H

Radius extraction master formula
X In principle use Bethe-Salpeter = bound states = G, poles

D¢ =0 +6G r-+0
LS5 QLD c N, v In practice use effective instantaneous potential
Fixed point-like )' T L Nuclear structure

nucleus Finite nucleus st © DWB correction up to (Za)’ to match exp accuracy

size effect



Bound states QED contributions

Example: electron vacuum polarization corrections

Bound muon within potential

@ Zero-order: one-body Coulomb interaction

]_52 o
o Solve exactly for Hy=— — —
2m, r
(Za)*m
— ' — p(0)

@ Effective potential applied on muon

© What is relativistic extension to Coulomb 7
© Define effective potential to reproduce E ; at a given order

© Power-counting = DWB on H,

@ Main type of contributions

© Electron vacuum polarization: @, ~ 4, = main correction!

O Finite nuclear mass = recoil and relativistic corrections

O muon self-energy terms

(Eo — Hp)’

[Pachucki et al. Review of Modern Physics (2024)]

1
—> E,=E9+ (VD) 4+ (V@) + (VD vy 4+ ...



Bound states QED contributions
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Section

LA
LA
LA

III.B
I1.C
II1.D
ILE
ILF
I1.G
III.H
11
I1.J
LK
1L
.M

LN
1.0
IILP
I.Q

Order

a(Za)?
a?(Za)?
o’ (Za)?

(Z,72,7%)a°

(Za)*
a(Za)*
a*(Za)*
a(Za)*
a(Za)’
a*(Za)*
a*(Za)*
(Za)
a(Za)’

Z?a(Za)*

a*(Za)*
(Za)®
a(Za)?
a(Za)*
a’(Za)*

Correction

eVP(l)

eVP(z)

eVP(3)

Light-by-light eVP
Recoil

Relativistic with eVP(1)
Relativistic with eVP?)
uSEM + VP LO
ySE(l) 1 ”Vp(l), NLO
uVPW with eVP()
uSEM) with eVP()
Recoil

Recoil with eVP()
nSEW)

uF?, uFy, yVp®
Pure recoil

Radiative recoil
hVP
hVP with eVP()

[Pachucki et al. Review of Modern Physics (2024)]

uH

205.007 38

1.658 85
0.007 52
~0.000 89(2)
0.057 47
0.018 76
0.000 17
~0.663 45
~0.00443
0.000 13
~0.002 54
~0.04497
0.000 14(14)
~0.009 92
—0.001 58

0.000 09
0.000 22
0.011 36(27)
0.000 09

uD

227.63470

1.838 04
0.008 42(7)
—0.00096(2)
0.067 22
0.021 78
0.000 20
~0.769 43
~0.005 18
0.000 15
~0.003 06
~0.026 60
0.000 09(9)
~0.003 10
—0.001 84

0.000 04
0.000 13
0.013 28(32)
0.000 10

'u3 He™

1641.886 2
13.084 3
0.073 0(30)
—0.0134(6)
0.126 5
0.509 3
0.005 6
~10.6525
~0.1749
0.003 8
~0.0627
~0.558 1
0.004 9(49)
~0.0840
~0.0311

0.0019
0.0029
0.224 1(53)
0.002 6(1)

”4He+

1665.773 1
13.2769
0.074 0(30)
~0.0136(6)

0.2952
0.5211

0.0057
-10.926 0
-0.1797
0.0039
—0.064 6
-0.4330
0.003 9(39)
—0.0505
-0.0319

0.001 4
0.002 3
0.230 3(54)
0.002 7(1)



Finite size nuclear contributions

14

Finite nuclear size contribution Examples taking into account electron vacuum polarization

@ Correction to account for non-point like nucleus 14

14
O Similar approach as pure QED contributions \ /

O Multipole expansion of charge distribution

= Main contributions o 72

@ Beyond charge radius contributions

O In principle higher order terms leads to multipoles of p

© Experiments not precise enough for now : G 2 :
r. termin o
© CREMA = on-going attempt to measure HFS for proton! ¢ LS

[Pachucki et al. Review of Modern Physics (2024)]

Section Order Correction uH uD uwHe* u*Het
IVA  (Za)* 2 ~5.197 572 ~6.073272 ~102.5237 ~105.32272
IVB  a(Za)* eVP() with 72 ~0.028 212 ~0.034072 ~0.85172 —~0.87872

IVC  &?(Za)* eVP® with 72 ~0.000272 —0.000272 —0.009(1)72 —0.009(1)72



Nuclear structure dependent corrections

15

Two photon exchanges contributions
Nuclear structure effects

H H H
@ Corrections accounting for non static effects
© The nucleus is no longer treated as an external potential v i
© Main contribution comes from two-photon exchange 0;p% - Y -

O Nuclear excited states become necessary to be accounted for

| (4nZar) " d”
= 5. contributes at (Za)’ iAEnl = | ¢,,,(0) “Im % 34 D" (q)D**(—-q) t,.(q.k) T,(q,— q
m, J (2r
@® Beyond TPE
. with:
O Further corrections three-, four-, .. photon exchange
O can also be combined with vacuum polarization, .. ® DH"(g) = the photon propagator
® t,, = the lepton tensor
® T,Ml/ = the hadronlc tensor [Bernabeu et al, Nuclear Physics A (1974)]
® k — (m O) [Rosenfelder Nuclear Physics A (1983)]
o r Hernandez et al. Physical Review C (2019)]
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Nuclear Compton Tensor

Hadronic part

Pure electromagnetic part

® |eptonic tensor: ® Hadronic tensor:

° Wave-function approximation ° Approximations: no recoil + p, K m

u

=» Free muon propagator + ¢,(0) decoupled from nuclear currents Seagull term

= Only forward Compton tensor

T (q) =0 <\If|/d3xeiq'xfsa(x,0)|‘1’> 4/

1 Tr [y, (F — ¢ + me) v (F+ my)]
(k—q)? —m3 +ic

tu(q, k) =

(W | J,00)| Ng) (NG| J, W
+ 3 [@UOLNE NG 40 |9

EO — En +qo + 1€
1RO N =0 O 215,01 9)]
Eo — En —qo + 1€
[Bernabeu et al, Nuclear Physics A (1974)]

[Friar, Annals of Physics (1976)]

® Photon propagator: N0

°© Use Coulomb gauge

= Convenient to split charge and transverse contributions

® Seagull: necessary to cancel divergence + use dispersion relation

L 0
7, q
D" (C]) — 0 1 (5 CIiCIj)
2 17 =2

7 G Decomposition of two-photon exchange

® Nucleon/Nucleus decomposition: (in the end use DR to model 7))

Overall relatively well under-controlled Srpp = ( + 5 ol) 4 ( l




Nuclear modeling

Model used of nuclear currents Model used of nuclear many-body state

® Multipole decomposition of nuclear currents @ Ab initio nuclear interaction
[Donnelly, Haxton, Atomic and Nuclear Data Tables (1979)]

o M JMJ;TMT(q) = Jd3x Myf(qx)fo(x)TM

[Entem et al. (2017)] [Soma et al. (2020) |
© Chiral interaction: 2N-N4LO(500) + 3N(Inl)-N2LO

O Eventually will have to be varied

1 . )
o TfMJ;TMT(CI) = Jd3 gv XM J(qx) ](X)TMT ® Model space
_ © Harmonic oscillator Slater determinant
M — 3
o Torm, (@) = Jd XM 7(q%) J(X)TM = Sub-space truncation: AQ =18 MeV, N =7
"™ Truncation at J =1 ® Many-body approximation

. . © No-Core Shell Model
® Electromagnetic current modeling

e . O More details in next section
O Decomposed within the seven operator basis

O Form factors given by the isovector dipole model

2

-2
q
o Jsn@ =11+ s 1 FI(TQ)(Q) = Fl(Tz)(O) Jsn(@)

My | ’ Need expression of 5;‘01 in terms of multipole currents !

where F(T)(O) based on x*Y (nucleon magnetic moments)

18



Master formula

Inputs to evaluate nuclear polarizability Relativistic formulation

@ Charge spectral function [Rosenfelder Nuclear Physics A (1983)]

® D iti f | larizability: [H d |. Physical Review C (2019
SC J Z ‘ N ‘ MJ() ‘ \If> ’25(EN B, — w) ecomposition of nuclear polarizability: [Hernandez et a ysical Review C ( )]
N#0 o Contribution from charge, transverse electric and magnetic
@ Transverse electric spectral function
- = A A A
STJ Z ]<N‘TJO )‘\IJMQ(S(EN—EO—M) 5p0l cT T,E+ I'M
N0
@ Transverse magnetic spectral function Ac = —8(Za)2\¢25(0)\2/dq/dw Ke(w,q)Sc(w, q)
2
SC %; (N Ty0(0) [ ¥) FO(Ex — Eo = w) Ars = —8(Zalgas(O) [ dq [ dw Krlw,0)8E(w,0) + Ks(wq)S8(,0)
N=£0

Ar = —8(Za)2\gb25(0)|2/dq/dw Kr(w,q)S (w, q)

Non-relativistic reduction

® Limit: g < m, ® Kernels in the integrals:

1 1
by [(Eq —my)(w+ Eq —m
I w+H+2q
dmyq (w + q)?

= Only charge kernel remains = simpler 4 consistency check Ko(w,q) =

Ko(w,q) = Knr(w,q) = :
KL((U, )%O ! (
Ks(w, )%O
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The No-Core Shell Model

Lanczos tridiagonalization algorithm [Lanczos (1950)]

® Initialization: normalized pivot |¢;)

(al P>
® Recursion: a;, f; and | ¢)) B a P
Py az
> D | ¢i+1> = H| ¢i> — O‘i|¢i> —ﬁi|¢i—1> s B
Pr-1 -1 Py
° o, =(¢;|H|¢p;) and b1 st {Piy1|Piy1) =1 \ Z

® Output:

o Lanczos basis and coefficients { | ¢;), a;, B;} + H in Lanczos basis

o Lanczos basis = orthonormal basis in Krylov space { |¢1>, H| ¢1>, ooy HNL|¢1>}

Application to nuclear structure

@ Extraction of spectra

O Selection rules sparsity = Fast matrix-vector multiplication

© In practice: N; ~ 100 — 200 is sufficient to converge low-lying states

O Cost of diagonalization of the tridiagonal matrix is negligible

21
Anti-symmetrized products of
many-body HO states
N=N,_, +1\ ’
AE = N4, h€2

Application to 'Li

® Parameters of many-body calculation
o N; =250 for N, ,.="7 and €2 = 18 MeV

® Results

° Ground-state of 'Li |¥) = Used as a test for ¢,



The Lanczos strength algorithm

: N|O|®)|?
Strength functions H{NTOTT)]
® We need to compute
° FEigenvalues: Ey, = obtained already with Lanczos
o Qverlaps: |[{(N|O|¥) |2 for each eigenstate and operator = expansive
Converged eigenstates
® Lanczos strength algorithm {
o Efficient variant of Lanczos: extract relevant information strength functions
~ 100 MeV Ey
Idea of the algorithm Sum rules convergence
@ For each operator O ® Convergence problem
O|Y o Often the strength is fragmented
o Compute ¥) = Pivot |¢,) for 2"d | anczos o Onlv lowlvi ft £ N |
\/(\P|OTO|‘P) nly low-lying states converged in genera

® Lanczos strength algorithm

@ Extract strength from orthonormality of Lanczos basis

o Recover exactly |dw Sp(w) @" for any n < 2N,

o (Y|O|N) = \/ (W]0T0| W) X (fy|N) wafpp | Obtained for free :
e g = Fast convergence of |du f(6)S,(@) (i £~ Piay(@))

22
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Testing convergence of sum rules for 5;9401

First tests of sum rule convergence

® Before running expansive g—dependent

° Test convergence of strength integrals

o (Cases tested based on electric dipole operator

@ Sum rules tested: [da) fw)Sp(w)

© norm(a)) — 1
2m

_ r
o Jpi(w) = o Leading order

m, 2(Za)2m,, n-expansion

o Jolw) = — In - of 51‘;‘01

o (_|_ more complicated Qne) [Hernandez et al. PRC (2019)]

® Qbservations

° Sum rules converge quickly = N; = 50 is sufficient

o Reaches plateau around ~ 107 relative error

Test convergence sum rules

24
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Next step: gq-dependent calculations of 5p01 |



(Very) preliminary results

Charge contributions to 6-},

—20F

|
— O

—40F+
-51.9725

—60 F

—R0F

Ac (meV)

—100F

—120F

—140¢F

-141.035

-145 631

C5(q) (NR) C(q)

Many improvements on the way
Simply a proof-of-principle so far

' 5];4(;§VR = —199.26 meV '
5;9“()[ = — 195.86 meV

Transverse contributions to 5;40, 25
0.174417
ool ° -0 o I
e J=1
—0.0F
—~ —1.0F
o
S
~— —1.5F
~
<]
—2.0F
—2.0T
—3.0F
-3.03631
T5(q) T7(q)

Coherent with previous estimation

based on -expansion




Conclusion

Summary

® Promising muonic spectroscopy are on the way!

° Laser spectroscopy of muonic atoms
= an order of magnitude more precise than before

° Other experimental projects enlarge the nuclei reachable
= Low-Z with quantum sensor

= Radioactive nuclei with new target technology

® |nvolved theoretical calculations

° Pure particle physics = bound state QED

° Nuclear structure corrections = dominant uncertainty

® Ab initio nuclear calculations of two-photon exchange

° Critical to reduce uncertainty in radii extraction

o Proof-of-principle for Li within NCSM

Outlook

® Completing ab initio calculation

o Convergence studies (in |dg,inJ_ ., inN_ )

(¥

= Essential for uncertainty estimation

® Including nucleon contribution

° Similar to super allowed beta decay
© Combine nucleon/nucleus models using dispersion relation

= Expect reduction of uncertainty

® Controlling theoretical uncertainty

° Necessary to combine multiple scales
© Critical to have reliable uncertainty estimations

= Developing a complete network of EFTs
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