How well do we know the nuclear saturation point? Insights from EFT & DFT with Bayesian UQ

Christian Drischler (drischler@ohio.edu) INT Workshop INT-22r-2a: Neutron-Rich Matter on Heaven and Earth June 30, 2023

Ab initio workflow (idealized)

uncertainty quantification

nuclear observables (structure, reactions, astrophysics, ...)

many-body theory

exact QMC, NCSM, ... approximate CC, IMSRG, MBPT, SCGF, ... phenomenological SM, DFT, ...

> renormalization group (SRG, Okubo-Lee-Suzuki, ...)

chiral forces & currents (Weinberg, van Kolck, Kaiser, LENPIC, Idaho, ...)

quantum chromodynamics (CalLat, HALQCD, NPLQCD, ...)

CD & Bogner, Few Body Syst. 62, 109

Here: nuclear equation of state (EOS) energy per particle (and related quantities)

See also Rahul Somasundaram's talk (QMC): Constraining the neutron star equation of state from gravitational wave detections

Here: many-body perturbation theory (MBPT)

automated, computationally efficient method allows to estimate many-body uncertainties

Widely applicable:

- ✓ arbitrary proton fractions
- ✓ finite temperature
- ✓ optical potentials, linear response, nuclei, …

Other frameworks include **quantum Monte Carlo**, coupled cluster, and self-consistent Green's functions

CD, Haxton, McElvain, Mereghetti et al., PPNP 121, 103888

Chiral nuclear forces

CD, Furnstahl, Melendez, Phillips, PRL **125**, 202702

OHIO UNIVERSITY

An example: symmetric matter

$$y = \frac{E}{A}, \quad k = 4 \quad (N^3 LO)$$

Uncertainty bands depict 68% credibility regions

$$y = y_k + \delta y_k$$

avage, wise, Eperbadin, Raisel, Riebs, $\begin{array}{c}
0 \\
-10 \\
-20 \\
\hline
0.1 \\
0.2 \\
0.3 \\
\hline
0.1 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7 \\
0.7$

More details? Recent review article

OHIO UNIVERSITY

Chiral Effective Field Theory and the High-Density Nuclear Equation of State

Annual Review of Nuclear and Particle Science

Vol. 71:403-432 (Volume publication date September 2021) First published as a Review in Advance on July 6, 2021 https://doi.org/10.1146/annurev-nucl-102419-041903

C. Drischler,^{1,2,3} J.W. Holt,⁴ and C. Wellenhofer^{5,6}

¹Department of Physics, University of California, Berkeley, California 94720, USA

²Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
 ³Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, USA; email: drischler@frib.msu.edu
 ⁴Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
 ⁵Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

⁶ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany

Full Text HTML 人 Download PDF ペ Article Metrics

Reprints | Download Citation | Citation Alerts

Open Access

Keywords:

Chiral EFT | neutron stars | MBPT nuclear matter at zero and finite temperature Bayesian uncertainty quantification recent neutron star observations

see also in the same journal: James Lattimer, Annu. Rev. Nucl. Part. Sci. **71**, 433

Isospin asymmetric nu

ar matter

Isospin asymmetric nu

ar matter

Nuclear symmetry energy

Why correlations are important: symmetry energy

$S_2(n) \approx \frac{E}{N}(n) - \frac{E}{A}(n)$ $E/N \pm 1\sigma$ [MeV] 40 normal distribution 30 (at each density) $\overline{S_2 \pm 1\sigma}$ 20[MeV] at each 2.1% 450.1% density 10 difference 2σ 3σ 35 $E/A \pm 1\sigma$ 10 [MeV] 25at each density at each -10density 0.20.10.3Density $n \, [\text{fm}^{-3}]$ 0.10.20.3 $E/A \sim \mathcal{N}(\mu, \sigma^2)$ Density $n \, [\mathrm{fm}^{-3}]$ symmetry energy | multi-task GPs

UNIVERSITY

than one might *naively* expect

Why correlations are important: symmetry energy

0.1

0.2

Density $n \, [\mathrm{fm}^{-3}]$

0.3

 $E/A \sim \mathcal{N}(\mu, \sigma^2)$

symmetry energy | multi-task GPs

LENPIC, PRC 103, 054001; PRC 106, 064002

How can we exploit correlations? Are there observables we have not looked at?

0.4

Empirical saturation box (overview)

<u>UN</u>IVERSITY

Empirical saturation box (overview)

OHIO UNIVERSITY

Empirical saturation box (2016):

- based on 14 (out of 240+) functionals that reproduce well selected nuclear properties
- often used to benchmark chiral interactions
- limited statistical meaning at best

Dutra *et al.*, PRC **85**, 035201 Kortelainen *et al.*, PRC **89**, 054314 Brown & Schwenk, PRC C **89**, 011307

How can we benchmark chiral NN+3N interactions *rigorously* in terms of nuclear saturation

Select empirical constraints from DFT

Significant progress in UQ for DFT:

Schunck, O'Neal, Grosskopf, Lawrence, Wild, JPG: NP **47**, 074001 McDonnell, Schunck, Higdon, Sarich, Wild, Nazarewicz, PRL **114**, 12250⁻ Neufcourt, Cao, Nazarewicz, Olsen, Viens, PRL **122**, 062502 Chen & Piekarewicz, PRC **90**, 044305; **and more**

Recently: UQ is driven by emulators (game changers!)

Bonilla, Giuliani, Godbey, Lee, PRC **106**, 054322 Giuliani, Godbey, Bonilla, Viens, Piekarewicz, Front. Phys. **10**

Empirical constraints are *precise* **but** *not very*

accurate (systematic uncertainties are difficult to estimate)

Skyrme models: *systematically lower* binding energies & larger saturation densities. *This has been long observed.*

UNIVERSITY

Emulators: game changers in nuclear physics!

OHIO UNIVERSITY

BUQEYE Collaboration

Companion website with lots of pedagogical material: <u>https://github.com/buqeye/frontiers-emulator-review</u> see also Godbey Giuliani *et al.*, <u>https://github.com/kylegodbey/nuclear-rbm</u>

Bayesian inference: empirical saturation point

Model assumption: DFT samples are random draws from a bivariate normal distribution with *unknown* mean vector μ and covariance matrix Σ

$$\mathbf{y}^* = [n_0, E(n_0)/A] \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

Bayes' theorem $P(oldsymbol{\mu},oldsymbol{\Sigma}|\overline{\mathcal{D}}) \propto P(\mathcal{D}|oldsymbol{\mu},oldsymbol{\Sigma}) \ \overline{P(oldsymbol{\mu},oldsymbol{\Sigma})}$ posterior $ig| oldsymbol{\mu} ig| oldsymbol{\mu}_0, \kappa, oldsymbol{\Sigma} \sim \mathcal{N}\left(oldsymbol{\mu} ig| oldsymbol{\mu}_0, rac{1}{\kappa} oldsymbol{\Sigma}
ight)$ $P(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \operatorname{NIW}_{\nu_0}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ $|\mathbf{\Sigma}|\mathbf{\Psi},
u \sim \mathcal{W}^{-1}(\mathbf{\Sigma}|\mathbf{\Psi},
u)|$ likelihood $P(\mathcal{D}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) \propto |\Sigma|^{-\frac{n}{2}} \exp \left[-\frac{1}{2} \sum_{i=1}^{n} (\mathbf{y}_{i} - \boldsymbol{\mu}) \boldsymbol{\Sigma}^{-1} (\mathbf{y}_{i} - \boldsymbol{\mu})\right]$ same as the conjugate prior but with updated posterior hyperparameters (analytic expression) $P(\mathbf{y}^* | \mathcal{D}) \propto \int \mathrm{d} oldsymbol{\mu} \, \mathrm{d} oldsymbol{\Sigma} \, P(\mathbf{y}^* | oldsymbol{\mu}, oldsymbol{\Sigma}) \, P(oldsymbol{\mu}, oldsymbol{\Sigma} | \mathcal{D}))$ model posterior posterior predictive (marginalization)

(evaluates to a bivariate *t*-distribution)

Analysis: Saturation box (2016)

(preliminary)

All DFT constraints: joint MC analysis (preliminary)

Nuclear saturation | symmetry energy (preliminary)

- Chiral EFT enables *ab initio* calculations of finite nuclei & nuclear matter at $T \ge 0$ & arbitrary proton fractions ($n \le 2n_{sat}$). Where does it break down *and* why?
- 2

Bayesian statistics allows for rigorous UQ in EFT-based calculations (facilitated by new emulators!). EFT predictions *statistically* consistent?

3

Need for improved constraints on the nuclear matter EOS in the density regime $1 \leq n/n_{sat} \leq 2$. How can these constraints help guide or validate nuclear theory?

Our preliminary analysis suggests for the empirical saturation point: $n_0 \approx 0.157 \pm 0.009 \text{ fm}^{-3}$, with $E_0/A \approx -15.96 \pm 0.34 \text{ MeV}$ (95%, correlated!)

Many thanks to:

R. Furnstahl P. Giuliani S. Han J. W. Holt J. Lattimer K. McElvain J. Melendez D. Phillips M. Prakash S. Reddy C. Wellenhofer T. Zhao

BUQEYE Collaboration

Posterior True value

an