Understanding kilonovae with a future UV satellite

Bas Dorsman, PhD Student University of Amsterdam <u>b.dorsman@uva.nl</u> github.com/basdorsman

Radiation mechanisms from BNS merger

- Kilonova: radiation from ejecta heated by radioactive decay of elements formed by r-process
- 2. Shock: radiation from shock heated material (e.g. jet-ejecta interaction)

AT2017gfo (GW170817)

Likely two components, unclear if blue component = kilonova

Comparing kilonova vs shock cooling origin

Comparing kilonova vs shock cooling origin

Aim of proposed UV missions: rapid UV follow-up of GWs

Goals

- **Model selection:** Can UV distinguish early physics driving the radiation?
- **Parameter estimation:** Can UV constrain model parameters?
- **Characterize:** how rapid should follow-up be?
- Methodology to achieve goals: Bayesian analysis with *simulated data* from *Dorado* mission concept

Instrument: Dorado

- wide-field UV follow-up of GW alerts
- This mission not funded, but analysis results still interesting for other missions:

	Launch	5σ (AB) (15 minute exp.)	Response time	Ω (deg2)
Dorado	-	20.8	~30 minutes	50
Ultrasat	2025?	22.3	~30 minutes	200
UVEX	2028?	25	~3 hr	12

Illustration: Robin Dienel (Carnegie Institution for Science)

Methodology: Bayesian Analysis

Methodology: Bayesian Analysis

Methodology: Bayesian Analysis

Simulation Results

UV band vs optical (r) band

UV significant contributor to distinguishing physics of blue component

UV band vs optical (r) band

UV significant contributor to distinguishing physics of blue component

Comparing bands

• Improved constraints with uv+r data

Comparing bands

- Improved constraints with uv+r data
- UV data constrains k_{low},v_{transition}

Comparing bands

- Improved constraints with uv+r data
- UV data constrains k_{low},v_{transition}

Observation starting

time

Ř

 k_{low} best constrained for t < 13.2h

Observation starting

time

Ř

- k_{low} best constrained for t < 13.2h
- v_{transition} still constrained at
 - t = 25.2h

Discussion

- Simulations biased, assuming AT2017gfo
- Only one event+localization from BNS merger library analyzed
- Different satellites not studied yet (orbit & sensitivity)
- Different light curve models not studied yet (e.g. inclination dependency, free neutron precursor)
 - Redback code by Nikhil Sarin

Conclusions

- UV significant contributor to distinguish for early driving physics
- Start observing within ~3 hours for confident model selection
- Constrain models using multiwavelength observations
- This analysis is limited, but code is open source!

Open source:

- <u>https://github.com/Basdorsman/kilonova-bayesian-analysis</u>
- b.dorsman@uva.nl

Thank you!

Special thanks to:

- Geert Raaijmakers
- Brad Cenko
- Samaya Nissanke
- Leo Singer
- Mansi Kasliwal
- Tony Piro

- Eric Bellm
- Dieter Hartmann
- Kenta Hotokezaka,
- Kamilė Lukošiūtė
- and whole the *Dorado Team*!

B.D. acknowledges support from ERC Consolidator grant No. 865768 AEONS (PI: Anna Watts). G. R., S.M.N., and K.L. are grateful for support from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) through the VIDI and Projectruimte grants (PI: S.M.N.)

Extra slides:

Detections since AT2017gfo

- GW -> At2017gfo took 11 hours to detect in optical, 15 hours to detect in UV
- GW -> High confidence NSBH mergers GW200105 and GW200115, no em counterpart found
- Long GRB 211211A maybe kilonova counterpart? (e.g. Rastinejad+ 2022). Multiwavelength lightcurve roughly agrees with AT2017gfo @ 350 Mpc. Maybe NSBH? (Zhu+ 2022) Maybe WDNS? (Yang+ 2022)

We still are eagerly awaiting more smoking gun GW+EM detections!

Comparing distances

- No constraints in shock model: contains parameter degeneracies
- UV constraints distance dependent in kilonova model

Parameter estimation shock model

Observation simulation pipeline

Binary parameters	Outflow parameters	Light curve	Photometry
E.g. Masses, spins, distance and inclination angle	E.g. M _{ejecta} , ν, κ. (Fitted to numerical simulations)	Kilonova/Shock Interaction models	Error bars, visibility constraints

"Satellite" by Kebe. licensed under CC0 1.0

Simulate Observations

- Simulation of BNS mergers for O5 (Singer et al. 2021)
- Generate optimized observation plan for a representative event

Methods

- 1. Simulation of BNS mergers for O5 (Singer et al. 2021)
- 2. Generate optimized observation plan (github.com/nasa/dorado-scheduling)
- **3**. Mapping binary parameters to outflow parameters via analytical formulae calibrated to numerical simulations. (Raaijmakers et al. 2019)
- 4. Kilonova heating rate code (Hotokezaka & Nakar 2020), shock interaction code (Piro & Kollmeier 2018)
- 5. Simulated photometry (github.com/nasa/dorado-sensitivity)
- 6. Bayesian analysis (Dorsman et al. 2023)

University of Amsterdam Anton Pannekoek Institute for Astronomy

FIRST

Multi-

a BNS

merger

messenger

Detection of

GW			-	-						
γ-ray 🔹										
Fermi, INTEGRAL, Astrosat, IPN, Insight-HXMT, Swift	AGILE, CALET, H.E.S.S., HAWC, Ko	nus-Wind	-	11 11	11				11	
X-ray switt, MAXIV3SC, NuSTAR, Chandra, NTEGRAL										
UV					+	-				
Optical	res Skillarder VISTA MASTER M	voelan Subaru Pan-STA	ARS 1	-		•		-		
HCT, TZAC, LSGT, T17, Genini-South, NTT, GROND, BOOTES-5, Zadko, ITdescope.Net, AAT, PI of the Sky	SOAR, ESO-VLT, KM/TNM, ESO-VST AST3-2, ATLAS, Danish Tel, DFN, TS	VIRT, SALT, CHILESO	PE, TOROS	8. .		1111	III.		11	1
IR REMERCES VIETA Carried South 2004555 Softwar N	TT GROWD SOLE NOT ESOLUTIN	(anata Telescone HST					-			•
The left to the second s					111	11	11111		1	11
Radio ATCA, VLA, ASKAP, VLBA, GMRT, MWA, LOFAR, LW	A, ALMA, OVRO, EVN, &MERLIN, M	eerKAT, Parkes, SRT, Br	disberg							-
							1 11 11			
-100 -50 0 50	10-2	10-1			100	,		1	01	
$t-t_c$ (s)			t-tc (d	ays)				LVC	Collal	b., 2017

Watershed moment, start of GW-multimessenger era for astronomy

Fiducial models and prior distributions

Parameter (Unit)	Description	Prior density	Injected value			
'Default' ['Lower early opacity'] Nucleosynthesis Powered Model						
$M_{ m ej}~({ m M}_{\odot})$	Ejecta mass	U(0.01, 0.1)	0.05			
v_{\min} (c)	Minimum ejecta velocity	U(0.05, 0.2)	0.1			
v_{\max} (c)	Maximum ejecta velocity	U(0.3, 0.8) [U(0.21, 0.8)]	0.4 [0.23]			
$n_{ m ej}$	Power law index of ejecta density distribution	U(3.5, 5)	4.5			
$v_{\mathrm{transition}}$ (c)	Transition velocity between high and low κ	$\mathrm{U}(v_{\mathrm{min}},v_{\mathrm{max}})$	0.2			
$\kappa_{ m high}~(m cm^2/ m g)$	Effective grey opacity for $v \leq v_{\text{transition}}$	U(1, 10)	3			
$\kappa_{ m low}~(m cm^2/ m g)$	Effective grey opacity for $v \ge v_{\text{transition}}$	U(0.1, 1) [U(0.01, 0.1)]	0.5 [0.04]			
Shock Interaction Powered Model						
$M_{ m sh}~({ m M}_{\odot})$	Shocked ejecta mass	U(0.005, 0.05)	0.01			
$v_{ m sh}[m c]$	Shocked ejecta velocity	U(0.1, 0.3)	0.2			
$R \; (10^{10} \; { m cm})$	Initial shock radius	U(1, 10)	5			
$\kappa_{ m sh}~({ m cm}^2/{ m g})$	Effective grey opacity of shocked ejecta	U(0.1, 1)	0.5			

Extra: GW170817 schema

Extra: Dorado

"Satellite" by Kebe. licensed under CC0 1.0

Kilonovae and other EM signatures of BNS mergers

- 1. Kilonova:
 - (Quasi) Isotropic Radiation powered by radioactive decay from elements produced via r-process (Li & Paczyński 1998)
- 2. Other EM counterparts:
 - GRB jet (e.g. Catz & Canel 1996, Dokuchaev& Eroshenko 1996)
 - Radiating shock heated ejecta (e.g. Kasliwal+ 2017)
 - Free neutron precursor (Metzger 2015)

Binary neutron star mergers, what are they good for?

Test our understanding of:

- GR strong gravity regime
- GRB jet physics
- Expansion history of the Universe
- Stellar & BH Population
- Binary evolution
- Heavy element formation
- NS EoS

"Einstein's richest laboratory" - Baiotti & Rezzolla (2017)

Bayesian Analysis: Model Selection (1)

• Two models, M_A and M_B :

Prior ratio
$$= rac{P(M_A)}{P(M_B)}$$

- Default prior: 50/50.
- Probability ratio is *updated* by the Bayes' factor:

Posterior ratio
$$= \mathcal{B}_B^A rac{P(M_A)}{P(M_B)} = rac{P(M_A|D)}{P(M_B|D)}$$

Bayes' factor tells us how new data updates probability