

Neutron Star Pulse Profile Modeling

Bas Dorsman University of Amsterdam INT Seattle, 2023

European Research Council Established by the European Commission

b.dorsman@uva.nl

Part 1/3: Introduction and overview

Introduction

Millisecond pulsars (MPs)

- Rotation powered (RMPs)
 - Spun up via accretion
 - X-ray emitting hot spots (e.g. Muslimov & Harding 2001)
- Accretion powered (AMPs)
 This talk
- Type 1 X-ray burst oscillation sources
 - Yves' talk

Pulse Profile Modeling (PPM)

Notice the GR light bending effect?

Video: Morsink/Moir/Arzoumanian/NASA

b.dorsman@uva.nl

Goal: Constraining EoS alongside Mass and Radius

Figure: Greif+ 2019

Model Comparison

Method: Bayesian analysis

Constraining Mass and Radius from Pulse Profiles

• Relativistic effects constrain Mass and Radius (MPs are good)

• But then we need data: Time resolution (< 10 μ s), pulsed photons (~10⁶)

Neutron Star Interior Composition Explorer (NICER)

NICER sensitive in soft X-rays (~0.2 - 12 keV)

One of principal goals: Mass & radius measurements of RMPs.

Within NICER Collab: Amsterdam and Maryland-Illinois doing PPM with NICER data

This talk: X-PSI, other team has independent analysis

Video: NASA/GSFC

Previous work, current PPM efforts (Bayesian inference)

Current efforts:

- AMPs, J1808 (This talk)
- Reanalysis J0030 (Serena's talk)
- J0437 (Devarshi's talk)
- Atmospheric effects RMPs (Tuomo's talk)
- Bursters, J1814 (Yves' talk)
- J1614, J0614, J1231, J2124

Part 2/3: How X-PSI Models Pulse Profiles

🕋 x-psi

Search docs

Installation

Overview FAQs and common problem Applications

We even wrote a paper about it

(Riley+ 2023)

X-PSI: A Python package for neutron star X-ray pulse simulation and inference

Thomas E. Riley $^{\circ}$ ¹, Devarshi Choudhury $^{\circ}$ ¹, Tuomo Salmi $^{\circ}$ ¹, Serena Vinciguerra $^{\circ}$ ¹, Yves Kini $^{\circ}$ ¹, Bas Dorsman $^{\circ}$ ¹, Anna L. Watts $^{\circ}$ ¹, Daniela Huppenkothen $^{\circ}$ ², and Sebastien Guillot $^{\circ}$ ³

1 Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1090GE Amsterdam, The Netherlands 2 SRON Netherlands Institute for Space Research, Niels Bohrweg 4, NL-2333 CA Leiden, the Netherlands 3 Institut de Recherche en Astrophysique et Planétologie,

Well documented

X-ray PSI)	y Pulse Simulation and Inference (X-		Open Source
An o	:⊒ README.rst	Ø	Publish your first package
() You	X-PSI		Contributors 14
cod X-F	An open-source package for neutron star X-ray I Inference.	Pulse Simulation and	🌘 😂 🕲 🔿 🕲 🤹 🏟
X-PS emis emitt	CI Tests passing docs latest release v2.0.0 X-PSI is designed to simulate rotationally-modifie from neutron stars, taking into account relativistic This can then be used to perform Bayesian statis simulated astronomical data sets. Model parame neutron star mass and radius (useful to constrair nuclear matter) or the system geometry and prop regions. To achieve this, X-PSI couples code for with existing open-source software for posterior s	Joint Source	Software
	It provides the following functionality:		X-PSI: A Python simulation and in
			Thomas E. Riley ¹ , D Vinciguerra ¹ , Yves K Huppenkothen ² , and

X-PSI

Modeling pulsed emission

Hot region(s)

• Modeled geometries: circles or composed of circles

Spacetime

Photosphere

• Serena's talk

Hot region(s)

b.dorsman@uva.nl

13

Photosphere

- Intensity via interpolation from atmosphere data table
- RMPs:
 - H/He, fully or partially ionized (e.g. Ho & Lai 2001)
 - Atmospheres: Tuomo's talk
- AMPs: later this talk

Spacetime

- Ideal: Ray tracing in numerically solved spacetime
- Faster: Oblate Star + Schwarzschild metric (Morsink+ 2007, AlGendy & Morsink 2014)

Star: discretizations

- Balance resolution and resources
- Discretizations:
 - Cells (hot spot)
 - Rays (ray-tracing)
 - Rotation steps
 - Pulse phases
 - Pulse Energies
- Backgrounds in field (e.g. Devarshi's talk)

Star: Preparing ray grid

- Convert rays to observer frame
 - Doppler boost
 - Angle aberration
- Compute deflection angle ψ
 - GR light bending
 - GR redshift
- Compute time delays
- See also Bogdanov+ 2019b

Interstellar, Instrument

- Interstellar: any attenuation of flux due to ISM
- Instrument:
 - X-ray response matrix
 - Background (e.g. optical loading)

Color: Effective area per channel per energy

Observation

- Ray grid interpolation: observer receives rays emitted towards observer
- Integrate for rays: discretized cellmesh, rotation steps
- Add (non-pulsed) backgrounds to counts

Spacetime

Photosphere

Background

Star

Interstella

• Build pulse profile

Hot region(s)

Pulse profile

Instrument

Part 3/3: PPM for AMPs

Accreting Millisecond Pulsars (AMPs)

AMPs:

- Accretion onto magnetic poles
- Spectrum different from RMPs (e.g. Suleimanov+ 2018)
- Inverse compton, polarized emission (e.g. Salmi+ 2021)
- Environment more complex: Accretion column, disk

Compton slab model

Modeling approach: parametrized optically thin slab of hot electrons (Salmi+ 2021, Bobrikova+ submitted)

- T_{bb} (seed photons)
- Inverse compton, hot electrons: T_e (Temperature), τ_t (optical depth)
- Photon emission: E_{γ} , μ

Previously 4, now 5 parameters!

Current status

- X-PSI Interpolation algorithm (Lagrangian polynomials) extended from 4 to 5 parameters
- But: Likelihood evaluation ~1s to ~4s
- Analyses already take days to weeks
- Efforts to optimize code (useful for RMPs and AMPs)

Code Optimization

- Identified atmosphere interpolation >~95% of computation time -> optimize this part
- Work with HPC experts at Dutch IT cooperative (SURF):
 - Optimization at single node level
 - Optimization at parallelization level
 - Exploring options specialized hardware

Outlook for analysis of AMPs

- Test parameter recoverability with simulated data
- Analysis of J1808 NICER data from 2019 and 2022 outbursts
- If code well optimized, unlock more advanced models:
 - Accretion disk
 - Accretion column

Conclusions

- PPM has provided mass and radius constraints for J0030 and J0740, more in the works
- We discussed how PPM works in open source software X-PSI
- Next frontier: AMPs, but challenge due to accretion and complex environment
- Bottleneck is computational efficiency, working on code optimization

Thank you!

Special thanks to:

- Devarshi Choudhury
- Pushpita Das
- Satish Kamath
- Yves Kini
- Mason Ng
- Tuomo Salmi
- Serena Vinciguerra
- Prof. Dr. Anna Watts

UNIVERSITY OF AMSTERDAM Anton Pannekoek Institute for Astronomy

Reminder on Bayesian parameter inference

Deflection angle

$$\psi_{\rm p}(R,\alpha) = \int_R^\infty \frac{{\rm d}r}{r^2} \left[\frac{1}{b^2} - \frac{1}{r^2} \left(1 - \frac{R_{\rm S}}{r} \right) \right]^{-1/2}, \qquad (2.9)$$

where b is the impact parameter:

$$b = \frac{R}{\sqrt{1-u}} \sin \alpha. \tag{2.10}$$

Taken from Tuomo's Thesis. See also: Misner et al. 1973; Pechenick et al. 1983 ₃₀

b.dorsman@uva.nl

Pulse profile modeling: Constraining Mass and radius

b.dorsman@u

Previous work, current PPM efforts (Bayesian inference)

	Pulsar	J0030 (RMP)	J0740 (RMP)	J0437 (RMP, AGN backgrou nd)	J1614, J0614, J1231, J2124 (RMPs)	J1814 (Bursting)	J1808 (AMP)
	Previous work	Riley+ 2019 <i>Miller</i> + 2019	Riley+ 2021, <i>Miller+ 2021,</i> Salmi+ 2022			Kini+ 2023	Salmi+ 2018
	Current efforts	Serena's talk	Re-analysis with new NICER data	Devarshi's talk	Toulouse/A msterdam/ NRL/Colu mbia/IM	Yves' talk	This talk

Overview: Pulse profile modeling

Watts 20319

Instruments

Existing:

• RXTE, NICER, IXPE,

Planned/Proposed:

• Strobe-X, eXTP, Athena

Code Optimization

b.dorsman@uva.nl

Measuring neutron stars

	Pulsar timing	Spectral modeling (e.g. Natilla 2017)	Pulse profile modeling (e.g. Watts 2019)	NS mergers
Objects:	RMPs	Bursters/quiesc ent NSs in LMXBs	RMPs, AMPs, Bursters	B(H)NS binaries
Messenger:	Radio pulsations	X-ray Phase averaged spectra	X-ray pulsations	Gravitational waves, EM counterparts
Constrains:	Mass (binaries)	Mass-radius	Mass, Radius, Emitting geometry	Tidal deformability, EoS

Speed and accuracy

Model pulsed emission

Neutron Star

• Oblate spheroid in schwarzschild spacetime

Emission (pulsed)

- hot spots
- Elsewhere surface

Background (unpulsed)

• Sometimes constraints, sometimes not

Radiative transfer

- Beaming pattern modulated by atmospheric effects
- Relativistic ray-tracing to observer

X-ray Photometry

• Energy channels, uncertainties

Introduction

Neutron stars (NSs)

- Inner core uncertain: strange matter?
- Laboratories for equation of state (EoS) of cold dense matter

Millisecond pulsars (MPs)

- Rotation powered
- Accretion powered

Type 1 X-ray burst oscillation sources

Astronomy magazine, 2005

Introduction

Accreting MSPs: current status, modeling intricacies

Discussion: Strobe-X whitepaper 2019, EXTP white paper 2019)

Salmi+ 2018 parameter estimation RXTE

Salmi+ 2021 polarimetry simulations for IXPE (Thomson scattering limit)

Complicating factors

- Accretion column
- Accretion disk
- plasma around the accretion disk

Artist's impression of Accreting pulsar, ESA, 2019