Heavy Flavor Production and Properties of sQGP at RHIC

Xin Dong (Lawrence Berkeley National Laboratory)

INT Workshop on "Heavy Flavor Production", 10/16-22, 2022

X. Dong/LBNL

Outline

Introduction:

- Heavy quarks: microscopic characterization of sQGP

Recent Heavy Flavor Results at RHIC

- R_{AA} suppression parton energy loss
- Hadrochemistry hadronization
- Collectivity
 sQGP transport coefficient
- Future Heavy Flavor Program at RHIC

QGP Emergent Properties

rrrr

BERKELEY LAB

Heavy Flavor Quark Transport in QGP

Heavy quark transport – to probe QGP with comprehensive p_T coverage - unique insights to both perturbative and non-perturbative regimes

- Heavy Quarks: Unique Probe to Characterize sQGP
- Recent Heavy Flavor Results at RHIC
 - R_{AA} suppression parton energy loss
 - Hadrochemistry hadronization
 - Collectivity
 sQGP transport coefficient
- Future Heavy Flavor Program at RHIC

D⁰ Meson R_{AA}/R_{CP} in A+A Collisions

Bottom Suppression

BERKELEY LAB

X. Dong/LBNL

10

5

- Heavy Quarks: Unique Probe to Characterize sQGP
- Recent Heavy Flavor Results at RHIC
 - R_{AA} suppression parton energy loss
 - Hadrochemistry hadronization
 - Collectivity
 sQGP transport coefficient
- Future Heavy Flavor Program at RHIC

Charm Hadrochemistry in ee/ep

PDG 2018

ZEUS, JHEP 1309 (2013) 058

$$2\sigma_{c\bar{c}} = D^0 + D^+ + D_s^+ + \Lambda_c^+ + \text{c.c.}$$

60.8% 24.0% 8.0% 6.2%
Lisovyi, et. al. EPJ C 76 (2016) 397

D_s^+/D^0 Enhancement in Heavy Ion Collisions

STAR, PRL 127 (2021) 092301, CMS, PAS-HIN-18-017 ALICE, JHEP 1810 (2018) 174, EPJC77 (2017) 550

- D_s^+/D^0 significantly higher than fragmentation baseline from PYTHIA
- Models with coalescence hadronization + strangeness enhancement qualitatively reproduce the data

INT Workshop on "Heavy Flavor Production", 10/16-22, 2022

Λ_c^+/D^0 Enhancement in Heavy Ion Collisions

CMS, PLB 803 (2020) 135328

- Λ_c/D ratio comparable to light/strange hadrons in A+A collisions
- Λ_c/D enhancement w.r.t the PYTHIA predictions (w/ and w/o CR)

• Coalescence models qualitatively reproduce the large Λ_c/D ratio

INT Workshop on "Heavy Flavor Production", 10/16-22, 2022

Introduction:

- Heavy Quarks: Unique Probe to Characterize sQGP

Recent Heavy Flavor Results at RHIC

- R_{AA} suppression parton energy loss
- Hadrochemistry hadronization
- Collectivity sQGP transport coefficient

• Future Heavy Flavor Program at RHIC

D⁰ Radial Flow

- T-slope parameter (expo fit to m_T spectra) follows the similar trend as other strange particles
- Similar to multi-strange hadrons, D^o mesons kinetically freeze out earlier than light hadrons
 - collectivity from partonic stage interactions

INT Workshop on "Heavy Flavor Production", 10/16-22, 2022

rrrr

BERKELEY L

D⁰ Meson v₂ in A+A Collisions

STAR, PRL 118 (2017) 212301

rrrr

• $v_2(D)$ follows the $(m_T-m_0)/n_q$ scaling as light hadrons

Evidence of charm quarks reaching local thermal equilibrium!

- Large $D^0 v_2$ ordinated from charm quark diffusion in QGP
- 3D viscous hydro consistent with D⁰ v₂ data up to 4 GeV/c

D⁰ v₂ Compared with Model Calculations

 pQCD calculation and T-Matrix with F-pot. cannot reproduce the data - heavy quarkonium R_{AA} data disfavors F-pot.

INT Workshop on "Heavy Flavor Production", 10/16-22, 2022

X. Dong/LBNL

Summary of D⁰ v₂ and R_{AA} at RHIC and LHC

BERKELEY LAB

16

Charm Spatial Diffusion Coefficient

<u>2015</u>

<u>2019</u>

XD, Y-J Lee & R. Rapp, Ann. Rev. Nucl & Part. Sci. 69 (2019) 417 HotQCD, 2022

Strongly interacting QGP!

INT Workshop on "Heavy Flavor Production", 10/16-22, 2022

X. Dong/LBNL

sQGP Transport Parameters

 $2\pi TD_s$: Y. Xu et al, PRC 97 (2018) 014907 η/s : J. Bernhard et al, Nature Physics 115 (2019) 1113

- Charm quark $2\pi TD_s \sim 2-5$ at near T_c
 - consistent with quenched lattice calculations

momentum/temperature dependence? charm vs. bottom universality?

INT Workshop on "Heavy Flavor Production", 10/16-22, 2022

D⁰ v₁ - T-dependent sQGP Properties

S. Chatterjee & P. Bozek, PRL 120 (2018) 192301

D^0/\overline{D}^0 v₁ difference - Access to Initial B Field

First Look at the Bottom v₂

• TPC and FMS (2.5 < η < 4.0) methods provide consistent results Evidence of non-zero bottom v_2 (3.4 σ)

INT Workshop on "Heavy Flavor Production", 10/16-22, 2022

Towards Precision Constraints of HQ Diffusion Coefficient

BERKELEY LAB

μ_B Dependence of QGP Properties

Energy Dependent Heavy Flavor Electron v₂

STAR, HP 2020

- Comparable HF electron v₂ at 54.4 GeV w.r.t. that at 200 GeV
- Hint of zero HF electron v₂ at 27 GeV
 - more precise measurements are needed for better understanding
 - help constrain on μ_B -dependent $2\pi TD_s$

Introduction:

- Heavy Quarks: Unique Probe to Characterize sQGP

Recent Heavy Flavor Results at RHIC

- R_{AA} suppression parton energy loss
- Hadrochemistry hadronization
- Collectivity
 sQGP transport coefficient
- Future Heavy Flavor Program at RHIC

ALICE-ITS2 and sPHENIX MVTX

n n n n n n

BERKELEY LAB

Next generation fast MAPS detector

	HFT	ITS2/MVTX			
thickness	0.4% X ₀ -	$\rightarrow 0.3\% X_0$			
integration time 186 $\mu s \rightarrow < 10 \ \mu s$					
==> background reduced by > x10					

INT Workshop on "Heavy Flavor Production", 10/16-22, 2022

X. Dong/LBNL

Precision Measurement of Open-Bottom at RHIC

INT Workshop on "Heavy Flavor Production", 10/16-22, 2022

X. Dong/LBNL

Fruitful Charm/Bottom Physics

rrrr

INT Workshop on "Heavy Flavor Production", 10/16-22, 2022

Impact on Charm Diffusion Coefficient

Bayesian analysis to constrain HQ diffusion coefficient - Weiyao Ke (Duke), HF Workshop, LBNL, 2019

INT Workshop on "Heavy Flavor Production", 10/16-22, 2022

BERKELEY LAB

RHIC/LHC Complementarity for HF Programs in 202x

	RHIC sPHENIX	LHC ALICE	LHC ATLAS/CMS
Charm X-sec		+	+
Bottom X-sec		++	++
b->c feeddown	+		
Gluon splitting	+		
Running Time	+		
DCA Res	+	+	
Mom Res			+
PID		+	
Jet E Res			+
Rapidity Coverage			+

Summary

	201	14-2016	2	017-2021	2022	2023	2024	2025+
RHIC	ST	AR/HFT charm			sPHENIX/MVTX bottom, Λ_c , correlations			
LHC		ALICE/ITS Run2			ALICE/ITS2 Run3			

rrrr

BERKELEY LAB