

Calculation Setup

Results (Chiral-even twist-3 GPDs

Summary

Chiral-even twist-3 GPDs for the proton

Jack Dodson S. Bhattacharya, K. Cichy, M. Constantinou, A. Metz, A. Scapellato, F. Steffens

Parton Distributions and Nuclear Structure

September 16, 2022

Outline

Theoretical Background

Calculation Setup

Results (Chiral-even twist-3 GPDs

Summary

1 Theoretical Background

2 Calculation Setup

3 Results (Chiral-even twist-3 GPDs)

4 Summary

Outline

Theoretical Background

Calculation Setup

Results (Chiral-even twist-3 GPD

Summary

1 Theoretical Background

3 Results (Chiral-even twist-3 GPDs)

4 Summary

Twist classification

Theoretical Background

Calculatior Setup

Results (Chiral-even twist-3 GPDs

Summary

• All types of distribution functions can be expanded in terms of their twist (dimension minus spin), which is also the order that they enter into QCD factorization formulas

$$ar{f}_i = f_i^{(0)} + rac{f_i^{(1)}}{Q_o} + rac{f_i^{(2)}}{Q_o^2} + \dots$$

- twist-2 contribution: $\mathcal{O}(Q_o^0)$ (e.g., unpolarized and helicity)
- twist-3 contribution: $\mathcal{O}(Q_o^{-1})$
- Q_0 is the large energy scale of the process.

Calculation Setup

Results (Chiral-even twist-3 GPDs

Summary

Generalized Parton Distributions (GPDs)

- Necessary for studying the three dimensional structure of the hadrons.
- Provide extensive information on the hadron properties (e.g., spin and mass decomposition, orbital angular momentum).
- Their Mellin moments (e.g., electromagnetic and axial form factors) have physical interpretation and are extracted experimentally.
- Experimentally accessed through exclusive processes.
- GPD extraction poses several challenges with limited information available compared to PDFs.

The above motivate dedicated calculations of GPDs from lattice QCD

Calculatior Setup

Results (Chiral-even twist-3 GPDs

Summary

Twist-3 distributions

$$f_i = f_i^{(0)} + \frac{f_i^{(1)}}{Q_o} + \frac{f_i^{(2)}}{Q_o^2} + \dots$$

- Twist-3 contributions in the cross section may be sizeable.
- Lack density interpretation; but have physical interpretation $(g_T: F_\perp)$
- Twist-3 GPDs relevant for spin-orbit correlations.[Lorce,PLB(2014),arXiv:1401.7784]
- Contain information on multi-parton correlators (q-g-q).
- Knowledge of twist-3 GPDs is necessary to reliably disentangle twist-2 GPDs.
- PDFs: twist-2 case has been extensively studied [K. Cichy, PoS LATTICE2021 (2022) 017, arXiv: 2110.07440]; little is known about twist-3. [S. Bhattacharya et al., PRD 104 (2021) 11, 114510; PRD 102 (2020) 11, 111501]
- GPDs: limited information on twist-2; almost nothing available for twist-3.

Calculation Setup

Results (Chiral-even twist-3 GPDs

Summary

Theoretical Background

2 Calculation Setup

3 Results (Chiral-even twist-3 GPDs)

4 Summary

Outline

Calculation Setup

Results (Chiral-even twist-3 GPDs

Summary

Quasi-PDf method (LaMET)

- Boosted hadrons with nonlocal operators
- Extraction of matrix elements from two and three point function
- Nonperturbative renormalization in RI' scheme
- Reconstruct x-dependence using the Backus-Gilbert method
- Matching with only 2-parton correlators
 S. Bhattacharya et al., PRD 102 (2020) 11, arXiv:2004.04130
- Matching for qgq-correlation has been discussed [V. Braun et al., JHEP 05 (2021) 086; JHEP 10 (2021) 087]

Calculation Setup

Results (Chiral-even twist-3 GPDs)

Summary

Extraction of Matrix Elements

Matrix elements calculated in symmetric frame:

$$h_{\mathcal{O}}(\Gamma_{\kappa}, z, P_{f}, P_{i}, \mu) = Z_{\mathcal{O}}(z, \mu) \left\langle N(P + \frac{Q}{2}) | \, \overline{\psi}(z) \, \mathcal{O} \, \mathcal{W}(z, 0) \psi(0) \, | \, N(P - \frac{Q}{2}) \right\rangle$$

- The indices of \mathcal{O} are transverse to the boost (for twist-3): γ^{j} (vector) and $\gamma^{5} \gamma^{j}$ (axial), j = 1, 2.
- $\mathbf{P} = (0, 0, P_3)$ is the proton momentum boost.
- Wilson line in the same direction as the momentum boost.
- Γ_{κ} is the parity projector with $\kappa = 0, 1, 2, 3$ (to disentangle GPDs)
- $\Gamma_0 = \frac{1+\gamma_0}{2}$ and $\Gamma_j = \frac{1}{4}(1+\gamma^0)i\gamma^5\gamma^j$.

Calculation Setup

Results (Chiral-even twist-3 GPDs

Summary

F_X Function Disentanglement

• For matrix element parameterization we use Kiptily and Polyakov [Kiptily et al., Eur. Phys. J. C(2002), arXiv:0212372]

$$\mathbf{h}_{\gamma^{j}} = \langle \langle \frac{g_{\perp}^{j\rho} \Delta_{\rho}}{2m} \rangle \rangle [\mathbf{F}_{E} + \mathbf{F}_{G_{1}}] + \langle \langle g_{\perp}^{j\rho} \gamma_{\rho} \rangle \rangle [\mathbf{F}_{H} + \mathbf{F}_{G_{2}}] + \langle \langle \frac{g_{\perp}^{j\rho} \Delta_{\rho} \gamma^{+}}{P^{+}} \rangle \rangle \mathbf{F}_{G_{3}} + \langle \langle \frac{i\epsilon_{\perp}^{j\rho} \Delta_{\rho} \gamma^{+} \gamma_{5}}{P^{+}} \rangle \mathbf{F}_{G_{4}}$$

$$\mathbf{h}_{\gamma^{j}\gamma_{5}} = \langle \langle \frac{g_{\perp}^{j\rho}\Delta_{\rho}\gamma_{5}}{2m} \rangle \rangle [F_{\widetilde{E}} + F_{\widetilde{G}_{1}}] + \langle \langle g_{\perp}^{j\rho}\gamma_{\rho}\gamma_{5} \rangle \rangle [F_{\widetilde{H}} + F_{\widetilde{G}_{2}}] + \langle \langle \frac{g_{\perp}^{j\rho}\Delta_{\rho}\gamma^{+}\gamma_{5}}{P^{+}} \rangle \rangle F_{\widetilde{G}_{3}} + \langle \langle \frac{ie^{j\rho}\Delta_{\rho}\gamma^{+}}{P^{+}} \rangle \rangle F_{\widetilde{G}_{4}}$$

$$\widecheck{\mathcal{H}}, \ \widetilde{\mathcal{E}}, \ \mathcal{H}, \ \mathcal{E}: \ \text{twist-2}, \ \widetilde{\mathcal{G}}_{i}, \ \mathcal{G}_{i}: \ \text{twist-3}$$

• Matrix elements lead to independent equations depending on the index of the operator and parity projector.

Calculation Setup

Results (Chiral-even twist-3 GPDs)

Summary

Computational Challenges

- Due to the momentum transfer, there are increased statistical uncertainties compared to the PDFs case.
- Values of momentum transfer controlled by the spatial extent of the lattice $\left(\frac{2\pi}{L}\right)$
- Increased statistical uncertainties in the twist-3 contributions compared to twist-2 case
- Mixing from the qgq-correlators.
- There is a need for as many independent matrix elements as there are GPDs, so that we can disentangle them

Calculation Setup

Results (Chiral-even twist-3 GPDs

Summary

Axial Case

$$\Pi^{1}(\Gamma_{0}) = C \left(-F_{\widetilde{G}_{4}} \frac{Q_{y}(E+m)}{2m^{2}} - [F_{\widetilde{H}} + F_{\widetilde{G}_{2}}] \frac{P_{3}Q_{y}}{4m^{2}} \right),$$

$$\Pi^1(\Gamma^1) = i \, C \left(- [F_{\tilde{E}} + F_{\tilde{G}_4}] \frac{Q_x^2(E+m)}{8m^3} + [F_{\tilde{H}} + F_{\tilde{G}_2}] \frac{(4m(E+m) + Q_y^2)}{8m^2} + F_{\tilde{G}_4} \frac{Q_y^2(E+m)}{4m^2 P_3} \right)$$

$$\Pi^1(\Gamma^2) = i \, C \Biggl(- [F_{\tilde{E}} + F_{\tilde{G}_1}] \frac{Q_x Q_y (E+m)}{8m^3} - F_{\tilde{G}_4} \frac{Q_x Q_y (E+m)}{4m^2 P_3} - [F_{\tilde{H}} + F_{\tilde{G}_2}] \frac{Q_x Q_y}{8m^2} \Biggr) \,,$$

$$\Pi^1(\Gamma^3) = i \, C \Biggl(F_{\widetilde{G}_3} \frac{E Q_x(E+m)}{2m^2 P_3} \Biggr) \,, \label{eq:Gamma-star}$$

$$\begin{split} \Pi^2(\Gamma_0) &= C \Biggl(F_{\tilde{G}_4} \frac{Q_x(E+m)}{2m^2} + [F_{\tilde{H}} + F_{\tilde{G}_2}] \frac{P_3 Q_x}{4m^2} \Biggr) \,, \\ \Pi^2(\Gamma^1) &= i \, C \Biggl(- [F_{\tilde{E}} + F_{\tilde{G}_1}] \frac{Q_x Q_y(E+m)}{8m^3} - F_{\tilde{G}_4} \frac{Q_x Q_y(E+m)}{4m^2 P_3} - [F_{\tilde{H}} + F_{\tilde{G}_2}] \frac{Q_x Q_y}{8m^2} \Biggr) \,, \\ \Pi^2(\Gamma^2) &= i \, C \Biggl(- [F_{\tilde{E}} + F_{\tilde{G}_1}] \frac{Q_y^2(E+m)}{8m^3} + [F_{\tilde{H}} + F_{\tilde{G}_2}] \frac{(4m(E+m) + Q_x^2)}{8m^2} + F_{\tilde{G}_4} \frac{Q_x^2(E+m)}{4m^2 P_3} \Biggr) \,, \\ \Pi^2(\Gamma^3) &= i \, C \Biggl(F_{\tilde{G}_3} \frac{EQ_y(E+m)}{2m^2 P_3} \Biggr) \,, \end{split}$$

Calculation Setup

Results (Chiral-even twist-3 GPDs

Summary

Parameters of Calculation

- $N_f = 2 + 1 + 1$ ensemble of maximally twisted mass fermions.
- pion mass $M_{\pi}=260$ MeV,
- Lattice spacing $a \simeq 0.093$ fm and volume $V = 32^3 \times 64$.
- The nucleon boost is nonzero along the z-direction, $\vec{P} = (0, 0, \pm P_3)$.
- The source-sink time separation is chosen as $t_s = 10a$ (0.93 fm), due to the increased uncertainties
- Results available for $\xi = 0$

$P_3 [{ m GeV}]$	$q\left[\frac{2\pi}{L} ight]$	$-t[{ m GeV^2}]$	$N_{ m confs}$	$N_{ m src}$	$N_{ m total}$
± 0.83	$(\pm 2, 0, 0), (0, \pm 2, 0)$	0.69	67	8	4288
± 1.25	$(\pm 2, 0, 0), (0, \pm 2, 0)$	0.69	249	8	15936
± 1.25	$(\pm 2,\pm 2,0)$	1.39	223	8	28544
± 1.67	$(\pm 2, 0, 0), (0, \pm 2, 0)$	0.69	294	32	75264
± 1.25	$(\pm 4, 0, 0), (0, \pm 4, 0)$	2.76	329	8	84224

Calculation Setup

Results (Chiral-even twist-3 GPDs)

Summary

Theoretical Background

3 Results (Chiral-even twist-3 GPDs)

4 Summary

Outline

Calculation Setup

Results (Chiral-even twist-3 GPDs)

Summary

Matrix Elements

• matrix elements at $t = 0.69 \text{ GeV}^2$ for various P_3 .

- We find a good signal, and we observe an hierarchy between the different matrix elements with respect to changes in *t*.
- Π(Γ₀) at t = -0.69 GeV² is dominant in magnitude.
- *P*₃ dependence mild and within uncertainties.

Calculation Setup

Results (Chiral-even twist-3 GPDs)

Summary

Decomposed functions F_{X} , $X = \widetilde{H} + \widetilde{G}_2, \ \widetilde{E} + \widetilde{G}_1, \ \widetilde{G}_3, \ \widetilde{G}_4$

- *F_X* decreases with increase of *t* (standard behavior)
- $F_{\tilde{E}} + F_{\tilde{G}_1}$ has the largest magnitude (expected from axial and induced pseudoscalar form factors).

Not shown:

- $F_{\widetilde{G}_3}$ is found to be consistent with zero, due to the fact $\int dx \ x \widetilde{G}_3 = \frac{\xi}{4} G_E(t)$
- *F*_{*G̃*⁴} is noisy and very small: ∫ *dx G̃*ⁱ = 0 (*i* = 1, 2, 3, 4), could possibly be the reason.

Calculation Setup

Results (Chiral-even twist-3 GPDs)

Summary

GPDs: Momentum Boost Dependence

• Reconstruction of x dependence not unique (Naive FT, Backus-Gilbert Method, etc.).

We use Backus-Gilbert Backus and Gilbert, Geophysical Journal International, 1968

• After x-dependence reconstruction and matching.

• We find mild P_3 dependence with a marginal agreement in the small-x region.

Calculation Setup

Results (Chiral-even twist-3 GPDs)

Summary

- $\widetilde{H} + \widetilde{G}_2$ compared with the forward limit, g_T [Bhattacharya et al., PRD (2020)]
- $g_T(x)$ is the dominant distribution in magnitude

GPDs: Momentum transfer Dependence

- Noticeable dependence on t for both $\widetilde{H} + \widetilde{G}_2$.
- For t = -0.69, 1.39 GeV² $\widetilde{H} + \widetilde{G}_2$ approach zero at $x \sim 0.4$; for t = -2.8 GeV² decay is faster
- Right: difference between $\widetilde{H} + \widetilde{G}_2$ and \widetilde{H} gives an estimate for \widetilde{G}_2

Calculatior Setup

Results (Chiral-even twist-3 GPDs)

Summary

- Similar hierarchy with respect to t with a tendency for $t = -0.69 \text{ GeV}^2$ to be the largest (compatible with $t = -1.39 \text{ GeV}^2$ within uncertainties)).
- $\widetilde{G_1} + \widetilde{E}$ at $t = -2.8 \ {
 m GeV}^2$ very suppressed

GPDs: Momentum transfer Dependence

• Right: \tilde{E} is much smaller than $\widetilde{G_1} + \widetilde{E}$, indicating large $\widetilde{G_1}$ (unlike $\widetilde{G_2}$).

Calculation Setup

Results (Chiral-even twist-3 GPD

Summary

Theoretical Background

3 Results (Chiral-even twist-3 GPDs)

4 Summary

Outline

Calculation Setup

Results (Chiral-even twist-3 GPDs)

Summary

Summary

Conclusions:

- There is a reasonable path to access twist-3 GPDs from lattice.
- Good signal for twist-3 GPDs.

Future work

- Extend calculation to nonzero skewness (matching must be calculated)
- Address systematic effect (e.g., discretization effects, volume effects).
- Explore difference renormalization schemes (Hybrid, Improved RI) [X. Ji et al., 964 (2021) 115311][M. Constantinou et al., arXiv:2207.09977]
- Complete analysis for the vector twist-3 GPD
- Study of chiral-odd twist-3 GPDs.
- Include matching with quark-gluon-quark mixing [Braun et al., arXiv:2103.12105]
- Study twist-3 GPDs in alternative frames [See Shohini's talk]

Calculation Setup

Results (Chiral-even twist-3 GPDs

Summary

Thank you!

I have been funded by U.S. Department of Energy, Office of Nuclear Physics, Early Career Award under Grant No. DE-SC0020405 as well as a CST summer fellowship through Temple University.