#### Electromagnetic moments in heavy deformed open-shell odd nuclei

Jacek Dobaczewski with B.C.T. Backes, M. Bender, J. Bonnard, G. Danneaux, R.F. Garcia Ruiz, R.P. de Groote, M. Kortelainen, D. Muir, A. Nagpal, W. Nazarewicz, A. Sánchez-Fernández, P.L. Sassarini, W. Satuła, X. Sun, J. Wood, H. Wibowo

> INT Program INT-24-1 Fundamental Physics with Radioactive Molecules Seattle, USA, March 4 - April 12, 2024



Jacek Dobaczewski

UNIVERSITY of your





The bottom line

# The nuclear electromagnetic moments are all about:

- 1. Polarization
- 2. Self-consistency
- 3. Symmetry restoration



Jacek Dobaczewski









## **Outline**

- 1. Methodology\*
- 2. Gd-Pb\*
- 3. Dy-Os
- 4. Sn-Gd
- 5. In\*
- 6. Ag\*
- 7. Sn\*
- 8. Sb
- 9. What next?
- 10. Two-body currents
- 11. K-mixing
- 12. Octupole vibration <sup>171</sup>Yb

#### \*published



Jacek Dobaczewski







#### Herlik Wibowo

Collaborators: D. Muir, A. Sánchez-Fernández, X. Sun, and J. Dobaczewski

UK Nuclear Physics Conference 2023 at the University of York April 4-6, 2023



#### Herlik Wibowo

Collaborators: D. Muir, A. Sánchez-Fernández, X. Sun, and J. Dobaczewski

UK Nuclear Physics Conference 2023 at the University of York April 4-6, 2023

#### Nuclear density functional theory





Jacek Dobaczewski







#### **Time-odd spin alignment & symmetry restoration**

#### "Intrinsic" Symmetry broken







J. A. Sheikh et al., J. Phys. G48, 123001 (2021)



Jacek Dobaczewski









## Nuclear quadrupole & dipole moments

Spectroscopic electric quadrupole Q and magnetic dipole  $\mu$  moments are :

$$Q = \sqrt{\frac{16\pi}{5}} \langle II | \hat{Q}_{20} | II \rangle \quad \text{and} \quad \mu = \sqrt{\frac{4\pi}{3}} \langle II | \hat{M}_{10} | II \rangle . \qquad \text{P. Ring and P. Schuck, The Nuclear Many-Body Problem}$$

$$\hat{Q}_{20} = \sqrt{\frac{5}{16\pi}} e \sum_{i=1}^{A} \left(\frac{1}{2} - t_{3}^{(i)}\right) \left\{3z_{i}^{2} - r_{i}^{2}\right\}; \quad \hat{M}_{10} = \sqrt{\frac{3}{4\pi}} \mu_{N} \sum_{i=1}^{A} \left\{g_{s}^{(i)}s_{zi} + g_{\ell}^{(i)}\ell_{zi}\right\}; \quad \frac{g_{s}^{(i)}}{g_{\ell}^{(i)}} = 1(0)$$

Intrinsic moments = moments of the symmetry-broken state Spectroscopic moments = moments of the symmetry-restored state

**Spectroscopic moments = moments measured experimentally** 



Jacek Dobaczewski











## Quadrupole & dipole moments



- Average of UNEDF1, SLy4, SkO', D1S, N3LO functionals
- RMS deviations much smaller than the residuals



Ч.

Jacek Dobaczewski UNIVERSITY of York





### **Effective spin g-factor? Who ordered that?**



??? Landau parameter  $g'_0$  ( $g'_0 = 1.7$ )  $g'_0 = N_0 \left( 2C_1^s + 2C_1^T (3\pi^2 \rho_0/2)^{2/3} \right)$  $\frac{1}{N_0} \approx 150 \frac{m}{m^*} \,\mathrm{MeV} \cdot \mathrm{fm}^3$ 





Jacek Dobaczewski UNIVERSITY of York







843 (2023) 138014 β Lett. Phys. Bonnard et al.,

## Heavy deformed **π11/2** odd-Z nuclei



#### Spectroscopic electric quadrupole moments can be inferred from the intrinsic ones at $\sim 5\%$ precision only at |Q| > 1b)



Jacek Dobaczewski UNIVERSITY of yor



**UK Research** and Innovation



22

ett

Phv

## Heavy deformed **π11/2** odd-Z nuclei



#### **Conclusion:**

**Spectroscopic magnetic dipole moments** cannot be inferred from the intrinsic ones



Jacek Dobaczewski







#### **Spectroscopic moments: theory vs. experiment**





Jacek Dobaczewski UNIVERSITY of York



UK Research and Innovation



843 (2023) 138014

β

Bonnard et al., Phys. Lett.

### The first systematic nuclear-DFT analysis of the electromagnetic moments in excited quasiparticle states





UNIVERSITY of York

Jacek Dobaczewski





#### How to calculate odd nuclei in nuclear DFT?







Jacek Dobaczewski







#### **Excitation energies of odd dysprosium isotopes**





Jacek Dobaczewski UNIVERSITY of York





#### **Excitation energies of odd dysprosium isotopes**





Jacek Dobaczewski UNIVERSITY of York





#### **Electromagnetic moments of odd dysprosium isotopes**







# Nuclear-DFT analysis of electromagnetic moments between the Sn and Gd isotopes





Jacek Dobaczewski







## **Quadrupole moments: theory vs. experiment**





N. J. Stone, Table of nuclear electric quadrupole moments, ADNDT 111-112, 1 (2016)



Nuclei

Picture: courtesy H. Wibowo

H. Wibowo et al., to be published



Jacek Dobaczewski

UNIVERSITY of York





#### Magnetic dipole moments: theory vs. experiment



N. J. Stone, Table of nuclear magnetic dipole and electric quadrupole moments (2014), INDC, report INDC(NDS)-0658

Schmidt lines represent the value of magnetic dipole moment of an odd-mass nucleus which is completely determined by the  $\ell$  and j values of the unpaired nucleon (single-particle model).



#### Picture: courtesy H. Wibowo

H. Wibowo et al., to be published



Jacek Dobaczewski







#### Moments of the 9/2 states in In





#### Moments of the 1/2, 7/2 & 9/2 states in Ag





Jacek Dobaczewski





#### Moments of the $vh_{11/2}$ isomers in Sn





Jacek Dobaczewski







### Quadrupole moments in Sb





Jacek Dobaczewski





UK Research and Innovation



S. Lechner et al., Phys. Lett. B 847 (2023) 138278

## Quadrupole moments in Sb



## Magnetic dipole moments in Sb



## Magnetic dipole moments in Sb



#### What's next to consider

**Segré chart of electromagnetic moments** 

**Electromagnetic moments of odd-odd nuclei** 

**More advanced functionals** 

**Octupole deformation** 

Triaxiality

**Configuration interaction** 

**K-mixing** 

**Quadrupole/octupole collectivity** 

**Two-body meson-exchange currents** 



Jacek Dobaczewski







#### **Two-body-current corrections to magnetic moments**



FIG. 1. Magnetic dipole moments of near doubly magic nuclei from A = 17 - 209 computed with the VS-IMSRG(2) relative to the experimental values. Results are shown at the one-body level,  $\mu_{1B}$  (blue squares), and including 2BC,  $\mu_{1B} + \mu_{2B}$  (red circles) based on the 1.8/2.0 (EM) NN+3N interactions. The experimental dipole moments (stars) are taken from Ref. [21, 35]. In addition, we show the simple single-particle (sp) limit (without many-body correlations and without 2BC).



FIG. 4. Magnetic dipole moments of the  $9/2^+$  ground state for the odd-mass indium isotopes isotopes computed with the VS-IMSRG(2) including 2BC, in comparison to experiment [21, 52].



Jacek Dobaczewski





# NLO magnetic moment operators

(slide by Herlik Wigowo)

The NLO intrinsic and Sachs contributions to the magnetic moment operator are given by

$$\begin{split} \hat{\mu}_{2\mathrm{b}}^{\mathrm{NLO,\,int}}(\mathbf{r}) &= -\frac{g_A^2 m_\pi}{8\pi F_\pi^2} \left( \hat{\tau}_1 \times \hat{\tau}_2 \right)_z \left\{ \left( 1 + \frac{1}{m_\pi r} \right) \left[ \left( \hat{\sigma}_1 \times \hat{\sigma}_2 \right) \cdot \hat{\mathbf{r}} \right] \hat{\mathbf{r}} - \left( \hat{\sigma}_1 \times \hat{\sigma}_2 \right) \right\} e^{-m_\pi r} \\ \text{and} \\ \hat{\mu}_{2\mathrm{b}}^{\mathrm{NLO,\,Sachs}}(\mathbf{r}) &= -\frac{1}{2} \left( \hat{\tau}_1 \times \hat{\tau}_2 \right)_z V_{1\pi}(r) \mathbf{R}_{\mathrm{NN}} \times \mathbf{r}, \end{split}$$
 relative coordinate   
respectively, where 
$$V_{1\pi}(r) = \frac{m_\pi^2 g_A^2}{12\pi F_\pi^2} \left( \hat{\tau}_1 \cdot \hat{\tau}_2 \right) \left[ \hat{S}_{12} \left( 1 + \frac{3}{m_\pi r} + \frac{3}{(m_\pi r)^2} \right) + \hat{\sigma}_1 \cdot \hat{\sigma}_2 \right] \frac{e^{-m_\pi r}}{r} \\ \text{Tensor operator:} \qquad \hat{S}_{12} = 3 \left( \hat{\mathbf{r}} \cdot \hat{\sigma}_1 \right) \left( \hat{\mathbf{r}} \cdot \hat{\sigma}_2 \right) - \hat{\sigma}_1 \cdot \hat{\sigma}_2. \end{split}$$

R. Seutin, et.al, PRC 108, 054005 (2023)



Jacek Dobaczewski





## NLO magnetic moment operators

#### (slide by Herlik Wigowo)





Jacek Dobaczewski

UNIVERSITY of York





#### **K-mixing**



#### **Energies of the K-mixed states**

| *************************************** |                                                |   |                       |      |   |  |
|-----------------------------------------|------------------------------------------------|---|-----------------------|------|---|--|
| *                                       |                                                |   |                       |      | * |  |
| *                                       | * RESULTS OF THE MULTI-REFERENCE CALCULATION * |   |                       |      |   |  |
| *                                       | * *                                            |   |                       |      |   |  |
| *************************************** |                                                |   |                       |      |   |  |
| *                                       | SPIN                                           | Ν | EIG OVERLAP EIG ENE   | RGY  | * |  |
| *                                       |                                                | - |                       |      | * |  |
| *                                       | 11/2                                           | 1 | 5.979982E+00 -1092.43 | 9526 | * |  |
| *                                       | 11/2                                           | 2 | 1.575148E-02 -1083.00 | 8302 | * |  |
| *                                       | 11/2                                           | 3 | 2.225877E-03 -1080.28 | 9292 | * |  |
| *                                       | 11/2                                           | 4 | 1.132094E-03 -1078.42 | 3819 | * |  |
| *                                       | 11/2                                           | 5 | 6.412910E-04 -1069.86 | 9511 | * |  |
| *                                       | 11/2                                           | 6 | 2.674966E-04 -1067.35 | 9363 | * |  |
| *************************************** |                                                |   |                       |      |   |  |

E\_intrinsic(11/2) = -1092.055162
E\_projected(11/2) = -1092.310241



Jacek Dobaczewski

UNIVERSITY of York





#### **Octupole deformation – a case study**



# Thank you



Jacek Dobaczewski







## **Basic definitions**

The electric and magnetic moments are defined as

$$egin{aligned} Q_{\lambda\mu} &= \langle \Psi | \hat{Q}_{\lambda\mu} | \Psi 
angle = \int q_{\lambda\mu}(ec{r}) \, d^3ec{r}, \ M_{\lambda\mu} &= \langle \Psi | \hat{M}_{\lambda\mu} | \Psi 
angle = \int m_{\lambda\mu}(ec{r}) \, d^3ec{r}. \end{aligned}$$

where  $|\Psi\rangle$  is a many-body state, and  $q_{\lambda\mu}(\vec{r})$  and  $m_{\lambda\mu}(\vec{r})$  are the corresponding electric and magnetic-moment densities:

$$egin{aligned} q_{\lambda\mu}(ec{r}) &= e
ho(ec{r})Q_{\lambda\mu}(ec{r}), \ m_{\lambda\mu}(ec{r}) &= \mu_N \Big[g_sec{s}(ec{r}) + rac{2}{\lambda+1}g_lig(ec{r} imesec{j}(ec{r})ig)\Big]\cdotec{
abla}Q_{\lambda\mu}(ec{r}), \end{aligned}$$

and  $e, g_s$ , and  $g_l$  are the elementary charge, and the spin and orbital gyromagnetic factors, respectively. The multipole functions (solid harmonics) have the standard form:  $Q_{\lambda\mu}(\vec{r}) = r^{\lambda}Y_{\lambda\mu}(\theta, \phi)$ .









## **Schmidt limits**

The magnetic operator  $\bar{\mu}$  is a one-body operator and the magnetic dipole moment  $\mu$  is the expectation value of  $\bar{\mu}_z$ . The M1 operator acting on a composed state  $|\text{Im}\rangle$  can then be written as the sum of single particle M1 operators  $\bar{\mu}_z(j)$  acting each on an individual valence nucleon with total momentum j:

$$\mu(I) \equiv \left\langle I(j_1, j_2, \dots, j_n), m = I \middle| \sum_{i=1}^n \bar{\mu}_z(i) \middle| I(j_1, j_2, \dots, j_n), m = I \right\rangle$$
(2.1)

The single particle magnetic moment  $\mu(j)$  for a valence nucleon around a doubly magic core is uniquely defined by the quantum numbers l and j of the occupied single particle orbit [22]:

for an odd proton: 
$$\begin{cases} \mu = j - \frac{1}{2} + \mu_{p} & \text{for } j = l + \frac{1}{2} \\ \mu = \frac{j}{j+1} \left( j + \frac{3}{2} - \mu_{p} \right) & \text{for } j = l - \frac{1}{2} \end{cases}$$
(2.2)  
for an odd neutron: 
$$\begin{cases} \mu = \mu_{n} & \text{for } j = l + \frac{1}{2} \\ \mu = -\frac{j}{j+1} \mu_{n} & \text{for } j = l - \frac{1}{2} \end{cases}$$
(2.3)

These single particle moments calculated using the free proton and free neutron moments ( $\mu_p = +2.793$ ,  $\mu_n = -1.913$ ) are called the Schmidt moments. In a nucleus, the magnetic



Jacek Dobaczewski UNIVERSITY of York





# Heavy deformed v13/2<sup>+</sup> odd-N nuclei



## Heavy deformed v13/2<sup>+</sup> odd-N nuclei



#### **Conclusion:**

Rules of oblate and prolate polarizations do extend from the magicity towards the open shell systems.



Jacek Dobaczewski UNIVERSITY of Vork





# Heavy deformed v13/2<sup>+</sup> odd-N nuclei



#### Conclusion:

Rules of particle and hole polarizations do not extend from the magicity towards the open shell systems.







UK Research and Innovation



843 (2023) 138014

2

Bonnard *et al.*, Phys. Lett.

#### **Insignificant impact of the PNP**

# **UNEDF1**, $g'_0 = 1.7$





Jacek Dobaczewski







#### **Convergence of the total HFB intrinsic energy**





# $E_{exp}$ =-1357.77346



Jacek Dobaczewski UNIVERSITY of York





#### **Convergence of the spectroscopic moments**

<sup>167</sup>Ho 11/2<sup>-</sup>, UNEDF1, g'<sub>0</sub>=1.7





Jacek Dobaczewski



acilities Council



#### **Electromagnetic moments of odd dysprosium isotopes**





Jacek Dobaczewski



Science & Technology Facilities Council UK Research and Innovation

