

Probe and Prejudice: Joint nuclear-physics and multi-messenger constraints on the neutron star equation of state

Tim Dietrich

Inverse Problems and Uncertainty Quantification in Nuclear Physics

INT WORKSHOP INT-24-88W

July 8, 2024 - July 12, 2024

Input from a variety of sources:

Koehn et al. 2024, 2402.04172

Combining different constraints on the EOS from different research fields

Combined Equation of SI × +	Science cases
- → C O & 0.0.0.0:5000	☆ ♥️ ♥️ ♥ ♥ Koehn et al. 2
An overview of existing and new nuclear and astrophysical constr	raints on the equation of state of
neutron-rich dense matter	arXiv:2402.0417
is tool can be used to combine various constraints on the equation of state (EOS) for dense matter. Select the constraints you are interested in. Click ovide the figures for either EOS-derived quantities or show how the estimate for the canonical neutron star radius changes. Dependencies are taken i r clicking on the images, you can switch between the M-R curve and the corresponding pressure-density relation. us can also choose weights for the individual inputs, so when the log-likelihoods are added, the weight will be used as a coefficient. We emphasize the und statistical interpretation.	king on the buttons below will then give you the combined posterior and into account automatically. at the weights are for demonstrative purpose only and do not warrant a
Microscopic Theory	
Microscopic Experiments	Accessible
Astrophysical Limits on the TOV Mass	
Astrophysical M-R Constraints	
Gravitational-Wave and Multimessenger Constraints	
Prior	
Compare Evolution	Compare Observables
te Numanji Collaboration 5 Theoretische Astrophysik stitut für Physik und Astronomie niversität Potsdam ri-Liebknecht-Str. 24/25 1476 Potsdam ermany	
chrome	

5

Combining different constraints on the EOS from different research fields

Science case: Koehn et al. 2024 arXiv:2402.04172v1

Combining different constraints on the EOS from different research fields

Set

Α

 χEFT

pQCD

NICER

J0030 + 0451

В

Set A

HIC

J0952-0607

qLMXBs

Heavy pulsars Black Widow

 \mathbf{C}

Set B

CREX

PREX-II

²⁰⁸Pb dipole

Simulation of GW170817

gravitational wave emission

Simulation of GW170817

gravitational wave emission

deformation before merger, ejection of material, heavy element production

Simulation of GW170817

gravitational wave emission

deformation before merger, ejection of material, heavy element production

black hole formation

GW170817

 Λ determines tidal deformability

GW170817

 Λ determines tidal deformability

→ no assumption about the type of the compact object

Phys.Rev. X9 (2019) 011001

GW170817

 Λ determines tidal deformability

GW190425

 Λ determines tidal deformability

TD et al. Science, Vol. 370, Issue 6523, pp. 1450-1453

Waveform Model Development through NR simulations

-0.1

-0.2

500

Effective-one-body or Phenomenological Model

confirmation/calibration

prediction

Numerical Relativity **Simulations**

1500

u/M

1000

2500

2000

Inspiral waveforms

N.Kunert et al., PRD105 (2022) 6, L061301

Inspiral waveforms

N.Kunert et al., PRD105 (2022) 6, L061301

Inspiral waveforms

N.Kunert et al., PRD105 (2022) 6, L061301

What will we be able to learn from the postmerger phase?

What will we be able to learn from the postmerger phase?

A relatively complex postmerger spectrum

Tsang et al., PRD. 100 (2019) 4, 0440047

• Consistency test employing different numerical-relativity waveforms

• Consistency test employing different numerical-relativity waveforms

• Consistency test employing different numerical-relativity waveforms

Postmerger measurement of emission frequency

• Consistency test employing different numerical-relativity waveforms

• Consistency test employing different numerical-relativity waveforms

non-consistency could imply:

-

- missing physics in quasi-universal relations
- necessary modification of the nuclear physics description
- violation of general relativity

EM Signals – Kilonova (& GRB & GRB Afterglow)

- neutron rich ejecta produce heavy r-process elements
- pseudo-black body radiation from r-process elements
- mergers are major sites for the formation of heavy elements

Photometric lightcurves

Photometric lightcurves

1.) compute lightcurves for a set (grid) of ejecta properties with a radiative transfer code

2.) interpolate within this grid through Gaussian Process Regression or a Neural Network

3.) link ejecta properties through numerical-relativity predictions to the binary properties

Uncertainties

- 1.) Knowledge about the outflowing material (mass, velocity, geometry, composition)
- 2.) Heating rates depend on the formed elements and ejecta properties
- 3.) Incomplete knowledge about opacities for complicated elements

Point of the second second

Cross-code comparisons for numerous geometries and assumptions \rightarrow estimate on the modelling uncertainty

Uncertainties

- 1.) Knowledge about the outflowing material (mass, velocity, geometry, composition)
- 2.) Heating rates depend on the formed elements and ejecta properties
- 3.) Incomplete knowledge about opacities for complicated elements

Data-driven approach to determine uncertainties

Jhawar et al. (2024), in prep.

Source Classification for GRB211211A

Kunert et al., MNRAS 527 (2024) 2

Source Classification for GRB211211A

Kunert et al., MNRAS 527 (2024) 2

possible				
GRB	jet	types		

Name	Astrophysical	GRB Jet	Model	Bayes factor
	Processes	Structure	dimension	$\ln[\mathcal{B}_{ ext{ref}}^1]$
$BNS-GRB-M_{top}^{Kasen}$	Kilonova + GRB	Tophat	11	ref.
$BNS-GRB-M_{Gauss}^{Kasen}$	Kilonova + GRB	Gaussian	12	-1.21 ± 0.12
BNS-GRB-M _{top}	Kilonova + GKB	Topnat	11	-4.51 ± 0.12
$BNS-GRB-M_{Gauss}^{Bulla}$	Kilonova + GRB	Gaussian	12	-6.26 ± 0.12
$\rm NSBH\text{-}GRB\text{-}M_{\rm top}$	Kilonova + GRB	Tophat	11	-8.41 ± 0.12
$\rm NSBH\text{-}GRB\text{-}M_{\rm Gauss}$	Kilonova + GRB	Gaussian	12	-10.56 ± 0.12
$\rm SNCol\text{-}GRB\text{-}M_{\rm top}$	rCCSNe + GRB	Tophat	14	-15.24 ± 0.13
${\rm SNCol}\text{-}{\rm GRB}\text{-}{\rm M}_{\rm Gauss}$	rCCSNe + GRB	Gaussian	15	-16.97 ± 0.13
$\rm SN98bw\text{-}GRB\text{-}M_{top}$	CCSNe + GRB	Tophat	8	-12.66 ± 0.12
$\rm SN98bw\text{-}GRB\text{-}M_{Gauss}$	CCSNe + GRB	Gaussian	9	-12.59 ± 0.12
$\mathrm{GRB}\text{-}\mathrm{M}_{\mathrm{top}}$	GRB	Tophat	8	-12.47 ± 0.12
$\mathrm{GRB}\text{-}\mathrm{M}_{\mathrm{Gauss}}$	GRB	Gaussian	9	-12.65 ± 0.12

Source Classification for GRB211211A

Kunert et al., MNRAS 527 (2024) 2

Source Classification for PSR J0514+4002E & GW230529

Koehn et al., 2024, in prep.

Recent detections of sources with "mass-gap" components

Source Classification for PSR J0514+4002E & GW230529

Koehn et al., 2024, in prep.

Recent detections of sources with "mass-gap" components

Object			Set 1	Set 2	Set 3
PSR J0514 -4002E	$M_2 > 1.17 \mathrm{M}_{\odot}$ M_2 unconstrained $M_2 \sim P^{\mathrm{gal}}(M_{\mathrm{PSR}})$		$31\% \ 24\% \ 15\%$	$34\% \\ 26\% \\ 8.1\%$	$3.1\%\ 1.9\%\ 1.6\%$
GW230529	default prior	w/o spin w/ spin	1.6% 3.9%	1.3% 3.9%	0.02% 0.82%
	PDB prior	w/o spin w/ spin	8.1% $17%$	6.9% 17%	0.36% 1.7%

Probability of the individual companions class

Outlier Classification, e.g., HESS J1731-347

Outlier Classification, e.g., HESS J1731-347

• Measurement of the -ray spectrum of HESS J1731-347 by Doroshenko et al., 2022 Nat. Astro 6, 1444

• Noticeable disagreement between other derived multi-messenger constraints and the HESS measurement

Outlier of NICER Models

• Analysis complementary to the Bayes Factors provided in *Vinciguerra et al., APJ 961, 62* (2024)

• Some indication that most of the presented results are less preferred than the original analysis

Science Summary and Outlook

Electromagnetic Signals

... neutrino detectors, nuclear physics facilities,

Science Summary and Outlook

Rubin Obs/NSF/AURA

... neutrino detectors, nuclear physics facilities,

- Astrophysical constraints provide important information that is currently not accessible for nuclear-physics computations and experiments
- Systematic Biases for Gravitationalwave studies smaller than statistical uncertainties
- Kilonova and other EM modelling of BNS/BHNS mergers subject of large uncertainties *-investigations ongoing-*
- Combined set of information can help to tighten constrain, but also to point towards outliers/new physics