Net strangeness and isospin fractions in the EoS as probed by protoneutron stars, binary neutron star mergers, and heavy ion collisions

Veronica Dexheimer

 Can we find a flexible common parametrization of the EOS, applicable to neutron star calculations and different types of heavy-ion collisions simulations?

Yes! Effective models:

 Can we find a flexible common parametrization of the EOS, applicable to neutron star calculations and different types of heavy-ion collisions simulations?

Yes! Effective models:

- flexibility in terms of conditions and ranges,
- input from many different constraints
- errors estimated from large parameter studies

- Can we find a flexible common parametrization of the EOS, applicable to neutron star calculations and different types of heavy-ion collisions simulations?
- What other observables could enable the extraction of the EOS?
 - tidal deformability measured with smaller error

- post-merger part of gravitational waves from neutronstar mergers PRL 122 (2019) 6, 061101 e-Print: <u>1807.03684</u>

- neutron star surface temperature e-Print: 2206.01679

Astrophysics vs. Heavy-Ion Collisions

- * Fully evolved neutron stars cores: $Y_Q=Q/B=0 \rightarrow 0.2$ (0.1)
- * Heavy-ion collisions: $Y_Q = 0.4 \rightarrow 0.5$ (0.5), also have $Y_S = S/B = 0$
- * Supernovae explosions/proto-neutron stars: $Y_Q = 0.1 \rightarrow 0.5$ (0.4)
- * Neutron-star mergers ? $Y_Q < 0.15$

Neutron Star Mergers

* 3D (T,n_B,Y_Q) CMF table with 1st-order phase transition into coupled Einstein-hydrodynamics system
(Frankfurt/IllinoisGRMHD code) EPJA 56 (2020) 2, 59 e-Print: 1910.13893

- * $\mu_Q (\neq \mu_e)$ doesn't grow much in absolute value, so doesn't Y_Q
- * Total strangeness (hyperons \rightarrow s-quarks) grows to $Y_s \sim 40\%$

3D QCD phase diagrams (Y_s=0)

* $T, \tilde{\mu}, Y_Q$ with charge fraction $Y_Q = Q/B = 0 \rightarrow 0.5$ and Gibbs free energy per baryon $\tilde{\mu} = \mu_B + Y_Q \mu_Q$

3D QCD phase diagrams (Y_s=0)

- * T, $\tilde{\mu}$, Y_Q with charge fraction $Y_Q = Q/B = 0 \rightarrow 0.5$ and Gibbs free energy per baryon $\tilde{\mu} = \mu_B + Y_Q \mu_Q$
- * Larger Y_Q (at fixed T) pushes the phase transition to larger $\widetilde{\mu}$
- * Lower Y_Q (at fixed T) pushes the phase transition to lower $\widetilde{\mu}$!
- Changes due to Y_Q effects on stiffness (particle population) on each side

Weaker phase transition

* Different parametrization Eur.Phys.J.A 58 (2022) 5,96 reproducing a much weaker phase transition ($Y_S \neq 0$) enhances Y_Q effect

* For small Y_Q's, $\tilde{\mu} \sim \mu_{\rm B}$ (hadron) $\sim \mu_{\rm B}$ (quark)

- Can we find a flexible common parametrization of the EOS, applicable to neutron star calculations and different types of heavy-ion collisions simulations?
- * What other observables could enable the extraction of the EOS?
 - tidal deformability measured with smaller error

- post-merger part of gravitational waves from neutronstar mergers PRL 122 (2019) 6, 061101 e-Print: <u>1807.03684</u>

- neutron star surface temperature e-Print: 2206.01679

Parametric approach

- More systematic parametric form for the speed of sound can help to determine neutronstar composition
- Maximum stellar mass and radius can determine width, density, and height of bumps

PRD 105 (2022) 2, 023018 e-Print: <u>2106.03890</u>

Parametric approach

- More systematic parametric form for the speed of sound can help to determine neutronstar composition
- Maximum stellar mass and radius can determine width, density, and height of bumps, plus central density of stars

With 1st order phase transition

- Zero speed of sound not ruled out by observation of massive stars
- But constrained by extremely massive objects

PRD 105 (2022) 2, 023018 e-Print: <u>2106.03890</u>

Tidal deformability

* Bumps tilt the mass-radius diagram

and the binary Love relations ($\Lambda_{s,a} = (\Lambda_1 \pm \Lambda_2)/2$)

Phys.Rev.Lett. 128 (2022) 16, 161101 e-Print: <u>2111.10260</u>

Tidal deformability

Bumps and 1st –order phase transitions tilt the mass-radius diagram

and create structure in the binary Love relations: slope, hill, drop, and swoosh (associated with twin stars)

* Structure could be observed in near future

Phys.Rev.Lett. 128 (2022) 16, 161101 e-Print: <u>2111.10260</u>

Conclusions and outlook

- Effective models are an ideal tool to construct multidimensional tables for any regime of Y_Q and Y_S to translate results between astrophysics and heavy-ion collisions
- At T=0 simpler tools can be used that allow us to interpret mass, radius, and <u>tidal deformability</u> as a measurement of the nuclear equation of state stiffness
- LIGO, Virgo, and KAGRA are coordinating O4 observing run in March 2023

