INT Workshop INT 20R-1b May 26, 2022

Neutrino-Driven Winds from Rotating Proto-Neutron Stars

Dhruv Desai

Advisors: Daniel Siegel (Perimeter Institute) &

Brian Metzger (Columbia University)

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Outline

- Supernova mechanism and birth of Proto-neutron star (PNS)
- Wind launching mechanism and the gain layer
- Potential site of r-process nucleosynthesis?
- Simulation setup
- Test case: spherical winds
- Rotating PNSs
- Conclusions

Core-Collapse Supernova & PNS formation

- Core collapses, bounces; outer layers ejected
- contracting PNS formed
- Neutrinos diffuse out of PNS, free-٠ stream from neutrinosphere, drive wind
- **Remnant PNS rotating?** •

$$E_{\rm SN} \sim \frac{3GM_{\rm pns}^2}{5r_{\rm NS}} \approx 3 \times 10^{53} \, {\rm erg} \left(\frac{M_{\rm pns}}{M_{\odot}}\right)^2 \left(\frac{r_{NS}}{12 \, \rm km}\right)^{-1}$$

 $^{4}\text{He} + \gamma \rightarrow 2p^{+} + 2n$

 $p^+ + e^- \rightarrow n + \nu_e$

Handbook of Supernovae (2017)

PNS cooling curves

- At nuclear densities ~10¹⁴ g cm⁻³, neutrinos diffuse out, resulting in such cooling curves
- Neutrino properties ~1s after bounce:
 - $L \sim 10^{51} \, erg \, s^{-1}$
 - $E \sim 10-20 \text{ MeV}$
 - $R_{\nu} \sim 10 \text{ km}$ (where optical depth ~ 1)
- These luminosities drive a wind

CCSNe as an r-process nucleosynthesis site?

- Binary neutron star mergers/rare types of SNe as potential r-process sites
- Wind needs high neutron-toseed ratio. 2 possibilities:
 - Y_e <0.3 (neutron-rich)
 - Alpha freeze-out (prevents formation of seeds), can occur when s > 100, and $Y_e \sim 0.45$

Alpha Freeze-out suppresses seed formation

→ Under right combinations of s, Y_{e} , t_{exp} , neutron-to-seed ratio remains high; r-process occurs Seeds form via triple alpha process (but Be decays quickly) ${}_{2}^{4}\text{He} + {}_{2}^{4}\text{He} \rightarrow {}_{4}^{8}\text{Be}$ ${}_{4}^{8}\text{Be} + {}_{2}^{4}\text{He} \rightarrow {}_{6}^{12}\text{C} + 2\gamma$

- If t_{alpha} < t_{exp}, triple alpha process proceeds
- But at low densities (high entropies: s $\sim T^3/\rho \sim \text{const.}$), reaction is suppressed

- Gain layer: R ~ 15-50 km
- Matter (initially neutronrich) irradiated by neutrinos,
 - 1. Gains energy &
 - 2. Protonizes $(L_{v_e} \sim L_{\bar{v}_e})$
- Radiation-dominated, adiabatically expanding wind (s $\sim T^3/\rho \sim \text{const.}$)

Previous works: eg. Thompson+2001, Arcones & Montes 2011, Qian & Woosley 96 etc.

- spherically symmetric, non-rotating winds
- Neutrino luminosities put in by hand
- Not in full GR

Concluded: Unable to produce 3rd peak elements (too proton-rich)

Question:

- Given neutrino luminosities/energies,
 - Wind properties (eg. Mass loss rate, entropy, Y_e etc.)?
 - Conducive to r-process?
 - Impact of rotation?

Our goal: Simulate hot NS with self-consistent neutrino transport which achieves steady-state wind solution. Study effects of rotation

This is an idealized, controlled environment

Simulation Setup

- GRMHD code (B = 0) (Mosta+14)
- Initial conditions: 1.4 solar mass TOV NS
- $T_c \sim 20$ MeV, Y_e profile from Kaplan+14 Chosen to reproduce steady state neutrino emission
- Tabulated SFHo nuclear EOS (Steiner+2013)
- M0 scheme for neutrino transport (Radial equations which evolve neutrino energies/number densities along radial rays)
 - Emission and absorption included (Radice+16)
- Coarsest grid spans ~ 1000 km
- Simulations evolved for ~150ms. Steady-state achieved at ~60 ms

Test case: Steady state profiles of the spherical wind

Smooth profiles in ρ , T *(top)*

Wind becomes unbound at ~35 km (white contour) Heating ceases at alpha-formation surface (green contour) Neutrinosphere (red contour)

Steady state profiles of the spherical wind

Our gain region is similar to previous models

Steady state profiles of the spherical wind

Desai+2022

Mass loss rates and entropies are rescaled to neutrino properties of Thompson et al. (2001) according to analytical relation from Qian & Woosley (1996)

Potential rprocess site?

...via alpha freeze-out channel, not likely.

Consistent with previous findings.

- RNS code (Stergioulas & Friedman 1995) solves GR Euler equations for uniformly rotating star in axi-symmetric spacetime
- Various spin periods tested
- Result: NS deformed

The rotating PNS wind

- Electron neutrino/antineutrinospheres are at different temperatures,
- 1. at equator compared to pole
- 2. Relative to each other at the equator
- This results in
- 1. More heating at the pole
- 2. Lower Y_e in equator (shifts balance
 - to more neutron-rich equilibrium)

The rotating PNS wind

- Electron neutrino/antineutrinospheres are at different temperatures,
- 1. at equator compared to pole
- 2. Relative to each other at the equator
- This results in
- 1. More heating at the pole
- 2. Lower Y_e in equator (shifts balance
 - to more neutron-rich equilibrium)

Heating (ν -absorption) $\nu_e + n \leftrightarrow e^- + p$ and $\nu_e + p \leftrightarrow e^+ + n$ Cooling (ν -emission) The rotating PNS wind: angular properties

- Polar quantities are similar, independent of spin period (centrifugal effects minimal)
- Y_e reduced in equator! Hope for r-process
- High equatorial mass loss rate

Potential rprocess site?

...via alpha freeze-out channel, again not likely.

However, low Y_e promising (~10% reduction from polar region, to the right of arrows)

Back to the cooling curve

- Reflects true luminosities/energies post CCSN
- Significant outflows in the equator
- $L_{\nu} \sim \text{few } 10^{51} \text{ erg s}^{-1} \text{ lasts } \sim 3 \text{ s so}$ $M_{ej} \sim dM/dt^*3 \sim 1\text{e-3 solar masses}$

→ Conclusion: High mass loss rate → Competitive with ordinary supernova yields even if rapidly rotating NSs are formed in ~10% of CCSNe

PNS wind as a source of LEPP elements?

- "Lighter Element Primary Process". Set of elements between Fe and 2nd r-process peak
- Found in ultra metal-poor stars

Conclusion: Even if non-rotating PNS winds not conducive to r-process, 10% reduction in Y_e in rotating winds may allow for LEPP production

Conclusions

With Rotation:

- True Y_e unknown, but rotation reduces Y_e by 10% in equatorial plane compared to non-rotating case
 - LEPP elements? (Arcones & Montes 2011)
- Mass loss rate boosted by factor of 10 → competitive with ordinary CCSN yields

Next:

Add magnetic fields

- low Y_e retained in material flung out?
- Magnetar may explain extended emission?