Fundamental physics with radioactive molecules INT program 03/04

Symmetry breaking beyond the SM

Wouter Dekens

Based on work with V. Cirigliano, A. Crivellin, J. de Vries, E. Mereghetti, M. Hoferichter

Beyond the SM

The Standard Model does not explain:

Beyond the SM

The Standard Model does not explain:

Open problems:

- Dark Matter
- Baryon Asymmetry
- Neutrino masses

Credit: JUNO Collaboration

 ν_e

 ν_1

 $\nu_{\mu} \nu_{\tau}$

https://chandra.harvard.edu/photo/ 2006/1e0657/1e0657 hand.html

Beyond the SM

The Standard Model does not explain:

Open problems:

- Dark Matter
- Baryon Asymmetry
- Neutrino masses

Theoretical questions:

- Strong CP problem
- Hierarchy problem
- Flavor structure....

Credit: JUNO Collaboration

https://chandra.harvard.edu/photo/ 2006/1e0657/1e0657 hand.html

SM contributions

- Phase in the CKM matrix
 - Loop suppressed, leads to small EDMs

SM contributions

- Phase in the CKM matrix
 - Loop suppressed, leads to small EDMs

QCD theta term,
$$L_{\theta} = \theta \frac{\alpha_s}{8\pi} G_{\mu\nu} \tilde{G}^{\mu\nu}$$

- Allowed by all QCD symmetries
- Bound to be $\theta \lesssim 10^{-10}$, (strong CP problem)

Current limits

Limits (e cm)	Nucleons:	Diamagnetic	Paramagnetic
	neutron	systems: mercury	systems: HfF
Current	1.8x10 ⁻²⁶	6.2x10 ⁻³⁰	4.1x10 -30
	Baker <i>et al.</i> '20	Graner <i>et al. '</i> 17	Roussv et al. '22
SM background (CKM matrix)	<10-31	<10-34	10-35

Current limits

Limits (e cm)	Nucleons:	Diamagnetic	Paramagnetic
	neutron	systems: mercury	systems: HfF
Current	1.8x10 ⁻²⁶	6.2x10 ⁻³⁰	4.1x10 -30
	Baker <i>et al.</i> '20	Graner <i>et al. '</i> 17	Roussv et al. '22
SM background (CKM matrix)	<10-31	<10-34	10-35

Radioactive molecules

- \bullet Can have enhanced sensitivity compared to mercury, 10^{2-6}
 - Octupole deformation + large electric field in molecule

Chupp *et al*. '17; Ema *et al*. '22; Arrowsmith-Kron et al. '23

Outline

CP-violating BSM physics

Outline

CP-violating BSM physics

The SM Effective Field Theory

Describing BSM physics

Assumptions

• BSM physics is heavy m_{EW}<<m_{BSM}

• No new light degrees of freedom

The SM Effective Field Theory

Describing BSM physics

Assumptions

• BSM physics is heavy m_{EW}<<m_{BSM}

No new light degrees of freedom

Light new particles not covered:

- E.g. Z', light DM, axions...
 - Could give (C)PV signals
- SM gauge group is linearly realized

SM EFT

SM EFT

 $\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}} + \frac{C_i^{(5)}}{\Lambda} \mathcal{O}_i^{(5)} + \frac{C_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \dots$

Weinberg '79; Buchmuller & Wyler '86, Grzadkowski et al 2010

SM EFT

SM EFT

 $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{C_i^{(5)}}{\Lambda} \mathcal{O}_i^{(5)} + \frac{C_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \dots$

Weinberg '79; Buchmuller & Wyler '86, Grzadkowski et al 2010

SM EFT

SM EFT

$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}} + \frac{\widetilde{C_i^{(5)}}}{\Lambda} \widetilde{\mathcal{O}_i^{(5)}} + \frac{C_i^{(6)}}{\Lambda^2} \widetilde{\mathcal{O}_i^{(6)}} + \dots$$

- 2499 operators at dimension six
- Several classes of CP-odd interactions

					X^3	φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$	
				Q_G	$\int f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	Q_{φ}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$	$Q_{\widetilde{G}}$	$\int f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi\Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
Q_{ll}	$(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$	Q_W	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$		$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$
$\begin{array}{c} Q_{lq}^{(1)} \\ Q_{lq}^{(3)} \end{array}$	$(l_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
Q_{lq}	$(l_p \gamma_\mu \tau^- l_r)(q_s \gamma^- \tau^- q_t)$	Q_{ed} $Q^{(1)}$	$(e_p \gamma_\mu e_r)(d_s \gamma^\mu d_t)$ $(\bar{u}_r \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
		$Q_{ud}^{(8)}$	$\frac{(\bar{u}_p\gamma_\mu T^A u_r)(\bar{d}_s\gamma^\mu T^A d_t)}{(\bar{u}_p\gamma_\mu T^A u_r)(\bar{d}_s\gamma^\mu T^A d_t)}$	$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
				$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$(\bar{L}R$	$R(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-vio	$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{\alpha}\right.$	$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(q_{p}^{\alpha j}\right)\right]$	$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[\left(q_{p}^{c}\right)\right]$	$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$
$Q_{lequ}^{(3)} \ Q_{lequ}^{(3)}$	$(l_p^j e_r) \varepsilon_{jk}(q_s^* u_t) (\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk}(\bar{q}_s^k \sigma^{\mu\nu} u_t)$	Q_{qqq} Q_{duu}	$\varepsilon^{\alpha\beta\gamma} (\tau^{*}\varepsilon)_{jk} (\tau^{*}\varepsilon)_{mn}$ $\varepsilon^{\alpha\beta\gamma} \left[(d_{p}^{\alpha})^{T} \right]$	$Cu_r^{\beta} \left[\left(u_s^{\gamma} \right) \right]$	$^{T}Ce_{t}$]		1		1

Weinberg '79; Buchmuller & Wyler '86, Grzadkowski et al 2010

Outline

CP-violating BSM physics

Outline

CP-violating BSM physics

Λ

SM EFT SU(3)xSU(2)xU(1) invariant

		, [X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$	
	$(\bar{L}L)(\bar{L}L)$	Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	Qeq	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$	
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	$Q_{\tilde{G}}$	$f^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\tilde{\varphi})$	
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$					
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$		$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{l}_{p}\gamma^{\mu}l_{r})$	
		$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi \widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
		$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \tilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
		$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{q}_{p} \gamma^{\mu} q_{r})$	
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	
Qieda	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	$Q_{\varphi \tilde{B}}$	$\varphi^{\dagger}\varphi \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
$Q_{auad}^{(1)}$	$(\bar{q}_{n}^{j}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}d_{t})$	$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{auad}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi \widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	
$Q_{lequ}^{(1)}$	$(\bar{l}_{p}^{j}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t})$	$Q_{qqq}^{(3)}$	$\varepsilon^{\alpha\beta\gamma}(\tau^I\varepsilon)_{jk}(\tau^I\varepsilon)_m$	$n\left[\left(q_{p}^{\alpha j}\right)\right]$	$^{T}Cq_{r}^{\beta k}]\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n}\right]$			
$Q_{lequ}^{(3)}$	$(\bar{l}_{p}^{j}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u_{t})$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma} \left[\left(d_p^{\alpha} \right) \right]$					

 m_W

 Λ_{γ}

SM EFT' SU(3)xU(1)_{em} invariant

	$(\overline{L}L)(\overline{L}L)$		$(\overline{L}L)(\overline{R}R)$	$(\overline{L}R)(\overline{L}R) + { m H.c.}$			
$\mathcal{O}_{\nu u}^{V,LL}$	$(\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{u}_{Ls}\gamma_{\mu}u_{Lt})$	$\mathcal{O}_{ u u}^{V,LR}$	$(\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{u}_{Rs}\gamma_{\mu}u_{Rt})$	$\mathcal{O}_{eu}^{S,RR}$	$(\bar{e}_{Lp}e_{Rr})(\bar{u}_{Ls}u_{Rt})$		
$\mathcal{O}_{\nu d}^{V,LL}$	$(\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{d}_{Ls}\gamma_{\mu}d_{Lt})$	$\mathcal{O}_{\nu d}^{V,LR}$	$(\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{d}_{Rs}\gamma_{\mu}d_{Rt})$	$\mathcal{O}_{eu}^{T,RR}$	$(\bar{e}_{Lp}\sigma^{\mu\nu}e_{Rr})(\bar{u}_{Ls}\sigma_{\mu\nu}u_{Rt})$		
$\mathcal{O}_{eu}^{V,LL}$	$(\bar{e}_{Lp}\gamma^{\mu}e_{Lr})(\bar{u}_{Ls}\gamma_{\mu}u_{Lt})$	$\mathcal{O}_{eu}^{V,LR}$	$(\bar{e}_{Lp}\gamma^{\mu}e_{Lr})(\bar{u}_{Rs}\gamma_{\mu}u_{Rt})$	$\mathcal{O}_{ed}^{S,RR}$	$(\bar{e}_{Lp}e_{Rr})(\bar{d}_{Ls}d_{Rt})$		
$\mathcal{O}_{ed}^{V,LL}$	$(\bar{e}_{Lp}\gamma^{\mu}e_{Lr})(\bar{d}_{Ls}\gamma_{\mu}d_{Lt})$	$\mathcal{O}_{ed}^{V,LR}$	$(\bar{e}_{Lp}\gamma^{\mu}e_{Lr})(\bar{d}_{Rs}\gamma_{\mu}d_{Rt})$	$\mathcal{O}_{ed}^{T,RR}$	$(\bar{e}_{Lp}\sigma^{\mu\nu}e_{Rr})(\bar{d}_{Ls}\sigma_{\mu\nu}d_{Rt})$		
$O_{\nu edu}^{V,LL}$	$(\bar{\nu}_{Lp}\gamma^{\mu}e_{Lr})(\bar{d}_{Ls}\gamma_{\mu}u_{Lt}) + H.c.$	$\mathcal{O}_{ue}^{V,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}u_{Lr})(\bar{e}_{Rs}\gamma_{\mu}e_{Rt})$	$\mathcal{O}^{S,RR}_{\nu edu}$	$(\bar{\nu}_{Lp}e_{Rr})(\bar{d}_{Ls}u_{Rt})$		
	(= -) ·	$\mathcal{O}_{de}^{V,LR}$	$(\bar{d}_{Lp}\gamma^{\mu}d_{Lr})(\bar{e}_{Rs}\gamma_{\mu}e_{Rt})$	$\mathcal{O}_{ u e d u}^{T,RR}$	$(\bar{\nu}_{Lp}\sigma^{\mu\nu}e_{Rr})(\bar{d}_{Ls}\sigma_{\mu\nu}u_{Rt})$		
	(LR)X + H.c.	$\mathcal{O}_{\nu edu}^{V,LR}$	$(\bar{\nu}_{Lp}\gamma^{\mu}e_{Lr})(\bar{d}_{Rs}\gamma_{\mu}u_{Rt}) + H.c.$	$\mathcal{O}^{S1,RR}_{uu}$	$(\bar{u}_{Lp}u_{Rr})(\bar{u}_{Ls}u_{Rt})$		
$\mathcal{O}_{u\gamma}$	$\bar{u}_{Lp}\sigma^{\mu u}u_{Rr}F_{\mu u}$	$\mathcal{O}_{uu}^{V1,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}u_{Lr})(\bar{u}_{Rs}\gamma_{\mu}u_{Rt})$	$\mathcal{O}^{S8,RR}_{uu}$	$(\bar{u}_{Lp}T^A u_{Rr})(\bar{u}_{Ls}T^A u_{Rt})$		
$\mathcal{O}_{d\gamma}$	$\bar{d}_{Lp}\sigma^{\mu\nu}d_{Rr}F_{\mu\nu}$	$\mathcal{O}_{uu}^{V8,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}T^{A}u_{Lr})(\bar{u}_{Rs}\gamma_{\mu}T^{A}u_{Rt})$	$\mathcal{O}_{ud}^{S1,RR}$	$(\bar{u}_{Lp}u_{Rr})(\bar{d}_{Ls}d_{Rt})$		
Ora	$\bar{u}_{L} \sigma^{\mu\nu} T^A u_B G^A$	$\mathcal{O}_{ud}^{V1,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}u_{Lr})(\bar{d}_{Rs}\gamma_{\mu}d_{Rt})$	$\mathcal{O}_{ud}^{S8,RR}$	$(\bar{u}_{Lp}T^A u_{Rr})(\bar{d}_{Ls}T^A d_{Rt})$		
CuG	$\bar{u}_{Lpo} = u_{Rr} G_{\mu\nu}$	$\mathcal{O}_{ud}^{V8,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}T^{A}u_{Lr})(\bar{d}_{Rs}\gamma_{\mu}T^{A}d_{Rt})$	$\mathcal{O}_{dd}^{S1,RR}$	$(\bar{d}_{Lp}d_{Rr})(\bar{d}_{Ls}d_{Rt})$		
O_{dG}	$a_{Lp}\sigma^{\mu\nu}T^{\mu}a_{Rr}G^{\mu\nu}_{\mu\nu}$	$O_{du}^{V1,LR}$	$(\bar{d}_{Lp}\gamma^{\mu}d_{Lr})(\bar{u}_{Rs}\gamma_{\mu}u_{Rt})$	$\mathcal{O}_{dd}^{S8,RR}$	$(\bar{d}_{Lp}T^A d_{Rr})(\bar{d}_{Ls}T^A d_{Rt})$		
	**3		$(\bar{d}_{Lp}\gamma^{\mu}T^{A}d_{Lr})(\bar{u}_{Rs}\gamma_{\mu}T^{A}u_{Rt})$	$O_{uddu}^{S1,RR}$	$(\bar{u}_{Lp}d_{Rr})(\bar{d}_{Ls}u_{Rt})$		
L —		$O_{dd}^{V1,LR}$	$(\bar{d}_{Lp}\gamma^{\mu}d_{Lr})(\bar{d}_{Rs}\gamma_{\mu}d_{Rt})$	$O_{uddu}^{S8,RR}$	$(\bar{u}_{Lp}T^A d_{Rr})(\bar{d}_{Ls}T^A u_{Rt})$		
\mathcal{O}_G	$ \begin{array}{c c} \mathcal{O}_{G} & f^{ABC} G_{\mu}^{A\nu} G_{\nu}^{B\rho} G_{\rho}^{C\mu} & \mathcal{O}_{\rho} \\ \mathcal{O}_{\widetilde{G}} & f^{ABC} \widetilde{G}_{\mu}^{A\nu} G_{\nu}^{B\rho} G_{\rho}^{C\mu} & \mathcal{O}_{\rho} \end{array} $		$\mathcal{O}_{dd}^{V8,LR}$ $(\bar{d}_{Lp}\gamma^{\mu}T^Ad_{Lr})(\bar{d}_{Rs}\gamma_{\mu}T^Ad_{Rt})$		$(\overline{L}R)(\overline{R}L) + \text{H.c.}$		
$\mathcal{O}_{\tilde{G}}$			$(\bar{u}_{Lp}\gamma^{\mu}d_{Lr})(\bar{d}_{Rs}\gamma_{\mu}u_{Rt})$ + H.c.	$\mathcal{O}_{ew}^{S,RL}$	$(\bar{e}_{Lp}e_{Rr})(\bar{u}_{Rs}u_{Lt})$		
			$\mathcal{O}_{uddu}^{V^{8,LR}} \mid (\bar{u}_{Lp}\gamma^{\mu}T^{A}d_{Lr})(\bar{d}_{Rs}\gamma_{\mu}T^{A}u_{Rt}) + \text{H.c.}$		$(\bar{e}_{Lp}e_{Rr})(\bar{d}_{Rs}d_{Lt})$		
				$\mathcal{O}^{S,RL}_{ u edu}$	$(\bar{\nu}_{Lp}e_{Rr})(\bar{d}_{Rs}u_{Lt})$		

Λ

SM EFT SU(3)xSU(2)xU(1) invariant

			X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$
	$(\bar{L}L)(\bar{L}L)$	Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	Qeq	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	$Q_{\widetilde{G}}$	$f^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\tilde{\varphi})$
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$		$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	QeW	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{l}_{p}\gamma^{\mu}l_{r})$
		$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi \tilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
		$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu \nu} T^A u_r) \widetilde{\varphi} G^A_{\mu \nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
		$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
Qledg	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{auad}^{(1)}$	$(\bar{q}_{p}^{j}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}d_{t})$	$Q_{\varphi WB}$	$\varphi^{\dagger} \tau^{I} \varphi W^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{auad}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi \widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\tilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$
$Q_{lequ}^{(1)}$	$(\bar{l}_{p}^{j}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t})$	$Q_{qqq}^{(3)}$	$\varepsilon^{\alpha\beta\gamma}(\tau^I\varepsilon)_{jk}(\tau^I\varepsilon)_m$	$n\left[\left(q_{p}^{\alpha j}\right)\right]$	$^{T}Cq_{r}^{\beta k}]\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n}\right]$		
$Q_{1}^{(3)}$	$(\bar{l}_{r}^{j}\sigma_{\mu\nu}e_{r})\varepsilon_{ik}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u_{t})$	Qduu	$\varepsilon^{\alpha\beta\gamma} \left[\left(d_{n}^{\alpha} \right)^{\alpha} \right]$	TCu_{r}^{β}	$[(u_{\circ}^{\gamma})^T Ce_t]$		

 m_W

 Λ_{χ}

SM EFT' SU(3)xU(1)_{em} invariant

$(\overline{L}L)(\overline{L}L)$			$(\overline{L}L)(\overline{R}R)$	$(\overline{L}R)(\overline{L}R) + { m H.c.}$		
$\mathcal{O}_{ u u}^{V,LL}$	$(\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{u}_{Ls}\gamma_{\mu}u_{Lt})$	$\mathcal{O}_{ u u}^{V,LR}$	$(\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{u}_{Rs}\gamma_{\mu}u_{Rt})$	$\mathcal{O}_{eu}^{S,RR}$	$(\bar{e}_{Lp}e_{Rr})(\bar{u}_{Ls}u_{Rt})$	
$\mathcal{O}_{\nu d}^{V,LL}$	$(\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{d}_{Ls}\gamma_{\mu}d_{Lt})$	$\mathcal{O}_{\nu d}^{V,LR}$	$(\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{d}_{Rs}\gamma_{\mu}d_{Rt})$	$\mathcal{O}_{eu}^{T,RR}$	$(\bar{e}_{Lp}\sigma^{\mu\nu}e_{Rr})(\bar{u}_{Ls}\sigma_{\mu\nu}u_{Rt})$	
$\mathcal{O}_{eu}^{V,LL}$	$(\bar{e}_{Lp}\gamma^{\mu}e_{Lr})(\bar{u}_{Ls}\gamma_{\mu}u_{Lt})$	$\mathcal{O}_{eu}^{V,LR}$	$(\bar{e}_{Lp}\gamma^{\mu}e_{Lr})(\bar{u}_{Rs}\gamma_{\mu}u_{Rt})$	$\mathcal{O}_{ed}^{S,RR}$	$(\bar{e}_{Lp}e_{Rr})(\bar{d}_{Ls}d_{Rt})$	
$\mathcal{O}_{ed}^{V,LL}$	$(\bar{e}_{Lp}\gamma^{\mu}e_{Lr})(\bar{d}_{Ls}\gamma_{\mu}d_{Lt})$	$\mathcal{O}_{ed}^{V,LR}$	$(\bar{e}_{Lp}\gamma^{\mu}e_{Lr})(\bar{d}_{Rs}\gamma_{\mu}d_{Rt})$	$\mathcal{O}_{ed}^{T,RR}$	$(\bar{e}_{Lp}\sigma^{\mu\nu}e_{Rr})(\bar{d}_{Ls}\sigma_{\mu\nu}d_{Rt})$	
$\mathcal{O}_{\nu edu}^{V,LL}$	$(\bar{\nu}_{Lp}\gamma^{\mu}e_{Lr})(\bar{d}_{Ls}\gamma_{\mu}u_{Lt}) + H.c.$	$\mathcal{O}_{ue}^{V,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}u_{Lr})(\bar{e}_{Rs}\gamma_{\mu}e_{Rt})$	$\mathcal{O}^{S,RR}_{\nu edu}$	$(\bar{\nu}_{Lp}e_{Rr})(\bar{d}_{Ls}u_{Rt})$	
	=	$\mathcal{O}_{de}^{V,LR}$	$(\bar{d}_{Lp}\gamma^{\mu}d_{Lr})(\bar{e}_{Rs}\gamma_{\mu}e_{Rt})$	$\mathcal{O}_{ u e d u}^{T,RR}$	$(\bar{\nu}_{Lp}\sigma^{\mu\nu}e_{Rr})(\bar{d}_{Ls}\sigma_{\mu\nu}u_{Rt})$	
(LR)X + H.c.	$\mathcal{O}_{\nu edu}^{V,LR}$	$(\bar{\nu}_{Lp}\gamma^{\mu}e_{Lr})(\bar{d}_{Rs}\gamma_{\mu}u_{Rt}) + H.c.$	$\mathcal{O}^{S1,RR}_{uu}$	$(\bar{u}_{Lp}u_{Rr})(\bar{u}_{Ls}u_{Rt})$	
$\mathcal{O}_{u\gamma}$	$\bar{u}_{Lp}\sigma^{\mu u}u_{Rr}F_{\mu u}$	$\mathcal{O}_{uu}^{V1,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}u_{Lr})(\bar{u}_{Rs}\gamma_{\mu}u_{Rt})$	$\mathcal{O}^{S8,RR}_{uu}$	$(\bar{u}_{Lp}T^A u_{Rr})(\bar{u}_{Ls}T^A u_{Rt})$	
$\mathcal{O}_{d\gamma}$	$\bar{d}_{Lp}\sigma^{\mu u}d_{Rr}F_{\mu u}$	$\mathcal{O}_{uu}^{V8,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}T^{A}u_{Lr})(\bar{u}_{Rs}\gamma_{\mu}T^{A}u_{Rt})$	$\mathcal{O}_{ud}^{S1,RR}$	$(\bar{u}_{Lp}u_{Rr})(\bar{d}_{Ls}d_{Rt})$	
Que	$\bar{u}_{\nu} = \sigma^{\mu\nu} T^A u_{\nu} C^A$	$\mathcal{O}_{ud}^{V1,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}u_{Lr})(\bar{d}_{Rs}\gamma_{\mu}d_{Rt})$	$\mathcal{O}_{ud}^{S8,RR}$	$(\bar{u}_{Lp}T^A u_{Rr})(\bar{d}_{Ls}T^A d_{Rt})$	
CuG	$\bar{u}_{Lpo} = u_{Rr} G_{\mu\nu}$	$\mathcal{O}_{ud}^{V8,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}T^{A}u_{Lr})(\bar{d}_{Rs}\gamma_{\mu}T^{A}d_{Rt})$	$\mathcal{O}_{dd}^{S1,RR}$	$(\bar{d}_{Lp}d_{Rr})(\bar{d}_{Ls}d_{Rt})$	
\mathcal{O}_{dG}	$d_{Lp}\sigma^{\mu\nu}T^{A}d_{Rr}G^{A}_{\mu\nu}$	$\mathcal{O}_{du}^{V1,LR}$	$(\bar{d}_{Lp}\gamma^{\mu}d_{Lr})(\bar{u}_{Rs}\gamma_{\mu}u_{Rt})$	$\mathcal{O}_{dd}^{S8,RR}$	$(\bar{d}_{Lp}T^A d_{Rr})(\bar{d}_{Ls}T^A d_{Rt})$	
	v 3	$O_{du}^{V8,LR}$	$(\bar{d}_{Lp}\gamma^{\mu}T^{A}d_{Lr})(\bar{u}_{Rs}\gamma_{\mu}T^{A}u_{Rt})$	$O_{uddu}^{S1,RR}$	$(\bar{u}_{Lp}d_{Rr})(\bar{d}_{Ls}u_{Rt})$	
		$\mathcal{O}_{dd}^{V1,LR}$	$(\bar{d}_{Lp}\gamma^{\mu}d_{Lr})(\bar{d}_{Rs}\gamma_{\mu}d_{Rt})$	$\mathcal{O}_{uddu}^{S8,RR}$	$(\bar{u}_{Lp}T^A d_{Rr})(\bar{d}_{Ls}T^A u_{Rt})$	
\mathcal{O}_G	$ \begin{array}{c} \mathcal{O}_{G} \\ \mathcal{O}_{\widetilde{G}} \\ f^{ABC} \mathcal{G}_{\mu}^{A\nu} \mathcal{G}_{\nu}^{B\rho} \mathcal{G}_{\rho}^{C\mu} \\ \mathcal{O}_{\widetilde{G}} \\ f^{ABC} \mathcal{\widetilde{G}}_{\mu}^{A\nu} \mathcal{G}_{\nu}^{B\rho} \mathcal{G}_{\rho}^{C\mu} \\ \end{array} $		$(\bar{d}_{Lp}\gamma^{\mu}T^Ad_{Lr})(\bar{d}_{Rs}\gamma_{\mu}T^Ad_{Rt})$		$(\overline{R}L) + \mathrm{H.c.}$	
$\mathcal{O}_{\widetilde{G}}$			$(\bar{u}_{Lp}\gamma^{\mu}d_{Lr})(d_{Rs}\gamma_{\mu}u_{Rt})$ + H.c.	$\mathcal{O}_{eu}^{S,RL}$	$(\bar{e}_{Lp}e_{Rr})(\bar{u}_{Rs}u_{Lt})$	
Ű	,	$\mathcal{O}_{uddu}^{r8,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}T^{A}d_{Lr})(d_{Rs}\gamma_{\mu}T^{A}u_{Rt})$ + H.c.	$\mathcal{O}_{ed}^{S,RL}$	$(\bar{e}_{Lp}e_{Rr})(\bar{d}_{Rs}d_{Lt})$	
				$\mathcal{O}^{S,RL}_{ u edu}$	$(\bar{\nu}_{Lp}e_{Rr})(\bar{d}_{Rs}u_{Lt})$	

Fermion EDMs

Λ

$(\bar{L}L)(\bar{L}L)$ $f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$ $(\varphi^{\dagger}\varphi)^3$ $(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$ Q_G Q_{φ} $(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$ Q_{ll} $^{ABC}\tilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$ $Q_{\varphi \Box}$ $(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$ $(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$ $Q_{qq}^{(1)}$ $\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$ $(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$ $\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$ $Q_{\varphi D}$ Q_W $(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$ $Q_{qq}^{(3)}$ $^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$ $(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$ $Q_{lq}^{(1)}$ $(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$ $X^2 \varphi^2$ $\psi^2\varphi^2 D$ $\psi^2 X \varphi$ $Q_{lq}^{(3)}$ $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\,\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$ $(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$ $(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$ $\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$ $Q_{\varphi G}$ SU(3)xSU(2)xU(1) invariant $Q_{\varphi l}^{(1)}$ $\varphi^{\dagger}\varphi \widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$ $(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$ $Q_{\varphi l}^{(3)}$ $(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu}^{I} \varphi)(\overline{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$ $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$ $\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$ $(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \tilde{\varphi} G^A_{\mu\nu}$ $Q_{\varphi e}$ $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\,\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$ $\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$ $(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{\varphi} W^I_{\mu\nu}$ $Q_{\varphi q}^{(1)}$ $(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi)(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$ $\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$ $(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{\varphi} B_{\mu\nu}$ $Q_{\varphi q}^{(3)}$ $(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$ $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$ $\varphi^{\dagger}\varphi \, \widetilde{B}_{\mu\nu}B^{\mu\nu}$ $(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$ $Q_{\varphi u}$ $(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$ $\varphi^{\dagger} \tau^{I} \varphi W^{I}_{\mu\nu} B^{\mu\nu}$ $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$ $(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$ $Q_{\varphi d}$ $(\bar{q}_{p}^{j}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}d_{t})$ $\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$ $i(\tilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$ $(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$ $(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$ $\varepsilon^{\alpha\beta\gamma}(\tau^{I}\varepsilon)_{jk}(\tau^{I}\varepsilon)_{mn}\left[(q_{p}^{\alpha j})^{T}Cq_{r}^{\beta k}\right]\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n}\right]$ $(\bar{l}_{p}^{j}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t})$ $Q_{qqq}^{(3)}$ $\bar{q}_{p}^{j}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u)$ Q_{du} $\varepsilon^{\alpha\beta\gamma}\left[(d_p^{\alpha})^T C u_r^{\beta}\right]\left[(u_s^{\gamma})^T C e_t\right]$ (T +) (T +

 m_W

 Λ_{χ}

SM EFT' SU(3)xU(1)_{em} invariant

SM EFT

(LL)(LL)			(LL)(RR)	(LK)(LR) + H.c.		
$\mathcal{O}_{ u u}^{V,LL}$	$(\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{u}_{Ls}\gamma_{\mu}u_{Lt})$	$\mathcal{O}_{ u u}^{V,LR}$	$(\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{u}_{Rs}\gamma_{\mu}u_{Rt})$	$\mathcal{O}^{S,RR}_{eu}$	$(\bar{e}_{Lp}e_{Rr})(\bar{u}_{Ls}u_{Rt})$	
$\mathcal{O}_{\nu d}^{V,LL}$	$(\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{d}_{Ls}\gamma_{\mu}d_{Lt})$	$\mathcal{O}_{\nu d}^{V,LR}$	$(\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{d}_{Rs}\gamma_{\mu}d_{Rt})$	$\mathcal{O}_{eu}^{T,RR}$	$(\bar{e}_{Lp}\sigma^{\mu\nu}e_{Rr})(\bar{u}_{Ls}\sigma_{\mu\nu}u_{Rt})$	
$\mathcal{O}_{eu}^{V,LL}$	$(\bar{e}_{Lp}\gamma^{\mu}e_{Lr})(\bar{u}_{Ls}\gamma_{\mu}u_{Lt})$	$\mathcal{O}_{eu}^{V,LR}$	$(\bar{e}_{Lp}\gamma^{\mu}e_{Lr})(\bar{u}_{Rs}\gamma_{\mu}u_{Rt})$	$\mathcal{O}_{ed}^{S,RR}$	$(\bar{e}_{Lp}e_{Rr})(\bar{d}_{Ls}d_{Rt})$	
$\mathcal{O}_{ed}^{V,LL}$	$(\bar{e}_{Lp}\gamma^{\mu}e_{Lr})(\bar{d}_{Ls}\gamma_{\mu}d_{Lt})$	$\mathcal{O}_{ed}^{V,LR}$	$(\bar{e}_{Lp}\gamma^{\mu}e_{Lr})(\bar{d}_{Rs}\gamma_{\mu}d_{Rt})$	$\mathcal{O}_{ed}^{T,RR}$	$(\bar{e}_{Lp}\sigma^{\mu\nu}e_{Rr})(\bar{d}_{Ls}\sigma_{\mu\nu}d_{Rt})$	
$\mathcal{O}_{\nu edu}^{V,LL}$	$(\bar{\nu}_{Lp}\gamma^{\mu}e_{Lr})(\bar{d}_{Ls}\gamma_{\mu}u_{Lt}) + \text{H.c.}$	$\mathcal{O}_{ue}^{V,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}u_{Lr})(\bar{e}_{Rs}\gamma_{\mu}e_{Rt})$	$\mathcal{O}^{S,RR}_{\nu edu}$	$(\bar{\nu}_{Lp}e_{Rr})(\bar{d}_{Ls}u_{Rt})$	
	T = 1 = 1 = 1	$\mathcal{O}_{de}^{V,LR}$	$(\bar{d}_{Lp}\gamma^{\mu}d_{Lr})(\bar{e}_{Rs}\gamma_{\mu}e_{Rt})$	$\mathcal{O}_{ u e d u}^{T,RR}$	$(\bar{\nu}_{Lp}\sigma^{\mu\nu}e_{Rr})(\bar{d}_{Ls}\sigma_{\mu\nu}u_{Rt})$	
(LR)X + H.c.		$\mathcal{O}_{ u e d u}^{V,LR}$	$(\bar{\nu}_{Lp}\gamma^{\mu}e_{Lr})(\bar{d}_{Rs}\gamma_{\mu}u_{Rt}) + \text{H.c.}$	$\mathcal{O}^{S1,RR}_{uu}$	$(\bar{u}_{Lp}u_{Rr})(\bar{u}_{Ls}u_{Rt})$	
$\mathcal{O}_{u\gamma}$	$\bar{u}_{Lp}\sigma^{\mu u}u_{Rr} F_{\mu u}$	$\mathcal{O}_{uu}^{V1,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}u_{Lr})(\bar{u}_{Rs}\gamma_{\mu}u_{Rt})$	$\mathcal{O}^{S8,RR}_{uu}$	$(\bar{u}_{Lp}T^A u_{Rr})(\bar{u}_{Ls}T^A u_{Rt})$	
$\mathcal{O}_{d\gamma}$	$\bar{d}_{Lp}\sigma^{\mu u}d_{Rr}F_{\mu u}$	$\mathcal{O}_{uu}^{V8,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}T^{A}u_{Lr})(\bar{u}_{Rs}\gamma_{\mu}T^{A}u_{Rt})$	$\mathcal{O}_{ud}^{S1,RR}$	$(\bar{u}_{Lp}u_{Rr})(\bar{d}_{Ls}d_{Rt})$	
0.0	$\bar{u}_{Lp}\sigma^{\mu\nu}T^A u_{Rr}G^A_{\mu\nu}$	$\mathcal{O}_{ud}^{V1,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}u_{Lr})(\bar{d}_{Rs}\gamma_{\mu}d_{Rt})$	$\mathcal{O}_{ud}^{S8,RR}$	$(\bar{u}_{Lp}T^A u_{Rr})(\bar{d}_{Ls}T^A d_{Rt})$	
CuG		$\mathcal{O}_{ud}^{V8,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}T^{A}u_{Lr})(\bar{d}_{Rs}\gamma_{\mu}T^{A}d_{Rt})$	$\mathcal{O}_{dd}^{S1,RR}$	$(\bar{d}_{Lp}d_{Rr})(\bar{d}_{Ls}d_{Rt})$	
O_{dG}	$a_{Lp}\sigma^{\mu\nu}T^{\mu}a_{Rr}G^{\mu}_{\mu\nu}$	$\mathcal{O}_{du}^{V1,LR}$	$(\bar{d}_{Lp}\gamma^{\mu}d_{Lr})(\bar{u}_{Rs}\gamma_{\mu}u_{Rt})$	$\mathcal{O}_{dd}^{S8,RR}$	$(\bar{d}_{Lp}T^A d_{Rr})(\bar{d}_{Ls}T^A d_{Rt})$	
	V ³	$\mathcal{O}_{du}^{V8,LR}$	$(\bar{d}_{Lp}\gamma^{\mu}T^{A}d_{Lr})(\bar{u}_{Rs}\gamma_{\mu}T^{A}u_{Rt})$	$\mathcal{O}_{uddu}^{S1,RR}$	$(\bar{u}_{Lp}d_{Rr})(\bar{d}_{Ls}u_{Rt})$	
	Λ	$\mathcal{O}_{dd}^{V1,LR}$	$(\bar{d}_{Lp}\gamma^{\mu}d_{Lr})(\bar{d}_{Rs}\gamma_{\mu}d_{Rt})$	$\mathcal{O}_{uddu}^{S8,RR}$	$(\bar{u}_{Lp}T^A d_{Rr})(\bar{d}_{Ls}T^A u_{Rt})$	
\mathcal{O}_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	$O_{dd}^{V8,LR}$	$(\bar{d}_{Lp}\gamma^{\mu}T^{A}d_{Lr})(\bar{d}_{Rs}\gamma_{\mu}T^{A}d_{Rt})$	$(\overline{L}R$	$(\overline{R}L) + H.c.$	
$\mathcal{O}_{\widetilde{C}} f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\mu} G^{C\mu}_{\rho}$		$O_{uddu}^{V1,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}d_{Lr})(\bar{d}_{Rs}\gamma_{\mu}u_{Rt}) + \text{H.c.}$	$\mathcal{O}_{eu}^{S,RL}$	$(\bar{e}_{Lp}e_{Rr})(\bar{u}_{Rs}u_{Lt})$	
0	r - r	$\mathcal{O}_{uddu}^{v8,LR}$	$(\bar{u}_{Lp}\gamma^{\mu}T^{A}d_{Lr})(\bar{d}_{Rs}\gamma_{\mu}T^{A}u_{Rt}) + \text{H.c.}$	$\mathcal{O}_{ed}^{S,RL}$	$(\bar{e}_{Lp}e_{Rr})(\bar{d}_{Rs}d_{Lt})$	
				$\mathcal{O}^{S,RL}_{ u edu}$	$(\bar{\nu}_{Lp}e_{Rr})(\bar{d}_{Rs}u_{Lt})$	

 X^3

 φ^6 and $\varphi^4 D^2$

 $\psi^2 \varphi^3$

Λ

 m_W

 Λ_{χ}

X^3 φ^6 and $\varphi^4 D^2$ $\psi^2 \varphi^3$ $(\bar{L}L)(\bar{L}L)$ $f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$ $(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$ Q_G Q_{φ} $(\varphi^{\dagger}\varphi)^3$ $(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$ $^{ABC}\tilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$ Q_{ll} $Q_{\varphi \Box}$ $(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$ $(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$ $Q_{qq}^{(1)}$ $(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)$ $\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$ $Q_{\varphi D}$ $(\varphi^{\dagger}D^{\mu}\varphi)^{\star}(\varphi^{\dagger}D_{\mu}\varphi)$ Q_W $(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$ SM EFT $Q_{qq}^{(3)}$ $^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$ $(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$ $Q_{lq}^{(1)}$ $(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$ $\psi^2\varphi^2 D$ $X^2 \varphi^2$ $\psi^2 X \varphi$ $Q_{lq}^{(3)}$ $(\bar{l}_p \gamma_\mu \tau^I l_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$ $(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$ $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{l}_{p}\gamma^{\mu}l_{r})$ $\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$ $Q_{\varphi G}$ SU(3)xSU(2)xU(1) invariant $Q_{\varphi l}^{(1)}$ $\varphi^{\dagger}\varphi \, \widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$ $(\bar{l}_p\sigma^{\mu\nu}e_r)\varphi B_{\mu\nu}$ $Q_{\varphi l}^{(3)}$ $(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu}^{I} \varphi)(\overline{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$ $(\bar{q}_{\nu}\sigma^{\mu\nu}T^{A}u_{r})\tilde{\varphi}G^{A}_{\mu\nu}$ $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$ $\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$ $Q_{\varphi e}$ $Q_{\varphi W}$ $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\,\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$ $\varphi^{\dagger} \varphi \widetilde{W}^{I}_{\mu\nu} W^{I\mu\nu}$ $(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{\varphi} W^I_{\mu\nu}$ $Q_{\varphi q}^{(1)}$ $(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi)(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$ $\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$ $(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$ $Q_{\varphi q}^{(3)}$ $(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$ $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$ $\varphi^{\dagger}\varphi \, \widetilde{B}_{\mu\nu}B^{\mu\nu}$ $(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$ $Q_{\varphi u}$ $(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$ $\varphi^{\dagger} \tau^{I} \varphi W^{I}_{\mu\nu} B^{\mu\nu}$ $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$ $(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$ $Q_{\varphi d}$ $(\bar{q}_{p}^{j}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}d_{t})$ $\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$ $(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$ $i(\tilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$ $\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$ $(\bar{l}_{p}^{j}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t})$ $\varepsilon^{\alpha\beta\gamma}(\tau^{I}\varepsilon)_{jk}(\tau^{I}\varepsilon)_{mn}\left[(q_{p}^{\alpha j})^{T}Cq_{r}^{\beta k}\right]\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n}\right]$ $Q_{qqq}^{(3)}$ $\bar{q}_{p}^{j}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u)$ $\varepsilon^{\alpha\beta\gamma}\left[(d_p^{\alpha})^T C u_r^{\beta}\right]\left[(u_s^{\gamma})^T C e_t\right]$ $(\overline{L}L)(\overline{L}L)$ $(\overline{L}L)(\overline{R}R)$ $(\overline{L}R)(\overline{L}R) + H.c.$ $\mathcal{O}_{\nu u}^{V,LI}$ $(\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{u}_{Ls}\gamma_{\mu}u_{Lt})$ $\mathcal{O}_{...}^{V,LI}$ $(\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{u}_{Rs}\gamma_{\mu}u_{Rt})$ $\mathcal{O}^{S,R}$ $(\bar{e}_{Lp}e_{Rr})(\bar{u}_{Ls}u_{Rt})$ $\mathcal{O}_{\nu d}^{V,LL}$ $(\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{d}_{Ls}\gamma_{\mu}d_{Lt})$ $\mathcal{O}_{\nu d}^{V,LR}$ $(\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{d}_{Rs}\gamma_{\mu}d_{Rt})$ $\mathcal{O}_{eu}^{T,RR}$ SM EFT' $(\bar{e}_{Lp}\sigma^{\mu\nu}e_{Rr})(\bar{u}_{Ls}\sigma_{\mu\nu}u_{Rt})$ $\mathcal{O}_{eu}^{V,LL}$ $(\bar{e}_{Lp}\gamma^{\mu}e_{Lr})(\bar{u}_{Ls}\gamma_{\mu}u_{Lt})$ $\mathcal{O}_{eu}^{V,LR}$ $(\bar{e}_{Lp}\gamma^{\mu}e_{Lr})(\bar{u}_{Rs}\gamma_{\mu}u_{Rt})$ $\mathcal{O}^{S,R}$ $(\bar{e}_{Lp}e_{Rr})(\bar{d}_{Ls}d_{Rt})$ $\mathcal{O}_{ed}^{V,LL}$ $(\bar{e}_{Lp}\gamma^{\mu}e_{Lr})(\bar{d}_{Ls}\gamma_{\mu}d_{Lt})$ $\mathcal{O}_{ed}^{V,LR}$ $\mathcal{O}_{ed}^{T,RR}$ $(\bar{e}_{Lp}\gamma^{\mu}e_{Lr})(\bar{d}_{Rs}\gamma_{\mu}d_{Rt})$ $(\bar{e}_{Lp}\sigma^{\mu\nu}e_{Rr})(\bar{d}_{Ls}\sigma_{\mu\nu}d_{Rt})$ $\mathcal{O}_{\nu edu}^{V,LL}$ $(\bar{\nu}_{Lp}\gamma^{\mu}e_{Lr})(\bar{d}_{Ls}\gamma_{\mu}u_{Lt}) + \text{H.c.}$ $\mathcal{O}_{ue}^{V,LE}$ $(\bar{u}_{Lp}\gamma^{\mu}u_{Lr})(\bar{e}_{Rs}\gamma_{\mu}e_{Rt})$ $\mathcal{O}_{uedu}^{S,RR}$ $(\bar{\nu}_{Lp}e_{Rr})(\bar{d}_{Ls}u_{Rt})$ SU(3)xU(1)_{em} invariant $\mathcal{O}_{de}^{V,LE}$ $\mathcal{O}^{T,RR}$ $(\bar{d}_{Lp}\gamma^{\mu}d_{Lr})(\bar{e}_{Rs}\gamma_{\mu}e_{Rt})$ $\bar{\nu}_{Lp}\sigma^{\mu\nu}e_{Rr})(\bar{d}_{Ls}\sigma_{\mu\nu}u_{Rt})$ $(\overline{L}R)X + H.c.$ $\mathcal{O}_{vedu}^{V,LR}$ $(\bar{\nu}_{Lp}\gamma^{\mu}e_{Lr})(\bar{d}_{Rs}\gamma_{\mu}u_{Rt}) + \text{H.c.}$ $\mathcal{O}_{uu}^{S1,RR}$ $(\bar{u}_{I,r}u_{Br})(\bar{u}_{I,e}u_{Bt})$ $\bar{u}_{Lp}\sigma^{\mu\nu}u_{Rr}F_{\mu\nu}$ $\mathcal{O}_{uu}^{V1,LR}$ $(\bar{u}_{Lp}\gamma^{\mu}u_{Lr})(\bar{u}_{Rs}\gamma_{\mu}u_{Rt})$ $\mathcal{O}_{uu}^{S8,RR}$ $(\bar{u}_{Lp}T^A u_{Rr})(\bar{u}_{Ls}T^A u_{Rt})$ $\mathcal{O}_{ud}^{S1,RR}$ $\mathcal{O}_{uu}^{V8,LR}$ $(\bar{u}_{Lp}\gamma^{\mu}T^{A}u_{Lr})(\bar{u}_{Rs}\gamma_{\mu}T^{A}u_{Rt})$ $(\bar{u}_{Lp}u_{Rr})(\bar{d}_{Ls}d_{Rt})$ $\bar{d}_{Lp}\sigma^{\mu\nu}d_{Rr}F_{\mu\nu}$ $\mathcal{O}_{ud}^{S8,RR}$ $\mathcal{O}_{ud}^{V1,LR}$ $(\bar{u}_{Lp}\gamma^{\mu}u_{Lr})(\bar{d}_{Rs}\gamma_{\mu}d_{Rt})$ $(\bar{u}_{Lp}T^A u_{Rr})(\bar{d}_{Ls}T^A d_{Rt})$ $i_{Lp}\sigma^{\mu\nu}T^A u_{Rr}G^A_{\mu\nu}$ $\mathcal{O}_{dd}^{S1,RR}$ $O_{ud}^{V8,LR}$ $(\bar{u}_{Lp}\gamma^{\mu}T^{A}u_{Lr})(\bar{d}_{Rs}\gamma_{\mu}T^{A}d_{Rt})$ $(\bar{d}_{Lp}d_{Rr})(\bar{d}_{Ls}d_{Rt})$ $\bar{d}_{Lp}\sigma^{\mu\nu}T^A d_{Rr}G^A_{\mu\nu}$ $\mathcal{O}_{dv}^{V1,LR}$ $\mathcal{O}_{dd}^{S8,RR}$ $(\bar{d}_{Lp}\gamma^{\mu}d_{Lr})(\bar{u}_{Rs}\gamma_{\mu}u_{Rt})$ $(\bar{d}_{Lp}T^A d_{Rr})(\bar{d}_{Ls}T^A d_{Rt})$ $\mathcal{O}_{du}^{V8,LR}$ $(\bar{d}_{Lp}\gamma^{\mu}T^{A}d_{Lr})(\bar{u}_{Rs}\gamma_{\mu}T^{A}u_{Rt})$ $\mathcal{O}_{uddu}^{S1,RR}$ $(\bar{u}_{Lp}d_{Rr})(\bar{d}_{Ls}u_{Rt})$ X^3 $O_{dd}^{V1,LR}$ $(\bar{d}_{Lp}\gamma^{\mu}d_{Lr})(\bar{d}_{Rs}\gamma_{\mu}d_{Rt})$ $\mathcal{O}_{uddu}^{S8,RR}$ $(\bar{u}_{Lp}T^A d_{Rr})(\bar{d}_{Ls}T^A u_{Rt})$ $\mathcal{O}_G \left[f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho} \right]$ $\mathcal{O}_{dd}^{V8,LR}$ $(\bar{d}_{Lp}\gamma^{\mu}T^{A}d_{Lr})(\bar{d}_{Rs}\gamma_{\mu}T^{A}d_{Rt})$ $(\overline{L}R)(\overline{R}L) + H.c.$ $\mathcal{O}_{uddu}^{V1,LR}$ $(\bar{u}_{Lp}\gamma^{\mu}d_{Lr})(\bar{d}_{Rs}\gamma_{\mu}u_{Rt}) + H.c.$ $^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$ $\mathcal{O}_{eu}^{S,RL}$ $(\bar{e}_{Lp}e_{Rr})(\bar{u}_{Rs}u_{Lt})$ $O_{uddu}^{V8,LR}$ $(\bar{u}_{Lp}\gamma^{\mu}T^{A}d_{Lr})(\bar{d}_{Rs}\gamma_{\mu}T^{A}u_{Rt}) + H.c.$ $\mathcal{O}_{ed}^{S,RL} \mid (\bar{e}_{Lp}e_{Rr})(\bar{d}_{Rs}d_{Lt})$ $\mathcal{O}_{\nu e d u}^{S,RL}$ $(\bar{\nu}_{Lp} e_{Rr})(\bar{d}_{Rs} u_{Lt})$

Quark

color EDM

Fermion EDMs g

color EDM

g

g

EDMs

color EDM

color EDM

 X^3

 φ^6 and $\varphi^4 D^2$

 $\psi^2 \varphi^3$

 Λ_{χ}

Outline

CP-violating BSM physics

Outline

CP-violating BSM physics

Manohar, Georgi, `84; Weinberg, `90, `91

(Semi)leptonic interactions

(Semi)leptonic interactions

(Semi)leptonic interactions

Gupta et al. '18; Demir, Pospelov, Ritz, '03; de Vries et al, '10; Haisch & Hala '19; Seng '19; Yamanaka '21

Gupta et al. '18; Demir, Pospelov, Ritz, '03; de Vries et al, '10; Haisch & Hala '19; Seng '19; Yamanaka '21

Gupta et al. '18; Demir, Pospelov, Ritz, '03; de Vries et al, '10; Haisch & Hala '19; Seng '19; Yamanaka '21
Outline

CP-violating BSM physics

Outline

CP-violating BSM physics

Atomic screening factor
Known to Ø(30%)

- Atomic screening factor
 Known to Ø(30%)
- Nucleon-EDMs
 Known to O(30%) (for Hg)

Both types of matrix elements known to $\mathcal{O}(\text{few }\%)$

Molecule	$W^{\mathrm{m}}_{\mathrm{d}}/rac{10^{20}\mathrm{Hz}h}{e\mathrm{cm}}$	$W_{ m s}^{ m m}/(h{ m Hz})$	$W_{ m T}/(h{ m kHz})$	$W_{ m p}/(h{ m Hz})$	$W_{\mathrm{m}}/rac{10^{17}\mathrm{Hz}h}{e\mathrm{cm}}$	$W_{\mathcal{S}}/rac{\mathrm{MHz}h}{e\mathrm{fm}^3}$
${ m RaSH^+}$	31.9	82.9	-3.91	-15.3	-1.68	-1.95
${ m RaOCH_3}^+$	34.9	93.5	-4.45	-17.5	-1.88	-2.23
${ m RaCH_3}^+$	39.0	98.5	-4.62	-18.1	-1.91	-2.24
$ m RaCN^+$	32.5	86.4	-4.10	-16.1	-1.82	-2.06
$RaNC^+$	32.0	86.1	-4.10	-16.1	-1.82	-2.08

Gaul *et al. '23*

- Can similarly treat Parity-violating physics
 - Construct (hadronic) interactions in the same way
 - Again require hadronic/nuclear matrix elements

•Currently these observables probe BSM scales $\Lambda \sim \text{several TeV}$

Crivellin et al. '21

Phenomenology

CPV top-Higgs interactions

 $f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$ $(\varphi^{\dagger}\varphi)^3$ Q_{φ} • The top couples most strongly to the Higgs Q_G $f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\mu} G^{C\mu}_{\rho}$ $Q_{\tilde{G}}$ $Q_{\varphi \Box}$ $(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$ $\varepsilon^{IJK}W^{I\nu}W^{J\rho}W^{K\mu}$ $\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$ $Q_{\varphi D}$ Q_W $\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$ $Q_{\widetilde{W}}$ Could imply sensitivity to BSM $X^2 \varphi^2$ $\psi^2 X \varphi$ • Focus on top-Higgs interactions $(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$ $\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$ $Q_{\varphi G}$ Q_{eW} $\varphi^{\dagger}\varphi\,\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$ $(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$ Q_{eB} $Q_{\varphi \widetilde{G}}$ $\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$ $(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$ Q_{uG} $Q_{\varphi W}$ $\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$ $(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$ $Q_{\omega \widetilde{W}}$ Q_{uW} $\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$ $(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$ $Q_{\varphi B}$ Q_{uB} $\varphi^{\dagger}\varphi\,\widetilde{B}_{\mu\nu}B^{\mu\nu}$ $(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$ $Q_{\omega \widetilde{B}}$ Q_{dG} $\varphi^{\dagger} \tau^{I} \varphi W^{I}_{\mu\nu} B^{\mu\nu}$ $(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$ Q_{dW} $Q_{\varphi WB}$ $\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$ $Q_{\omega \widetilde{W}B}$ $(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$ Q_{dB}

h t_R t_L

 C_Y

 φ^6 and $\varphi^4 D^2$

 $\psi^2 \varphi^3$

 $\psi^2 \varphi^2 D$

 $Q_{e\varphi}$

 $Q_{u\varphi}$

 $Q_{d\varphi}$

 $Q_{\varphi l}^{(1)}$

 $Q_{\varphi l}^{(3)}$

 $Q_{\varphi e}$

 $Q_{\varphi q}^{(1)}$

 $Q_{\varphi q}^{(3)}$

 $Q_{\varphi u}$

 $Q_{\varphi d}$

 $Q_{\varphi ud}$

 $(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$

 $(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$

 $(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$

 $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\,\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$

 $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$

 $(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi) (\bar{e}_p \gamma^{\mu} e_r)$

 $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\,\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$

 $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$

 $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$

 $(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$

 $i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

 X^3

CPV t Yukawa

t EDM

t CEDM

t weak-EDMs

The top couples most strongly to the Higgs
Could imply sensitivity to BSM
Focus on top-Higgs interactions

X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi\Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$				
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^\dagger i \overleftrightarrow{D}_\mu \varphi) (\bar{u}_p \gamma^\mu u_r)$
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

 C_Y

CPV t Yukawa

t EDM

t CEDM

t weak-EDMs

- The top couples most strongly to the Higgs
 - Could imply sensitivity to BSM
 - Focus on top-Higgs interactions

X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$				
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^\dagger i \overleftrightarrow{D}_\mu \varphi) (\bar{u}_p \gamma^\mu u_r)$
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

- The top couples most strongly to the Higgs
 - Could imply sensitivity to BSM
 - Focus on top-Higgs interactions

X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$				
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^\dagger i \overleftrightarrow{D}_\mu \varphi) (\bar{u}_p \gamma^\mu u_r)$
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

SM EFT' SU(3)xU(1)_{em} invariant

 Λ_{χ}

g γ g *g* u, d, lu, d, lu, d u, d*g*

Single coupling constraints

- Even though loop-generated, EDMs probe $\Lambda\gtrsim 10\,{\rm TeV}$
 - More sensitive than LHC reach for most couplings

Single coupling constraints

Impact of theoretical uncertainties

- Hadronic/Nuclear uncertainties weaken the constraints from hadronic systems
 - Nucleon & mercury EDMs

Phenomenology

CPV Yukawa interactions of light quarks

Two-coupling analysis

• Uncertainties significantly weaken the constraints

Two-coupling analysis

- Uncertainties significantly weaken the constraints
- Can be mitigated by
 - Improved theory: 50%(25%) uncertainty on nuclear(hadronic) matrix elements

Two-coupling analysis

- Uncertainties significantly weaken the constraints
- Can be mitigated by

• Improved theory: 50%(25%) uncertainty on nuclear(hadronic) matrix elements

• Additional measurements, e.g. d_p , d_D , d_{Ra} at current d_n sensitivity

• [EFTs can	systematically	^v describe	symmetry-	breaking BSM
-----	----------	----------------	-----------------------	-----------	--------------

• Incorporating high- and low-energy probes in one framework

• EFTs can systematically describe symmetry-breaking BSM

- Incorporating high- and low-energy probes in one framework
- CPV interactions already stringently constrained
 - EDMs probe
 - $\Lambda\gtrsim 100\,TeV$ for tree-level BSM
 - $\Lambda\gtrsim 10\,TeV$ for loop-level BSM

Summary

- EFTs can systematically describe symmetry-breaking BSM
- Incorporating high- and low-energy probes in one framework
- CPV interactions already stringently constrained
 - EDMs probe
 - $\Lambda\gtrsim 100\,TeV$ for tree-level BSM
 - $\Lambda\gtrsim 10\,TeV$ for loop-level BSM
 - Hadronic & nuclear uncertainties
 - Neutron & mercury constraints significantly affected
 - Can be mitigated by
 - Improved theory determinations of matrix elements
 - Additional measurements

Backup slides

Theory error treatment

• 'Rfit': Vary matrix elements within their allowed ranges; choose values giving the smallest Chi-square (pick the weakest bound)

- Hadronic/nuclear EDM uncertainties
- Long-distance uncertainties in $A_{CP}(b
 ightarrow s \gamma)$

Electric Dipole Moments

Summary

Limits (e cm)	ThO	neutron	
Bound	1.1x10 ⁻²⁹	3.0x10 ⁻²⁶	6.2x10 ⁻³⁰
Theory uncertainty	Molecular ME $\mathcal{O}(\text{few \%})$	Hadronic MEs	Hadronic/Nuclear MEs O(100%)

- In terms of quark-level operators at $\mu\simeq {\rm GeV}$

$$\omega_{\rm ThO} = (120.6 \pm 4.9) ({\rm mrad/s}) \left(\frac{d_e}{10^{-27} e \, {\rm cm}} \right)$$

Electric Dipole Moments

Summary

Limits (e cm)	ThO	neutron	mercury
Bound	1.1x10 -29	3.0x10 ⁻²⁶	6.2x10 ⁻³⁰
Theory uncertainty	Molecular ME	Hadronic MEs	Hadronic/Nuclear MEs
	$\mathcal{O}(\text{few }\%)$	<i>O</i> (50%)	Ø(100%)

Electric Dipole Moments

Summary

Limits (e cm)	ThO		mercury
Bound	1.1x10 ⁻²⁹	3.0x10 ⁻²⁶	6.2x10 ⁻³⁰
Theory uncertainty	Molecular ME	Hadronic MEs	Hadronic/Nuclear MEs
	$\mathcal{O}(\text{few \%})$	<i>O</i> (50%)	Ø(100%)

• In terms of nucleon-level operators:

 $\mathcal{O}(100\%)$ nuclear uncertainties

Electric Dipole Moments

Summary

Limits (e cm)	ThO		mercury
Bound	1.1x10 ⁻²⁹	3.0x10 ⁻²⁶	6.2x10 ⁻³⁰
Theory uncertainty	Molecular ME	Hadronic MEs	Hadronic/Nuclear MEs
	Ø(few %)	<i>O</i> (50%)	<i>O</i> (100%)

• In terms of nucleon-level operators:

$$d_{\rm Hg} = -2.1(5) \cdot 10^{-4} \bigg[1.9(1)d_n + 0.20(6)d_p + 0.13^{+0.50}_{-0.07} \,\bar{g}_0 + 0.25^{+0.89}_{-0.63} \,\bar{g}_1 \bigg) e \,\rm{fm} \bigg]$$

 $\mathcal{O}(100\%)$ nuclear uncertainties

- In terms of quark-level operators at $\mu\simeq {\rm GeV}$

$$\begin{split} &d_n = -0.204(11)\,d_u + 0.784(28)\,d_d - 0.0028(17)\,d_s = 0.55(28)\,e\,\tilde{d}_u - 1.10(55)\,e\,\tilde{d}_d + 50(40)\,\mathrm{MeV}\,e\,g_sC_{\tilde{G}}\,, \\ &d_p = 0.784(28)\,d_u - 0.204(11)\,d_d - 0.0028(17)\,d_s \pm 1.30(65)\,e\,\tilde{d}_u + 0.6(3)\,e\,\tilde{d}_d - 50(40)\,\mathrm{MeV}\,e\,g_sC_{\tilde{G}}\,, \\ &\bar{g}_0 = 5(10)(m_u\tilde{C}_g^{(u)} + m_d\tilde{C}_g^{(d)})\,\mathrm{fm}^{-1}\,, \\ &\bar{g}_1 = 20^{+40}_{-10}(m_u\tilde{C}_g^{(u)} - m_d\tilde{C}_g^{(d)})\,\mathrm{fm}^{-1}\,. \end{split}$$

Projected limits Global Higgs-gauge analysis

