Sterile neutrinos in $0 u\beta\beta$

Wouter Dekens

with G. Zhou, J. de Vries, E. Mereghetti, J. Menéndez, P. Soriano

- ν_R 's could help solve several SM deficiencies:
 - Neutrino masses
 - Leptogenesis
 - Dark matter candidate
- Appear in Left-Right/Leptoquarks/GUTs

Canetti et al. '13

- ν_R 's could help solve several SM deficiencies:
 - Neutrino masses
 - Leptogenesis
 - Dark matter candidate
- Appear in Left-Right/Leptoquarks/GUTs
- Add *n* singlets, ν_R , to the SM:

$$\mathscr{L} = \mathscr{L}_{SM} - \frac{1}{2}\bar{\nu}_R M_R \nu_R^c - \bar{L}\tilde{H}Y_\nu \nu_R + \text{h.c.}$$

Canetti et al. '13

- ν_R 's could help solve several SM deficiencies:
 - Neutrino masses
 - Leptogenesis
 - Dark matter candidate
- Appear in Left-Right/Leptoquarks/GUTs
- Add *n* singlets, ν_R , to the SM:

$$\mathscr{L} = \mathscr{L}_{SM} - \frac{1}{2} \overline{\nu_R M_R \nu_R^c} - \overline{L} \widetilde{H} Y_{\nu} \nu_R + \text{h.c.}$$

Majorana mass

Canetti et al. '13

- ν_R 's could help solve several SM deficiencies:
 - Neutrino masses
 - Leptogenesis
 - Dark matter candidate
- Appear in Left-Right/Leptoquarks/GUTs
- Add *n* singlets, ν_R , to the SM:

$$\mathscr{L} = \mathscr{L}_{SM} - \frac{1}{2} \overline{\nu_R M_R \nu_R^c} - \overline{LHY_\nu \nu_R} + h.c.$$

Majorana mass Dirac mass

Canetti et al. '13

- ν_R 's could help solve several SM deficiencies:
 - Neutrino masses
 - Leptogenesis
 - Dark matter candidate
- Appear in Left-Right/Leptoquarks/GUTs

• Add *n* singlets, ν_R , to the SM: $\mathscr{L} = \frac{\mathrm{EWSB}}{\longrightarrow} - \frac{1}{2} \bar{N}^c M_{\nu} N \qquad N = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} \qquad M_{\nu} = \begin{pmatrix} 0 & \frac{\nu}{\sqrt{2}} Y_{\nu}^T \\ \frac{\nu}{\sqrt{2}} Y_{\nu} & M_R^{\dagger} \end{pmatrix}$

Canetti et al. '13

- ν_R 's could help solve several SM deficiencies:
 - Neutrino masses
 - Leptogenesis
 - Dark matter candidate
- Appear in Left-Right/Leptoquarks/GUTs

• Add *n* singlets, ν_R , to the SM:

s,
$$\nu_R$$
, to the SM:
 $\mathscr{L} = \xrightarrow{\text{EWSB}} - \frac{1}{2} \bar{N}^c M_\nu N \qquad N = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} \qquad M_\nu = \begin{pmatrix} 0 & \frac{\nu}{\sqrt{2}} Y_\nu^T \\ \frac{\nu}{\sqrt{2}} Y_\nu & M_R^\dagger \end{pmatrix}$

In the mass basis

$$\mathscr{L} = -\frac{1}{2}\bar{\nu}_i^c m_i \nu_i$$

 $U^T M_{\nu} U = \operatorname{diag}(m_1, m_2 \dots m_{3+n}), \quad \nu_{\text{mass}} = U N_{\text{flavor}}$

Canetti et al. '13

- ν_R 's could help solve several SM deficiencies:
 - Neutrino masses
 - Leptogenesis
 - Dark matter candidate
- Appear in Left-Right/Leptoquarks/GUTs

• Add *n* singlets, ν_R , to the SM:

S,
$$\nu_R$$
, to the SM:
 $\mathscr{L} = \stackrel{\text{EWSB}}{\longrightarrow} - \frac{1}{2} \bar{N}^c M_{\nu} N \qquad N = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} \qquad M_{\nu} = \begin{pmatrix} 0 & \frac{\nu}{\sqrt{2}} Y_{\nu}^T \\ \frac{\nu}{\sqrt{2}} Y_{\nu} & M_R^{\dagger} \end{pmatrix}$

In the mass basis

$$\mathscr{L} = -\frac{1}{2}\bar{\nu}_i^c m_i \nu_i$$

 $U^T M_{\nu} U = \operatorname{diag}(m_1, m_2 \dots m_{3+n}), \quad \nu_{\text{mass}} = UN_{\text{flavor}}$ PMNS mixing matrix

Canetti et al. '13

• ν_R 's could help solve several SM deficiencies:

- Neutrino masses
- Leptogenesis
- Dark matter candidate

Canetti et al. '13

Boyarski et al. '19

In the mass basis

$$\mathscr{L} = -\frac{1}{2}\bar{\nu}_{i}^{c}m_{i}\nu_{i}$$

 $U^T M_{\nu} U = \operatorname{diag}(m_1, m_2 \dots m_{3+n}), \quad \nu_{\text{mass}} = UN_{\text{flavor}}$ PMNS mixing matrix

 $0\nu\beta\beta$

• Violates lepton number, $\Delta L=2$

Schechter, Valle, `82

 $0\nu\beta\beta$

• Violates lepton number, $\Delta L=2$	$T_{1/2}^{0\nu}(^{76}\text{Ge})$	$T_{1/2}^{0\nu}(^{130}\text{Te})$	$T_{1/2}^{0\nu}(^{136}\text{Xe})$
	Gerda	Cuore	KamLAND-zen
 Stringently constrained experimentally 	$> 9 \cdot 10^{25} \mathrm{vr}$	$> 3.2 \cdot 10^{25} \mathrm{vr}$	$> 1.1 \cdot 10^{26} \text{ vr}$
 To be improved by 1-2 orders 		<i>J</i>	

Future reach: (LEGEND, nEXO, CUPID)

 $T_{1/2}^{0\nu} > 10^{28} \mathrm{yr}$

Schechter, Valle, `82

 $0\nu\beta\beta$

• Violates lepton number, $\Delta L=2$	$T_{1/2}^{0\nu}(^{76}\text{Ge})$	$T_{1/2}^{0\nu}(^{130}\text{Te})$	$T_{1/2}^{0\nu}(^{136}\text{Xe})$
 Stringently constrained experimentally To be improved by 1-2 orders 	Gerda	Cuore	KamLAND-zen
	$> 9 \cdot 10^{25} \mathrm{yr}$	$> 3.2 \cdot 10^{25} \mathrm{yr}$	$> 1.1 \cdot 10^{26} \mathrm{yr}$
 Would imply that Neutrino's are Majorana particles Physics beyond the SM 	Future reach: (LEGEND, nEXO, $T_{1/2}^{0\nu}$ CUPID)		> 10 ²⁸ yr

Schechter, Valle, `82

 $0\nu\beta\beta$

 $0\nu\beta\beta$

• Assume quark currents factorize:

 $A_{\nu}(m_i) \sim \langle ^{136}\text{Ba} | V(q) | ^{136}\text{Xe} \rangle$

 $0\nu\beta\beta$

• Assume quark currents factorize:

$$A_{\nu}(m_i) \sim \langle {}^{136}\text{Ba} | V(q) | {}^{136}\text{Xe} \rangle$$

• Approximate amplitude by

$$A_{\nu}(m_i) = A_{\nu}(0) \frac{\langle p^2 \rangle}{\langle p^2 \rangle + m_i^2} \qquad \langle p^2 \rangle \simeq k_F^2$$

Faessler et al, '14; Asaka et al '16; Bolton et al '20,'22; Fang et al, '22;

 $0\nu\beta\beta$

• Assume quark currents factorize:

$$A_{\nu}(m_i) \sim \langle ^{136}\text{Ba} | V(q) | ^{136}\text{Xe} \rangle$$

• Approximate amplitude by

$$A_{\nu}(m_i) = A_{\nu}(0) \frac{\langle p^2 \rangle}{\langle p^2 \rangle + m_i^2} \qquad \langle p^2 \rangle \simeq k_F^2$$

- *m_i* dependence seems reasonable, however,
 - Does not have the right QCD behavior for $m_i \gg \Lambda_\chi \sim {\rm GeV}$
 - Misses several effects for $m_i \leq \Lambda_{\chi}$

Faessler et al, '14; Asaka et al '16; Bolton et al '20,'22; Fang et al, '22;

 $0\nu\beta\beta$

• Assume quark currents factorize:

$$A_{\nu}(m_i) \sim \langle ^{136}\text{Ba} | V(q) | ^{136}\text{Xe} \rangle$$

• Approximate amplitude by

$$A_{\nu}(m_i) = A_{\nu}(0) \frac{\langle p^2 \rangle}{\langle p^2 \rangle + m_i^2} \qquad \langle p^2 \rangle \simeq k_F^2$$

- m_i dependence seems reasonable, however,
 - Does not have the right QCD behavior for $m_i \gg \Lambda_\chi \sim {
 m GeV}$
 - Misses several effects for $m_i \leq \Lambda_{\chi}$

Faessler et al, '14; Asaka et al '16; Bolton et al '20,'22; Fang et al, '22;

This talk: Obtain A_{ν} using EFT approach

EFT approach

One scale at a time

EFT approach

One scale at a time

Manohar, Georgi, `84; Weinberg, `90, `91

- At LO in Weinberg counting, only need the nucleon one-body currents
 - All needed low-energy constants are known

- At LO in Weinberg counting, only need the nucleon one-body currents
 - All needed low-energy constants are known

Additional `non-NDA' contact interaction needed for renormalization •

Cirigliano et al '18,'19

- New LEC, g_{ν}^{NN} .
- Currently unknown only model estimates

Details in backup

EFT approach

One scale at a time

Chiral EFT

Active $\nu's$: leading order

Need to evaluate
$$A_{\nu} = \langle {}^{136}\text{Ba} | V | {}^{136}\text{Xe} \rangle$$
Active $\nu's$: leading order

Need to evaluate
$$A_{\nu} = \langle ^{136}\text{Ba} | V | ^{136}\text{Xe} \rangle$$

- Requires many-body methods
- Matrix elements differ factor 2-3 between methods
- Ab initio NMEs for $A \ge 48$ are starting to appear
- Including estimates of $g_{
 u}^{NN}$ effects

Agostini et al, '22; Belley et al '20; Yao et al '20; Wirth, Yao, Hegert '21

Active $\nu's$: beyond leading order

Total:

$$A_{\nu} = \langle {}^{136}\text{Ba} | V | {}^{136}\text{Xe} \rangle + A_{\nu}^{\text{usoft}}$$

- N2LO effects:
 - Estimated to be $\leq \mathcal{O}(10\%)$
 - Become sensitive to intermediate states

Pastore et al '17

Active $\nu's$

Active $\nu's$

Active $\nu's$

Active $\nu's$

Active $\nu's$

$$\Lambda_{\chi} \sim 1 \text{ GeV}$$

$$m_{\pi} \sim k_{F} \sim 100 \text{ MeV}$$

$$Q \sim E_{n} - E_{i} \sim 10 \text{ MeV}$$

$$M_{\mu} = \langle ^{136}\text{Ba} | V_{\Delta L=2}|^{136}\text{Xe} \rangle + A_{\nu}^{\text{usoft}}$$

Including all $v'_i s$

Including all $v'_i s$

 $m_i \gg \Lambda_{\chi}$

• ν_i can be integrated-out at quark level

• Determines m_i dependence: $A_{\nu}(m_i) \sim U_{ei}^2/m_i^2$

 $m_i \gg$ Λ_{γ}

• ν_i can be integrated-out at quark level

• Determines m_i dependence: $A_{\nu}(m_i) \sim U_{ei}^2/m_i^2$

- Match to chiral EFT without ν_i
- Involves several LECs
 - Only $g_1^{\pi\pi}$ known

Nicholson et al '18; Detmold et al '22

One momentum scale at a time

$$\Lambda_{\chi} \sim 1 \ {
m GeV}$$
 m_i
 $m_{\pi} \sim k_F \sim 100 \ {
m MeV}$

One momentum scale at a time

 $\Lambda_{\chi} \sim$ 1 GeV m_i $m_\pi \sim k_F \sim 100~{
m MeV}$ $Q \sim E_n - E_i \sim 10 \; {\rm MeV}$

 $\Lambda_{\chi} \gtrsim m_i \gtrsim k_F$

- Similar to the `standard mechanism'
 - Have to keep ν_i in the chiral theory
 - Again have `potential' + `hard' contributions

 $\Lambda_{\chi} \gtrsim m_i \gtrsim k_F$

 $\Lambda_{\chi} \gtrsim m_i \gtrsim k_F$

One momentum scale at a time

 $\Lambda_{\chi} \sim$ 1 GeV m_i $m_\pi \sim k_F \sim 100~{
m MeV}$ $Q \sim E_n - E_i \sim 10 \; {\rm MeV}$

One momentum scale at a time

 $\Lambda_{\chi} \sim$ 1 GeV $m_{\pi} \sim k_F \sim 100 \ {
m MeV}$ m_i $Q \sim E_n - E_i \sim 10 \text{ MeV}$ ------

 $k_F \gtrsim m_i$

- Similar to previous case:
 - Contributions from potential + hard regions
 - Soft contributions are now negligible

 $k_F \gtrsim m_i$

- Similar to previous case:
 - Contributions from potential + hard regions
 - Soft contributions are now negligible

 $k_F \gtrsim m_i$

- Similar to previous case:
 - Contributions from potential + hard regions
 - Soft contributions are now negligible

 $k_F \gtrsim m_i$

- Similar to previous case:
 - Contributions from potential + hard regions
 - Soft contributions are now negligible

 $k_F \gtrsim m_i$

- Similar to previous case:
 - Contributions from potential + hard regions
 - Soft contributions are now negligible

Leading m_i dependence	$m_i \ll \Delta E$	$\Delta E \ll m_i \ll k_F$	$k_F \ll m_i \ll \Lambda_{\chi}$	$\Lambda_{\chi} \ll m_i$
$n \rightarrow e_e $ Hard			$\frac{k_F^2}{m_i^2}$	
$ \begin{array}{c cccc} n & e & p \\ \hline n & e & p \\ \hline n & e & p \\ \end{array} $ Soft			$\frac{m_i^2}{\Lambda_\chi^2}$	
$ \begin{array}{c} \stackrel{n}{\underset{\nu_{i}}{\overset{\nu_{i}}{\overset{p}{\overset{p}{\overset{p}{\overset{p}{\overset{p}{\overset{p}{\overset{p}{$	$\frac{m_i^2}{k_F^2}$		$\frac{k_F^2}{m_i^2}$	
Ultrasoft	$\frac{m_i^2}{4\pi\Delta Ek_F}\ln\frac{m_i}{\Delta E}$	$\frac{m_i}{k_F}$		
d d d d e e e Perturbative				$\frac{k_F^2}{m_i^2}$

Leading m_i dependence	$m_i \ll \Delta E$	$\Delta E \ll m_i \ll k_F$	$k_F \ll m_i \ll \Lambda_{\chi}$	$\Lambda_{\chi} \ll m_i$
$n \rightarrow e_e e_e$ Hard			$\frac{k_F^2}{m_i^2}$	
$ \begin{array}{c} $			$\frac{m_i^2}{\Lambda_\chi^2}$	
$ \begin{array}{c} \stackrel{n}{\underset{n}{\overset{\nu_{i}}{\overset{p}{\overset{p}{\overset{p}{\overset{p}{\overset{p}{\overset{p}{\overset{p}{$	$\frac{m_i^2}{k_F^2}$		$\frac{k_F^2}{m_i^2}$	
Ultrasoft	$\frac{m_i^2}{4\pi\Delta Ek_F}\ln\frac{m_i}{\Delta E}$	$rac{m_i}{k_F}$		
d d d d u e e Perturbative				$\frac{k_F^2}{m_i^2}$

Leading m_i	dependence	$m_i \ll \Delta E$	$\Delta E \ll m_i \ll k_F$	$k_F \ll m_i \ll \Lambda_{\chi}$	$\Lambda_{\chi} \ll m_i$
	Hard			$\frac{k_F^2}{m_i^2}$	
	Soft			$\frac{m_i^2}{\Lambda_\chi^2}$	
n ν_i p e^-	Potential	$\frac{m_i^2}{k_F^2}$		$\frac{k_F^2}{m_i^2}$	
¹³⁶ Xe ¹³⁶ B	۵ Ultrasoft	$\frac{m_i^2}{4\pi\Delta Ek_F}\ln\frac{m_i}{\Delta E}$	$\frac{m_i}{k_F}$		
	Perturbative				$\frac{k_F^2}{m_i^2}$

Leading m_i	dependence	$m_i \ll \Delta E$	$\Delta E \ll m_i \ll k_F$	$k_F \ll m_i \ll \Lambda_{\chi}$	$\Lambda_{\chi} \ll m_i$
	Hard			$\frac{k_F^2}{m_i^2}$	
	Soft			$\frac{m_i^2}{\Lambda_\chi^2}$	
$n \qquad e^{-} \\ \nu_i \qquad p \\ e^{-}$	Potential	$\frac{m_i^2}{k_F^2}$		$\frac{k_F^2}{m_i^2}$	
¹³⁶ Xe ¹³⁶ Ba	ultrasoft ª	$\frac{m_i^2}{4\pi\Delta Ek_F}\ln\frac{m_i}{\Delta E}$	$\frac{m_i}{k_F}$		
	Perturbative				$\frac{k_F^2}{m_i^2}$

Phenomenology

Toy model: 3+1

 Add just one sterile neutrino to the SM 		0	0	0	M_D
• Accuma maca matrix of the form		0	0	0	M _D
•Assume mass matrix of the form	M_{ν} –	0	0	0	M_D
		M_D	M_D	M_D	M_R
Toy model: 3+1

- Add just one sterile neutrino to the SM •Assume mass matrix of the form $M_{\nu} = \begin{pmatrix} 0 & 0 & 0 & M_D \\ 0 & 0 & 0 & M_D \\ 0 & 0 & 0 & M_D \\ M_D & M_D & M_D & M_R \end{pmatrix}$
- Not realistic:
 - Only two nonzero u masses
 - Does not reproduce mixing angles
- Simple case to test differences with usual approach

Toy model: 3+1

- Add just one sterile neutrino to the SM •Assume mass matrix of the form $M_{\nu} = \begin{pmatrix} 0 & 0 & 0 & M_D \\ 0 & 0 & 0 & M_D \\ 0 & 0 & 0 & M_D \\ M_D & M_D & M_D & M_R \end{pmatrix}$
- Not realistic:
 - Only two nonzero u masses
 - Does not reproduce mixing angles
- Simple case to test differences with usual approach

Summary

- Sterile neutrinos are motivated by
 - Neutrino masses
 - Leptogenesis
 - Dark matter candidate
- Generally lead to $0 \nu \beta \beta$
 - Minimal extension induces cancellations in $0\nu\beta\beta$

Summary

- Sterile neutrinos are motivated by
 - Neutrino masses
 - Leptogenesis
 - Dark matter candidate
- Generally lead to $0\nu\beta\beta$
 - Minimal extension induces cancellations in $0\nu\beta\beta$
- m_i dependence can be captured in an EFT framework
 - Systematically track ν 's momenta scalings
- Usually subleading contributions can become important
 - Ultrasoft contributions promoted from N2LO to LO for $m_i \lesssim k_F$

Summary

- Sterile neutrinos are motivated by
 - Neutrino masses
 - Leptogenesis
 - Dark matter candidate
- Generally lead to $0\nu\beta\beta$
 - Minimal extension induces cancellations in $0\nu\beta\beta$
- m_i dependence can be captured in an EFT framework
 - Systematically track ν 's momenta scalings
- Usually subleading contributions can become important
 - Ultrasoft contributions promoted from N2LO to LO for $m_i \lesssim k_F$

- Significant changes compared to usual approach
 - Can already be seen in simple toy models

Back up slides

Hadronic matrix elements

Required LECs

 $m_i \gg \Lambda_{\chi}$

Required LECs

$$m_i \lesssim \Lambda_{\chi}$$

Interpolation

$$g_{\nu}^{NN}(m_i) = g_{\nu}^{NN}(0) \frac{1 + (m_i/m_c)^2}{1 + (m_i/m_c)^2 (m_i/m_d)^2}, \quad \text{NDA gives } m_c \sim 1 \,\text{GeV}^2$$
• Model esteems imply $g_{\nu}^{NN}(0) \sim -\text{fm}^2$

Nuclear matrix elements

Required NMEs

Potential contribution

 $A_{\nu} = \langle {}^{136}\text{Ba} | V(m_i) | {}^{136}\text{Xe} \rangle$

Required NMEs

Ultrasoft contribution

$\left[\frac{E_n - E_i}{\text{MeV}} \right]$	$\langle n \boldsymbol{\sigma} \tau^+ 0_i^+ angle$	$\langle 0^+_f oldsymbol{\sigma} au^+ n angle$	$\frac{E_n - E_i}{\text{MeV}}$	$\langle n {oldsymbol \sigma} au^+ 0^+_i angle$	$\langle 0^+_f oldsymbol{\sigma} au^+ n angle$	$\frac{E_n - E_i}{\text{MeV}}$	$\langle n {oldsymbol \sigma} au^+ 0^+_i angle$	$\langle 0^+_f oldsymbol{\sigma} au^+ n angle$
0.17	1.0	0.13	3.3	0.39	-0.0013	9.1	0.80	0.0038
0.63	-0.19	-0.0063	3.6	0.39	0.0021	9.4	0.59	0.0014
0.89	-0.25	-0.016	3.8	0.45	-0.013	9.8	-0.50	0.0027
1.02	0.30	0.036	4.0	-0.44	-0.0032	10.1	0.35	-0.0027
1.05	0.23	0.025	4.3	-0.35	-0.0038	10.5	0.26	-0.00053
1.1	-0.13	-0.00076	4.6	-0.36	-0.0067	10.9	-0.22	-0.00021
1.2	0.12	-0.0052	4.8	0.44	0.0083	11.3	0.17	-0.00037
1.3	0.16	-0.0028	5.1	0.44	0.0066	11.7	-0.16	-0.00054
1.4	-0.23	-0.0098	5.4	-0.55	-0.0093	12.0	-0.16	-0.0010
1.5	0.20	-0.012	5.7	0.63	0.012	12.4	0.14	0.00092
1.6	-0.36	0.0084	6.1	0.85	0.013	12.8	0.12	-0.00014
1.7	-0.24	0.00058	6.3	-1.2	-0.016	13.1	0.092	-0.00040
1.9	0.22	0.011	6.7	-1.3	-0.014	13.5	-0.079	-0.00019
2.0	0.34	0.0070	7.0	-1.9	-0.016	13.9	0.071	-0.00026
2.2	0.35	0.0060	7.3	3.1	0.023	14.2	-0.070	0.000031
2.3	-0.49	-0.0086	7.5	-4.0	-0.028	14.6	-0.035	0.00021
2.6	0.62	0.021	7.7	2.6	0.017	15.1	-0.051	-0.00015
2.7	-0.91	-0.024	8.1	1.4	0.0091	16.2	-0.039	0.00011
2.9	0.37	0.0064	8.4	-1.0	-0.0057	17.3	-0.043	-0.000091
3.1	0.30	0.0013	8.8	-0.93	-0.0064	17.7	0.11	-0.000029

Required NMEs

Ultrasoft/potential contributions

• Part of the ultrasoft and potential contributions are related:

• For $m_{\pi} \gtrsim m_i \gtrsim \Delta E$

$$A_{\nu}^{\text{usoft}} \simeq \frac{R_A}{2\pi} m_i \sum_n \langle 0^+ | \tau^+ \sigma | n \rangle \langle n | \tau^+ \sigma | 0^+ \rangle$$

- Have to make sure not to double count
 - In practice we remove the linear term from the potential contributions
- Allows for a cross check of the form

$$A_{\nu}^{\text{usoft}} \simeq m_i \frac{d}{dm_i} A_{\nu}^{\text{pot}}$$

- Numerically works to $\,\sim 20\,\%$

Another toy model

Toy model: 1+1+1 pseudo-Dirac

- Assume 1 active, two sterile neutrinos
 - Assume mass matrix of the form
 - $m_S \gg m_D, \mu_{S,X}$

$$M_{\nu} = \begin{pmatrix} 0 & m_D & 0 \\ m_D & \mu_X & m_S \\ 0 & m_S & \mu_S \end{pmatrix}$$

Toy model: 1+1+1 pseudo-Dirac

- Assume 1 active, two sterile neutrinos
 - Assume mass matrix of the form
 - $m_S \gg m_D, \mu_{S,X}$

$$M_{\nu} = \begin{pmatrix} 0 & m_D & 0 \\ m_D & \mu_X & m_S \\ 0 & m_S & \mu_S \end{pmatrix}$$

- Interesting aspects:
 - Two heavier ν 's, form a pseudo-Dirac pair with $M_2-M_1\sim \mu_S\ll M_2$
 - Light neutrino mass proportional to LNV parameter (opposite to seesaw)

Bolton et al, 2020; Mohapatra et al, '86; Nandi and Sarkar '86;

Toy model: 1+1+1 pseudo-Dirac

- Assume 1 active, two sterile neutrinos
 - Assume mass matrix of the form
 - $m_S \gg m_D, \mu_{S,X}$

$$M_{\nu} = \begin{pmatrix} 0 & m_D & 0 \\ m_D & \mu_X & m_S \\ 0 & m_S & \mu_S \end{pmatrix}$$

- Interesting aspects:
 - Two heavier u's, form a pseudo-Dirac pair with $M_2 M_1 \sim \mu_S \ll M_2$
 - Light neutrino mass proportional to LNV parameter (opposite to seesaw)

Bolton et al, 2020; Mohapatra et al, '86; Nandi and Sarkar '86;

Renormalization arguments

Check that $\mathcal{A}(nn \rightarrow ppee)$ is finite

Dress the $\Delta L=2$ potential with (renormalized) strong interactions:

In MS-bar:

$$n \longrightarrow e^{p} = -\left(\frac{m_N}{4\pi}\right)^2 \left(1 + 2g_A^2\right) \frac{1}{2} \left(\log \frac{\mu^2}{-(|\mathbf{p}| + |\mathbf{p}'|)^2 + i0^+} + 1\right)$$

$$+ \text{finite}$$
Regulator dependent

Numerical results

Need for a counter term

New interaction needed at leading order to get physical amplitudes:

Need for a counter term

New interaction needed at leading order to get physical amplitudes:

Need for a counter term

New interaction needed at leading order to get physical amplitudes:

Chiral EFT

Non-Weinberg counting

Chiral EFT

Non-Weinberg counting affects higher dimensional interactions as well

Chiral EFT

Non-Weinberg counting affects higher dimensional interactions as well

Estimate of impact in light nuclei

Estimate of impact

Light nuclei

M. Piarulli, R. Wiringa, S. Pastore

- Combine estimate $g_{\nu} = (C_1 + C_2)/2$
- With wavefunctions:
 - From Chiral potential M. Piarulli et. al. '16
 - Obtained from AV18 potential R. Wiringa, Stoks, Schiavilla, '95
 - ~10% effect in $^{6}\text{He} \rightarrow ^{6}\text{Be}$
 - ~60% effect in ¹²Be \rightarrow ¹²C
 - Due to presence of a node
 - Feature in realistic 0vββ candidates

