
EIC Software Tutorial
Designing a Scientific Software Environment for the 2030s, for all of EIC

Wouter Deconinck (University of Manitoba)

ePIC Computing & Software Working Group

Supported in part by NSERC SAPIN-2020-00049, SAPPJ-2021-00026.
With input from A. Bressan, M. Diefenthaler, C. Fanelli, T. Horn, S. Joosten, D. Lawrence, W. Li, J. Osborn, Z. Tu, T. Wenaus.



2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

EIC Timeline
Introduction

CD0 CD1 CD3a CD2/3

Not shown:
Early CD4 (Oct 2032)
CD4 (Oct 2034)

We are here

Final Design Review for CD3a

CD3a 
Review

ePIC Software and Computing Review

Final Simulations for TDR 
due

Final Design Review for CD3

CD2/3 Review

Conceptual Design 
Review for CD1

CD1 Review

EIC Yellow Report Released

DPAP 
Detector 
Proposal

Review

DPAP 
Detector 
Decision

EIC Detector proto-collaboration formed

ePIC a full collaboration

EIC Software Infrastructure Review

Start of detector 
installation

Construction & Installation
Long-lead 

Procurement

Final Design

Conceptual Design

R&D

This is our most 
imminent deliverable

2

CD3b



Our Philosophy

● We focus on modern scientific software & computing practices 
to ensure the long-term success of the EIC scientific program 
throughout all CD milestones

○ Strong emphasis on modular, orthogonal tools

○ Integration with HTC/HPC, CI workflows, and enable use of standard 
data science toolkits

● We leverage cutting edge sustainable community software 
where appropriate, avoiding the “not invented here” syndrome

○ Can build our software on top of a mature, well-supported, and actively 
developed software stack by using modern community tools, e.g. from 
CERN, the HPC community, and the data science community

○ Actively collaborate with external software projects, while externalizing 
some support burden to external projects 

● We embrace these practices today to avoid starting our journey 
to EIC with technical debt.

● We are writing software for the future, not the lowest 
common denominator of the past!

Introduction

3



● Community document that 

encodes our aspirations 

(technical and cultural) for 

software and computing at 

the EIC

● The foundation of the ePIC 

Software Stack

● Co-written and endorsed by 

a large group representing 

the international EIC 

community

EIC Software: Statement of Principles
Introduction

4



EIC Software is:

1. Diverse

2. Integrative

3. Heterogeneous

4. User-centered

5. Accessible

6. Reproducible

7. Collaborative

8. Agile

EIC Software: Statement of Principles
Introduction

5



Software Stack Overview 

6



The ePIC Software Stack
A modular simulation, reconstruction, and analysis toolkit

Input Events

Detector Simulation

Digitization 
(Readout Simulation)

Reconstruction 

Analyses 

H
ep

M
C

3 
Ev

en
ts

D
D

4h
ep

 G
eo

m
et

ry
 &

 E
IC

 D
at

a 
M

o
d

el

R
ea

l D
at

a

Input events from MC event generators or particle guns, with 
optional physics background merging

Full detector simulations driven by Geant4 and DD4hep, into EIC 
Data Model output (EDM4hep/EDM4eic, defined in Podio)

Digitization algorithms to mimic real detector readout from 
Geant4 hits, including background events, “pileup”, DAQ frames

JA
N

A
2 

Fr
am

ew
o

rk

Realistic reconstruction algorithms starting from raw detector 
output (from digitization or real data)

User analyses in plain C++/ROOT or Python/uproot, facilitated by 
using a flat data model, enabling use by anyone anywhere

Continuous integration for detector and physics benchmarks and regular 
monthly production campaigns ensure a production-ready software stack

7



What is a Data Model?

● Standardized data structures that we collectively agree to use to pass information 
between simulation, reconstruction, and analysis algorithms

○ Example: The information we talk about when we say ‘a hit in a tracking detector,’ such as channel 
number, energy deposition, time, position, etc…

○ The data model is the “protocol” that the components in our software stack use to talk to each other

● This does not include: Decisions about the input/output file format, memory layout, 
or the physical data storage medium

○ Example: Our choice of data model does not require storage in ROOT files (but can be written to ROOT 
files, HDF5 files, and many others), does not require C++ (or Python), does not require row-oriented 
memory layouts (but allows for GPU processing), etc…

● We aim for flexibility through our choice of data model.

8

Our data model is the glue for the software stack



Data-Driven API Design and the EIC Data Model

● Use of standard interfaces between individual simulation, reconstruction, and 
analysis tasks creates modularity that enables easy exchange of components

● Example: multiple clustering algorithms can be swapped out, as long as they adhere 
to the data model interfaces

● We standardized on HepMC3 for Monte Carlo input and EDM4eic within our 
software stack (an extended version of EDM4hep from Key4HEP project at CERN).

● This modularity extends beyond the EIC community, since many data structures are 
common across NP and HEP experiments worldwide; reuse of CERN methodologies

Standardized interfaces between components ensure modularity

9



Podio, EDM4hep, and EDM4eic
Open source community data model toolkit for NP & HEP

● Podio is a community tool to define data models in a human-readable format

● EDM4hep implements a standard data model for HEP using Podio

● EDM4eic is a set of EIC-specific extensions to EDM4hep

● All components of the data model are open source and supported by multiple 
institutions and collaborations with goals aligned with ours

● ePIC is closely aligned and actively involved with Key4HEP at CERN

Key4HEP 
stack

10

https://github.com/AIDASoft/podio
https://github.com/key4hep/EDM4hep
https://github.com/eic/EDM4eic


Geometry Description and Detector Implementation
Single source of geometry for simulation and reconstruction

● Simulation and reconstruction both need a single source of geometry 
● To ensure modularity this should be provided by an orthogonal toolkit 

(e.g. not directly connected to the event processing framework)
● DD4hep provides a complete solution for a full detector description 

(geometry, materials, visualization, readout, alignment, …)
○ Parametrized geometries are a powerful tool for detector optimization
○ A full implementation of the ePIC detector in DD4hep has been used in production 

for well over a year; second detector effort is using DD4hep as well
○ Our experience has been very positive, in terms of new user onboarding, using 

DD4hep to drive Geant4 simulations , accessing DD4hep geometry information in 
reconstruction algorithms, and collaborating with the DD4hep developers

● EIC-specific npsim library configures EIC physics, optical photon 
settings specific to our Cherenkov PID detectors,…

● ePIC has become a major contributor to the DD4hep project (bugfixes 
and new features)

11

https://github.com/AIDASoft/DD4hep
https://github.com/eic/epic
https://github.com/eic/npsim


Reconstruction Framework
● We selected JANA2 as the reconstruction framework based on a carefully formed 

set of requirements reviewed by the EIC software community
○ Natively multithreaded from the start
○ Supports streaming DAQ and heterogeneous hardware
○ Active development and support (1 dedicated FTE from Jefferson Lab to support ePIC)
○ Developed by Jefferson Lab, one of the EIC host labs
○ Over 20 years of production experience between JANA and JANA2 (used in GlueX)

● We implemented EICrecon with the tooling and algorithms needed for ePIC 
○ Podio frames support
○ DD4hep geometry support
○ Quasi-framework independent algorithms
○ Algorithm configuration and wiring

● Current mid-term framework developments:
○ Fully framework independent (modular) algorithms
○ Flexible external algorithm wiring and configurability
○ Metadata and conditions handling
○ Better integration of ML in the reconstruction

Event processing framework for reconstruction (and digitization)

12

JANA2

https://github.com/JeffersonLab/JANA2
https://github.com/eic/EICrecon


Example: ACTS for Tracking Algorithms
Community software in reconstruction algorithms

13

● ACTS is the main toolkit to express our tracking algorithms, we 
have used ACTS for all our ePIC simulation campaigns

● ACTS integrates almost seamlessly with our DD4hep geometry

● ACTS developers frequently attend out weekly Tracking 
Reconstruction meetings, which is invaluable

● Solving EIC-unique problems together with the ACTS team

● Many EIC-related commits are now part of the main ACTS 
codebase

● Highly positive experience: the ACTS team has treated us as 
first-rate “clients” of their project, and we are contributing 
back code

https://github.com/acts-project/acts


Enabling User Workflows

14



Deployment with Containers
Enabling a consistent working environment

15

Dependencies:
spack.yaml

Debian stable

ePIC 
software

ePIC
geometry

● Provide a single curated software build 
“eic-shell” for local development, CI, and 
production campaigns

○ Multiple architecture-specific versions of images where 
needed (e.g. amd64 and aarch64)

○ Build docker image and converted singularity image

● Different flavors:
○ nightly: all master branches, built every night

○ stable/tagged: release versions

○ unstable: temporary containers for Pull Requests

● Distribution:
○ DockerHub & Github Registry: all docker images

○ eicweb: Internal docker images, all singularity images

○ CVMFS: OSG ~6 hour synchronizations, to 
/cvmfs/singularity.opensciencegrid.org

https://github.com/eic/eic-shell


Local EIC Software Deployment with eic-shell
Easy to get started locally… in only 1 line!

16

Step 1: curl -L get.epic-eic.org | bash
Step 2: ???

Step 3: Profit

● Uses deployed images on /cvmfs when available, downloads 
singularity sifs otherwise

● Rolling out seamless container updates to end users

● At the same time basis of scalable computing on OSG: same 
containers are used everywhere.

● Note: In principle not even needed to look at data (flat format!)

Approach has worked robustly for multiple years now. Biggest challenge was 
making people believe it can really be this simple!



GitHub: EIC organization and managed runners

● Recommended standard interface for all source code projects in ePIC

● Modest computational resources:
○ 20 quad-core job slots for all projects under github.com/eic

● User management and workflow:
○ Everyone can get a GitHub account and every EIC user can get EIC organization membership 

○ All new contributions happen through a pull request (PR)

○ Code can only be merged if it passess all CI checks and passes expert review

○ All PRs are squash-merged into the main branch to maintain a clear history

○ We strongly encourage users to make small incremental changes to most effectively develop software 
in a collaborative context

● Additional features:
○ GitHub actions model of development: easily shared across all of GitHub 

○ GitHub pages for presentation (e.g. https://eic.github.io/epic/craterlake_views)

Main software repository for development

17

https://github.com/eic
https://eic.github.io/epic/craterlake_views


Workflow Philosophy
Open, collaborative software development

Encourage Upstream Contributions
● Requirements of well-formed HepMC as 

input has resulted in real improvements to 
multiple MCEGs used by EIC community.

● Various upstream contributions to DD4hep, 
ACTS, Spack, uproot,...

Encourage Social Coding
● CI platform provides the incentive for 

developers to commit code frequently: 
achieving data management and analysis 
preservation goals.

● Pull request reviews to ensure higher 
quality code and build developer skills.

Enable Access Without Restrictions
● ePIC collaboration members include over 

170 institutions worldwide

● Data ‘publicly’ available through BNL S3 
and publicly available through JLab xrootd.

● Flat data structures (i.e. could be a csv), 
stored as ubiquitous ROOT trees without 
need for data structure libraries.

● Support for uproot using numpy library 
(not awkward).

Data Analysis Preservation Approaches
● Rucio for data management

● Reproducible analysis workflow tools

18



Tutorial: Get Out Your Laptops!
(or keep using your laptops but work along with me)

19



EIC Software Stack: User Tutorials (Current Snapshot)

GitHub: http://github.com/eic and search any repository with ‘tutorial’ in the name:

● Setting up your environment: https://eic.github.io/tutorial-setting-up-environment
○ How to get started with eic-shell at your favorite analysis cluster or your laptop

● Geometry Development with DD4hep: 
https://eic.github.io/tutorial-geometry-development-using-dd4hep 

○ How to implement new detectors (or modify the description of existing detectors)

● Simulations using ddsim and Geant4: 
https://eic.github.io/tutorial-simulations-using-ddsim-and-geant4 

○ How to run full simulations starting from single particles or from HepMC3 events

● Reconstruction with JANA2: https://eic.github.io/tutorial-jana2/
○ How to write algorithm factories in JANA2

● Analysis: https://eic.github.io/tutorial-analysis/
○ How to analyze reconstruction output from EICrecon

● Reconstruction algorithms: https://eic.github.io/tutorial-reconstruction-algorithms/ 
○ How to write new event reconstruction algorithms

Open, collaborative software development

http://github.com/eic
https://eic.github.io/tutorial-setting-up-environment
https://eic.github.io/tutorial-geometry-development-using-dd4hep/
https://eic.github.io/tutorial-simulations-using-ddsim-and-geant4
https://eic.github.io/tutorial-jana2/
https://eic.github.io/tutorial-analysis/
https://eic.github.io/tutorial-reconstruction-algorithms/


EIC Software Stack: Accessing Through eic-shell 

On a Linux system (with bash, curl and possibly cvmfs, singularity or docker)

$ curl -L get.epic-eic.org | bash

This will install the script eic-shell to access the EIC software stack (continuously 
updated).

$ ./eic-shell 

jug_xl> wdconinc@menelaos:~ $ 

Open, collaborative software development



Accessing the EIC Software on GitHub

● GitHub Codespaces: cloud-enabled compute environment, free of charge for any 
GitHub user (up to a finite number of hours per month, ~4 hours per day)

○ Navigate to https://github.com/eic/python-analysis-bootcamp and click the top right “Code” button
○ Direct link to Codespaces: https://codespaces.new/eic/eic-shell?quickstart=1 (ignore warnings about 

Copilot)
○ If prompted which Python Environment, choose “analysis, python 3.12”

● Determining x and Q2 from the scattered electron
○ Naive(!) calculation of x and Q2 based on reconstructed electron kinematics (entirely from tracking)
○ Refer to Tyler’s talk on Monday for why this is not ideal for all kinematic regions
○ Not strictly necessary to do this calculation by hand: of course it is done in our reconstruction too

● Comparing measured and true x and Q2 for unfolding
○ First step in determining bin-to-bin migration (purities, unfolding)
○ Refer to Tyler’s talk on Monday again…

Open, collaborative software development

https://github.com/eic/python-analysis-bootcamp
https://codespaces.new/eic/eic-shell?quickstart=1



