Resolving Fast Ejecta from Binary Neutron Star Mergers: implications for electromagnetic counterparts

Mass ejection from BNS mergers

Dynamical Ejecta

- Tidal disruption
- Contact plane ejecta
- Remnant oscillation

Secular Ejecta

Disk outflows

Dean, Fernández & Metzger 2021

Mass ejection from BNS mergers

Dynamical Ejecta

- Tidal disruption
- Contact plane ejecta
- Remnant oscillation

Secular Ejecta

Disk outflows

Dean, Fernández & Metzger 2021

Neutron rich ejecta

Slow Ejecta (v<0.6c)

- r-process
- neutrino interactions
- powers kilonova

Fast Ejecta (v> 0.6c)

Coleman Dean

- freeze-out
- UV precursor
- non-thermal afterglow

UNIVERSITY OF

R-process Freeze-out

Freeze-out requires a density drop to $\rho < 4 \times 10^4$ g cm⁻³ within 5 ms (Metzger et al. 2015) **r(capture) > r(expansion)**

Free neutrons escape the r-process and remain free

Maps well to ejecta with v > 0.6 c

UV Precursor

Ejecta heated by free neutron decay

Peaks in the ultraviolet

On a timescale of hours after the merger

Study Motivation

Disagreement on free neutron ejecta mass

For an equal mass 1.35 $M_{_{\rm O}}$ - 1.35 $M_{_{\rm O}}$ BNS merger

Smoothed Particle Hydrodynamics (SPH):

 $M_{fn} \sim 10^{-4} M_{\odot}$ (Bauswein et al. 2013, Metzger et al. 2015)

Grid-Based:

 $M_{fn} \sim 10^{-6} M_{\odot}$ (Radice et al. 2018b)

Study Motivation

Disagreement on free neutron ejecta mass

For an e	Paper	Method	Neutrinos
Smooth M _{fn}	Bauswein et al. 2013	SPH	No
	Radice et al. 2018b	Grid	Leakage / M0

Grid-Based:

$$M_{fn} \sim 10^{-6} M_{\odot}$$
 (Radice et al. 2018b)

Study Motivation

Amount of mass ejected impacts detectability of precursor

We test whether grid-based simulations are simply under-resolving this ejecta

Hubble Space Telescope, NASA and ESA https://www.nasa.gov/press-release/nasa-missions-catch-first -light-from-a-gravitational-wave-event

We also want to estimate whether this UV precursor is realistically observable by Ultrasat **Resolve surface layers** (< 10 m cell size; Kyutoku et al. 2014)

Previous 3D Simulations:

Radice et al. (2018b) 123 m Kiuchi et al. (2017)* 63-86 m Kiuchi et al. (2018)* 12.5 m

10⁶

10⁵

10⁴ (cm)

99R_N

93% R_{ns}

 $M_{ns} = 1.4 M_{\odot}$

R_{ns} = 12.6 km (APR4)

APR1 BPAL12

APR4

 $\Delta z = 32 \text{ m}$

Axisymmetric Merger Simulation

 \otimes

7

2D Hydrodynamics Newtonian self-gravity

piecewise polytropic EOS

- approximate thermal effects corotational frame
 - inertial forces

Dean, Fernández & Metzger 2021

cyl

Approximate gravitational wave inspiral

Resolution Study

Fast Ejecta Mass Convergence

M_{fn} converged to within 10% by ~20 m resolution

Fast ejecta varies by a factor of ~2 in mass over a resolution change of a factor ~140

Coleman Dean

Dean, Fernández & Metzger 2021

Fast Ejecta Mass Convergence

No strong resolution dependence

ALBERTA

Parameter Space Exploration

Trends in **compactness** and **total mass** follow previously measured trends

Model breaks down for asymmetric binaries

Eccentric BNS Mergers

Free fall speeds (eccentric mergers)

Produce $M_{ej} \sim 10^{-2} M_{\odot}$ (~1000x M_{ej} from GW inspiral merger speeds)

Distinct Kilonova emission

Detectability

 $M_{fn} \sim 10^{-5} M_{\odot}$

Peak in the U band

AB Magnitude ~23 (Analytic fit from Metzger et al. 2015)

Ultrasat (Sagiv et al. 2014) 5σ limiting magnitude of 23 for a source at 200 Mpc (1 hour integration)

Detectability

In principle detectable for mergers < 200 Mpc away

GW170817 was 40 Mpc away

First EM observation: ~11 hours after merger

Other Proposed Fast Ejecta Sources

Neutrino-driven outflows (Metzger et al. 2018; Ciolfi & Kalinani 2020)

Outflows from accretion disks w/ strong initial poloidal fields (Fernández et al. 2019)

Cocoon-jet interactions (Gottlieb & Loeb 2020)

Ablation of stellar material by neutrinos (Belborodov et al. 2020)

Conclusion

Resolution unlikely to explain ejecta discrepancy (SPH vs. Grid-based)

Fast ejecta converges to within 10% at a resolution of ~20 m

Eccentric BNS mergers may result in a distinguishable kilonova from quasi-circular

UV precursor in principle detectable at $\rm M_{fn}\,{\sim}10^{-5}\,M_{\odot}$ by Ultrasat for mergers < 200 Mpc

Dean, C., Fernández, R., and Metzger, B. D., 2021 arXiv:2108.08311

https://www.weizmann.ac.il/ultrasat/

cta from BNS Mergers